WEAK SOLUTIONS FOR A VISCOUS p-LAPLACIAN EQUATION

CHANGCHUN LIU

Abstract

In this paper, we consider the pseudo-parabolic equation $u_{t}-$ $k \Delta u_{t}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. By using the time-discrete method, we establish the existence of weak solutions, and also discuss the uniqueness

1. Introduction

This paper concerns the study of the viscous p-Laplacian equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}-k \frac{\partial \Delta u}{\partial t}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \quad x \in \Omega, p>2 \tag{1.1}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\left.u\right|_{\partial \Omega}=0, \tag{1.2}
\end{equation*}
$$

and initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{1.3}
\end{equation*}
$$

Here Ω is a bounded domain in \mathbb{R}^{N} and $k>0$ is the viscosity coefficient. The term $k \frac{\partial \Delta u}{\partial t}$ in (1.1) is interpreted as due to viscous relaxation effects, or viscosity; hence, the equation (1.1) is called "viscous p-Laplacian equations". The well-known p-Laplacian equation is obtained by setting $k=0$.

Equation (1.1) arises as a regularization of the pseudo-parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}-k \frac{\partial \Delta u}{\partial t}=\Delta u \tag{1.4}
\end{equation*}
$$

which arises in various physical phenomena. (1.4) can be assumed as a model for diffusion of fluids in fractured porous media $[1,5,4]$, or as a model for heat conduction involving a thermodynamic temperature $\theta=u-k \Delta u$ and a conductive temperature $u[10,3]$. Equation (1.4) has been extensively studied, and there are many outstanding results concerning existence, uniqueness, regularity, and special properties of solutions, see for example $[4,5,6,7,8,9,11]$.

To derive (1.4), B. D. Coleman, R. J. Duffin and V. J. Mizel considered a special kinematical situation, of nonsteady simple shearing flow [4]. In fact, when the influence of many factors, such as the molecular and ion effects, are considered, one has the nonlinear relation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ in stead of Δu in right-hand side of (1.4). Hence, we obtain (1.1).

[^0]Equation (1.1) is something like the p-Laplacian equation, but many methods which are useful for the p-Laplacian equation are no longer valid for this equation. Because of the degeneracy, problem (1.1)-(1.3) does not admit classical solutions in general. So, we study weak solutions in the sense of following
Definition A function u is said to be a weak solution of (1.1)-(1.3), if the following conditions are satisfied:
(1) $u \in L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap C\left(0, T ; H^{1}(\Omega)\right), \frac{\partial u}{\partial t} \in L^{\infty}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$, where p^{\prime} is conjugate exponent of p.
(2) For $\varphi \in C_{0}^{\infty}\left(Q_{T}\right)$ and $Q_{T}=\Omega \times(0, T)$,

$$
\iint_{Q_{T}} u \frac{\partial \varphi}{\partial t} d x d t+k \iint_{Q_{T}} \nabla u \frac{\partial \nabla \varphi}{\partial t} d x d t-\iint_{Q_{T}}|\nabla u|^{p-2} \nabla u \nabla \varphi d x d t=0 .
$$

(3) $u(x, 0)=u_{0}(x)$.

In this paper, we discuss first the existence of weak solutions. Most proofs of existence for (1.4) are based on the Yoshida approximations [6], but these methods do not apply to (1.1). Our method for proving the existence of weak solutions is based on a time discrete method that constructs approximate solutions. Later on, we discuss the uniqueness of a solution. For simplicity we set $k=1$ in this paper.

2. Existence of weak solutions

Theorem 2.1. If $u_{0} \in W_{0}^{1, p}(\Omega)$ with $p>2$, then problem (1.1)-(1.3) has at least one solution.

We use the a discrete method for constructing an approximate solution. First, divide the interval $(0, T)$ in N equal segments and set $h=\frac{T}{N}$. Then consider the problem

$$
\begin{gather*}
\frac{1}{h}\left(u_{k+1}-u_{k}\right)-\frac{1}{h}\left(\Delta u_{k+1}-\Delta u_{k}\right)=\operatorname{div}\left(\left|\nabla u_{k+1}\right|^{p-2} \nabla u_{k+1}\right), \tag{2.1}\\
\left.u_{k+1}\right|_{\partial \Omega}=0, \quad k=0,1, \ldots, N-1 \tag{2.2}
\end{gather*}
$$

where u_{0} is the initial value.
Lemma 2.2. For a fixed k, if $u_{k} \in H_{0}^{1}(\Omega)$, problem (2.1)-(2.2) admits a weak solution $u_{k+1} \in W_{0}^{1, p}(\Omega)$, such that for any $\varphi \in C_{0}^{\infty}(\Omega)$, have
$\frac{1}{h} \int_{\Omega}\left(u_{k+1}-u_{k}\right) \varphi d x+\frac{1}{h} \int_{\Omega}\left(\nabla u_{k+1}-\nabla u_{k}\right) \nabla \varphi d x+\int_{\Omega}\left|\nabla u_{k+1}\right|^{p-2} \nabla u_{k+1} \nabla \varphi d x=0$.

Proof. On the space $W_{0}^{1, p}(\Omega)$, we consider the functionals

$$
\begin{gathered}
\Phi_{1}[u]=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x, \\
\Phi_{2}[u]=\frac{1}{2} \int_{\Omega}|u|^{2} d x, \\
\Phi_{3}[u]=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x, \\
\Psi[u]=\Phi_{1}[u]+\frac{1}{h} \Phi_{2}[u]+\frac{1}{h} \Phi_{3}[u]-\int_{\Omega} f u d x,
\end{gathered}
$$

where $f \in H^{-1}(\Omega)$ is a known function. Using Young's inequality, there exist constants $C_{1}, C_{2}>0$, such that

$$
\begin{aligned}
\Psi[u] & =\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{1}{2 h} \int_{\Omega}|u|^{2} d x+\frac{1}{2 h} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} f u d x \\
& \geq C_{1} \int_{\Omega}|\nabla u|^{p} d x-C_{2}\|f\|_{-1} ;
\end{aligned}
$$

hence $\Psi[u] \rightarrow \infty$, as $\|u\|_{1, p} \rightarrow+\infty$. Here $\|u\|_{1, p}$ denotes the norm of u in $W_{0}^{1, p}(\Omega)$.
Since the norm is lower semi-continuous and $\int_{\Omega} f u d x$ is a continuous functional, $\Psi[u]$ is weakly lower semi-continuous on $W_{0}^{1, p}(\Omega)$ and satisfying the coercive condition. From [2] we conclude that there exists $u_{*} \in W_{0}^{1, p}(\Omega)$, such that

$$
\Psi\left[u_{*}\right]=\inf \Psi[u],
$$

and u_{*} is the weak solutions of the Euler equation corresponding to $\Psi[u]$,

$$
\frac{1}{h} u-\frac{1}{h} \Delta u-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f .
$$

Taking $f=\left(u_{k}-\Delta u_{k}\right) / h$, we obtain a weak solutions u_{k+1} of (2.1)-(2.2). The proof is complete.

Now, we need to establish a priori estimates, for the weak solutions u_{k+1} of (2.1)-(2.2). First, we define the weak solutions of (1.1)-(1.3) as follows:

$$
\begin{gathered}
u^{h}(x, t)=u_{k}(x), \quad k h<t \leq(k+1) h, k=0,1, \ldots, N-1, \\
u^{h}(x, 0)=u_{0}(x) .
\end{gathered}
$$

Lemma 2.3. The weak solutions u_{k} of (2.1)-(2.2) satisfy

$$
\begin{gather*}
h \sum_{k=1}^{N} \int_{\Omega}\left|\nabla u_{k}\right|^{p} d x \leq C \tag{2.4}\\
\sup _{0<t<T} \int_{\Omega}\left|\nabla u^{h}(x, t)\right|^{p} d x \leq C, \tag{2.5}
\end{gather*}
$$

where C is a constant independent of h and k.
Proof. i) We take $\varphi=u_{k+1}$ in the integral equality (2.3) (we can easily prove that for $\varphi \in W_{0}^{1, p}(\Omega),(2.3)$ also holds).

$$
\begin{aligned}
\frac{1}{h} \int_{\Omega}\left(u_{k+1}-u_{k}\right) u_{k+1} d x & +\frac{1}{h} \int_{\Omega}\left(\nabla u_{k+1}-\nabla u_{k}\right) \nabla u_{k+1} d x \\
& +\int_{\Omega}\left|\nabla u_{k+1}\right|^{p-2} \nabla u_{k+1} \nabla u_{k+1} d x=0
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \frac{1}{h} \int_{\Omega}\left|u_{k+1}\right|^{2} d x+\frac{1}{h} \int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x-\frac{1}{h} \int_{\Omega} u_{k} u_{k+1} d x \\
&-\frac{1}{h} \int_{\Omega} \nabla u_{k+1} \nabla u_{k} d x+\int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x=0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \frac{1}{h} \int_{\Omega}\left|u_{k+1}\right|^{2} d x+\frac{1}{h} \int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x \\
& =\frac{1}{h} \int_{\Omega} u_{k} u_{k+1} d x+\frac{1}{h} \int_{\Omega} \nabla u_{k+1} \nabla u_{k} d x
\end{aligned}
$$

By Young's inequality,

$$
\begin{aligned}
& \frac{1}{h} \int_{\Omega}\left|u_{k+1}\right|^{2} d x+\frac{1}{h} \int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x \\
& \leq \frac{1}{2 h} \int_{\Omega}\left|u_{k}\right|^{2} d x+\frac{1}{2 h} \int_{\Omega}\left|u_{k+1}\right|^{2} d x+\frac{1}{2 h} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x+\frac{1}{2 h} \int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x
\end{aligned}
$$

that is,

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left|u_{k+1}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x+h \int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x \\
& \leq \frac{1}{2} \int_{\Omega}\left|u_{k}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x \tag{2.6}
\end{align*}
$$

Adding these inequalities for k from 0 to $N-1$, we have

$$
h \sum_{k=1}^{N} \int_{\Omega}\left|\nabla u_{k}\right|^{p} d x \leq \frac{1}{2} \int_{\Omega}\left|u_{0}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2} d x
$$

Therefore, (2.4) holds.
ii) We take $\varphi=u_{k+1}-u_{k}$ in the integral equality (2.3) and have

$$
\begin{aligned}
\frac{1}{h} \int_{\Omega}\left(u_{k+1}-u_{k}\right)\left(u_{k+1}-u_{k}\right) d x & +\frac{1}{h} \int_{\Omega}\left(\nabla u_{k+1}-\nabla u_{k}\right) \nabla\left(u_{k+1}-u_{k}\right) d x \\
& +\int_{\Omega}\left|\nabla u_{k+1}\right|^{p-2} \nabla u_{k+1} \nabla\left(u_{k+1}-u_{k}\right) d x=0
\end{aligned}
$$

Since the first term and the second term of the left hand side of the above equality is nonnegative, it follows that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x & \leq \int_{\Omega}\left|\nabla u_{k+1}\right|^{p-2} \nabla u_{k+1} \nabla u_{k} d x \\
& \leq \frac{p-1}{p} \int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x+\frac{1}{p} \int_{\Omega}\left|\nabla u_{k}\right|^{p} d x
\end{aligned}
$$

thus,

$$
\int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x \leq \int_{\Omega}\left|\nabla u_{k}\right|^{p} d x
$$

For any m, with $1 \leq m \leq N-1$, adding the above inequality for k from 0 to $m-1$, we have

$$
\int_{\Omega}\left|\nabla u_{m}\right|^{p} d x \leq \int_{\Omega}\left|\nabla u_{0}\right|^{p} d x
$$

Therefore, (2.5) holds.
Lemma 2.4. For a weak solutions u_{k+1} of (2.1)-(2.2), we have

$$
\begin{equation*}
-C h \leq \int_{\Omega}\left|u_{k+1}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x-\int_{\Omega}\left|u_{k}\right|^{2} d x-\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x \leq 0 \tag{2.7}
\end{equation*}
$$

where C is a constant independently of h.

Proof. The second inequality in (2.7) is an immediate consequence of (2.6). To prove the first inequality, we choose $\varphi=u_{k}$ in (2.3) and obtain

$$
\begin{aligned}
\frac{1}{h} \int_{\Omega}\left(u_{k+1}-u_{k}\right) u_{k} d x & +\frac{1}{h} \int_{\Omega}\left(\nabla u_{k+1}-\nabla u_{k}\right) \nabla u_{k} d x \\
& +\int_{\Omega}\left|\nabla u_{k+1}\right|^{p-2} \nabla u_{k+1} \nabla u_{k} d x=0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{\Omega}\left|u_{k}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x-\int_{\Omega} u_{k+1} u_{k} d x-\int_{\Omega} \nabla u_{k+1} \nabla u_{k} d x \\
& =h \int_{\Omega}\left|\nabla u_{k+1}\right|^{p-2} \nabla u_{k+1} \nabla u_{k} d x \\
& \leq h\left(\int_{\Omega}\left|\nabla u_{k+1}\right|^{p} d x\right)^{(p-1) / p}\left(\int_{\Omega}\left|\nabla u_{k}\right|^{p} d x\right)^{1 / p} .
\end{aligned}
$$

Here we have used Hölder inequality. By (2.5) again, we obtain

$$
\int_{\Omega}\left|u_{k}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x-\int_{\Omega} u_{k+1} u_{k} d x-\int_{\Omega} \nabla u_{k+1} \nabla u_{k} d x \leq C h .
$$

Therefore,

$$
\begin{aligned}
& \int_{\Omega}\left|u_{k}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x \\
& \leq C h+\int_{\Omega} u_{k+1} u_{k} d x+\int_{\Omega} \nabla u_{k+1} \nabla u_{k} d x \\
& \leq C h+\frac{1}{2} \int_{\Omega}\left|u_{k+1}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|u_{k}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x .
\end{aligned}
$$

i.e.,

$$
\int_{\Omega}\left|u_{k}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x-\int_{\Omega}\left|u_{k+1}\right|^{2} d x-\int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x \leq C h
$$

which completes the proof.

Lemma 2.5.

$$
\begin{equation*}
\sup _{0<t<T}\left(\int_{\Omega}\left|u^{h}\right|^{2} d x+\int_{\Omega}\left|\nabla u^{h}\right|^{2} d x\right) \leq \int_{\Omega}\left|u_{0}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{0}\right|^{2} d x \tag{2.8}
\end{equation*}
$$

The proof follows by adding (2.4), for m with $1 \leq m \leq N-1$, for k from 0 to $m-1$.

Proof of Theorem 2.1. First, we define the operator $A^{t}, A^{t}\left(\nabla u^{h}\right)=\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}$, $\Delta^{h} u^{h}=u_{k+1}-u_{k}$, where $k h<t \leq(k+1) h, k=0,1, \ldots, N-1$. By the dispersion equation (2.1) and the (2.4) in Lemma 2.2, we know that

$$
\begin{equation*}
\frac{1}{h}\left(u_{k+1}-u_{k}\right) \quad \text { in } L^{\infty}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right) \quad \text { is bounded. } \tag{2.9}
\end{equation*}
$$

By (2.5), (2.7), (2.9) and (2.4) we known that exists a subsequence of $\left\{u^{h}\right\}$ (which we denote as the original sequence) such that

$$
\begin{gathered}
u^{h} \rightarrow u \quad \text { in } L^{\infty}\left(0, T ; W^{1, p}(\Omega)\right) \text { weak- }, \\
\nabla u^{h} \rightarrow \nabla u \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \quad \text { weak-», } \\
\frac{1}{h}\left(u_{k+1}-u_{k}\right) \rightarrow \frac{\partial u}{\partial t} \quad \text { in } L^{\infty}\left(0, T ; W^{-1, p^{\prime}}(\Omega) \quad\right. \text { weak-», } \\
\left|\nabla u^{h}\right|^{p-2} \nabla u^{h} \rightarrow w \quad \text { in } L^{\infty}\left(0, T ; L^{p^{\prime}}(\Omega)\right) \text { weak-丸, }
\end{gathered}
$$

where p^{\prime} is conjugate exponent of p. From (2.3), we known, for any $\varphi \in C_{0}^{\infty}\left(Q_{T}\right)$,

$$
\iint_{Q_{T}}\left(\frac{1}{h} \Delta^{h} u^{h} \varphi+\frac{1}{h} \Delta^{h} \nabla u^{h} \nabla \varphi+\left|\nabla u^{h}\right|^{p-2} \nabla u^{h} \nabla \varphi\right) d x d t=0
$$

i.e.,

$$
\iint_{Q_{T}}\left(\frac{1}{h} \Delta^{h} u^{h} \varphi-\frac{1}{h} \Delta^{h} u^{h} \Delta \varphi+\left|\nabla u^{h}\right|^{p-2} \nabla u^{h} \nabla \varphi\right) d x d t=0 .
$$

Letting $h \rightarrow 0$, we obtain, in the sense of distributions,

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\frac{\partial \Delta u}{\partial t}-\operatorname{div}(w)=0 . \tag{2.10}
\end{equation*}
$$

Next, we prove that $w=|\nabla u|^{p-2} \nabla u$ a.e. in Q_{T}. Define

$$
\begin{aligned}
f_{h}(t)= & \frac{t-k h}{2 h}\left(\int_{\Omega}\left|u_{k+1}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{k+1}\right|^{2} d x-\int_{\Omega}\left|u_{k}\right|^{2} d x-\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x\right) \\
& +\frac{1}{2} \int_{\Omega}\left|u_{k}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x
\end{aligned}
$$

where $k h<t \leq(k+1) h$. by (2.7) we have

$$
\begin{gathered}
\frac{1}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|u_{k}\right|^{2} d x-C h \leq f_{h}(t) \leq \frac{1}{2} \int_{\Omega}\left|u_{k}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x \\
-C \leq f_{h}^{\prime}(t) \leq 0
\end{gathered}
$$

By Ascoli-Arzela theorem, there exists a function $f(t) \in C([0, T])$, such that

$$
\lim _{h \rightarrow 0} f_{h}(t)=f(t) \quad \text { for } t \in[0, T] \text { uniformly. }
$$

Using (2.7), we have

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left(\frac{1}{2} \int_{\Omega}\left|\nabla u^{h}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|u^{h}\right|^{2} d x\right)=f(t) \quad \text { for } t \in[0, T] \text { uniformly. } \tag{2.11}
\end{equation*}
$$

By (2.6) again, we obtain

$$
\frac{1}{2} \int_{\Omega}\left|u_{N}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{N}\right|^{2} d x+\iint_{Q_{T}}\left|\nabla u^{h}\right|^{p} d x d t \leq \frac{1}{2} \int_{\Omega}\left|u_{0}\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2} d x .
$$

In the above inequality letting $h \rightarrow 0$, and using (2.10) we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \iint_{Q_{T}}\left|\nabla u^{h}\right|^{p} d x d t \leq & f(0)-f(T) \\
= & \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{T-\varepsilon}(f(t)-f(t+\varepsilon)) d t \\
= & \lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0}\left[\frac{1}{2 \varepsilon} \int_{0}^{T-\varepsilon} \int_{\Omega}\left(\left|u^{h}(x, t)\right|^{2}-\left|u^{h}(x, t+\varepsilon)\right|^{2}\right) d x d t\right. \\
& \left.+\frac{1}{2 \varepsilon} \int_{0}^{T-\varepsilon} \int_{\Omega}\left(\left|\nabla u^{h}(x, t)\right|^{2}-\left|\nabla u^{h}(x, t+\varepsilon)\right|^{2}\right) d x d t\right] .
\end{aligned}
$$

Since $\Phi_{2}[u]=\frac{1}{2} \int_{\Omega}|u|^{2} d x$ and $\Phi_{3}[u]=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x$ are convex functionals, and

$$
\frac{\delta \Phi_{2}[u]}{\delta u}=u, \quad \frac{\delta \Phi_{3}[u]}{\delta u}=-\Delta u
$$

we have

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}\left|u^{h}(x, t)\right|^{2} d x-\frac{1}{2} \int_{\Omega}\left|u^{h}(x, t+\varepsilon)\right|^{2} d x \\
& +\frac{1}{2} \int_{\Omega}\left|\nabla u^{h}(x, t)\right|^{2} d x-\frac{1}{2} \int_{\Omega}\left|\nabla u^{h}(x, t+\varepsilon)\right|^{2} d x \\
& \leq \int_{\Omega} u^{h}(x, t)\left(u^{h}(x, t)-u^{h}(x, t+\varepsilon)\right) d x \\
& \quad+\int_{\Omega} \nabla u^{h}(x, t)\left(\nabla u^{h}(x, t)-\nabla u^{h}(x, t+\varepsilon)\right) d x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1}{2 \varepsilon}\left[\int_{0}^{T-\varepsilon} \int_{\Omega}\left|u^{h}(x, t)\right|^{2}-\left|u^{h}(x, t+\varepsilon)\right|^{2}\right) d x d t \\
& \left.+\int_{0}^{T-\varepsilon} \int_{\Omega}\left(\left|\nabla u^{h}(x, t)\right|^{2}-\left|\nabla u^{h}(x, t+\varepsilon)\right|^{2}\right) d x d t\right] \\
& \leq \frac{1}{\varepsilon} \int_{0}^{T-\varepsilon} \int_{\Omega}(u(x, t)-u(x, t+\varepsilon)) u d x d t \\
& \quad+\frac{1}{\varepsilon} \int_{0}^{T-\varepsilon} \int_{\Omega}(\nabla u(x, t)-\nabla u(x, t+\varepsilon)) \nabla u d x d t .
\end{aligned}
$$

Hence, we obtain

$$
\lim _{h \rightarrow 0} \iint_{Q_{T}}\left|\nabla u^{h}\right|^{p} d x d t \leq-\int_{0}^{T}\left\langle\frac{\partial u}{\partial t}, u\right\rangle d t+\int_{0}^{T}\left\langle\frac{\partial u}{\partial t}, \Delta u\right\rangle d t
$$

where \langle,$\rangle denotes the inner product. Form (2.10), we obtain$

$$
\begin{equation*}
\lim _{h \rightarrow 0} \iint_{Q_{T}}\left|\nabla u^{h}\right|^{p} d x d t \leq \iint_{Q_{T}} w \nabla u d x d t \tag{2.12}
\end{equation*}
$$

Again by $\frac{\delta \Phi_{1}[u]}{\delta u}=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ and the convexity of $\Phi_{1}[u]$, for any $g \in$ $L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ we have

$$
\begin{aligned}
& -\frac{1}{p} \iint_{Q_{T}}|\nabla g|^{p} d x d t+\frac{1}{p} \iint_{Q_{T}}\left|\nabla u^{h}\right|^{p} d x d t \\
& \leq \iint_{Q_{T}}-\operatorname{div}\left(\left|\nabla u^{h}\right|^{p-2} \nabla u^{h}\right)\left(u^{h}-g\right) d x d t
\end{aligned}
$$

that is

$$
\begin{aligned}
\frac{1}{p} \iint_{Q_{T}}|\nabla g|^{p} d x d t-\frac{1}{p} \iint_{Q_{T}}\left|\nabla u^{h}\right|^{p} d x d t & \geq \iint_{Q_{T}} \operatorname{div}\left(\left|\nabla u^{h}\right|^{p-2} \nabla u^{h}\right)\left(u^{h}-g\right) d x d t \\
& =\iint_{Q_{T}}\left(\left|\nabla u^{h}\right|^{p-2} \nabla u^{h}\right) \nabla\left(g-u^{h}\right) d x d t .
\end{aligned}
$$

By (2.11) and $F(u)$ is weakly lower semicontinuous, in above equality letting $h \rightarrow 0$, we obtain

$$
\begin{equation*}
\frac{1}{p} \iint_{Q_{T}}|\nabla g|^{p} d x d t-\frac{1}{p} \iint_{Q_{T}}|\nabla u|^{p} d x d t \leq \iint_{Q_{T}} w \nabla(g-u) d x d t \tag{2.13}
\end{equation*}
$$

In (2.13), we take $g=\varepsilon g+u$ to obtain

$$
\frac{1}{\varepsilon}\left[\frac{1}{p} \iint_{Q_{T}}|\nabla(\varepsilon g+u)|^{p} d x d t-\frac{1}{p} \iint_{Q_{T}}|\nabla u|^{p} d x d t\right] \geq \iint_{Q_{T}} w \nabla g d x d t
$$

Letting $\varepsilon \rightarrow 0$,

$$
\iint_{Q_{T}} \frac{\delta \Phi_{1}[u]}{\delta u} g d x d t=\iint_{Q_{T}}|\nabla u|^{p-2} \nabla u \nabla g d x d t \geq \iint_{Q_{T}} w \nabla g d x d t
$$

Since g is arbitrary, taking $g=-g$, we get the opposite inequality above; hence

$$
w=|\nabla u|^{p-2} \nabla u
$$

The strong convergence of u^{h} in $C\left(0, T ; H^{1}(\Omega)\right)$ and the fact that $u^{h}(x, 0)=u_{0}(x)$ completes the proof.

3. Uniqueness of solutions

In this section, we prove that the weak solution is unique. To this end we need the following lemma.

Lemma 3.1. For $\varphi \in L^{\infty}\left(t_{1}, t_{2} ; W_{0}^{1, p}(\Omega)\right)$ with $\varphi_{t} \in L^{2}\left(t_{1}, t_{2} ; H^{1}(\Omega)\right)$, the weak solutions u of the problem (1.1)-(1.3) on Q_{T} satisfies

$$
\begin{aligned}
& \int_{\Omega} u\left(x, t_{1}\right) \varphi\left(x, t_{1}\right) d x+\int_{\Omega} \nabla u\left(x, t_{1}\right) \nabla \varphi\left(x, t_{1}\right) d x \\
& +\int_{t_{1}}^{t_{2}} \int_{\Omega}\left(u \frac{\partial \varphi}{\partial t}+\nabla u \frac{\partial \nabla \varphi}{\partial t}-|\nabla u|^{p-2} \nabla u \nabla \varphi\right) d x d t \\
& =\int_{\Omega} u\left(x, t_{2}\right) \varphi\left(x, t_{2}\right) d x+\int_{\Omega} \nabla u\left(x, t_{2}\right) \nabla \varphi\left(x, t_{2}\right) d x .
\end{aligned}
$$

In particular, for $\varphi \in W_{0}^{1, p}(\Omega)$, we have

$$
\begin{align*}
\int_{\Omega}\left(u\left(x, t_{1}\right)-u\left(x, t_{2}\right)\right) \varphi d x+ & \int_{\Omega} \nabla\left(u\left(x, t_{1}\right)-u\left(x, t_{2}\right)\right) \nabla \varphi d x \\
& -\int_{t_{1}}^{t_{2}} \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi d x d t=0 . \tag{3.1}
\end{align*}
$$

Proof. From $\varphi \in L^{\infty}\left(t_{1}, t_{2} ; W_{0}^{1, p}(\Omega)\right)$ and $\varphi_{t} \in L^{2}\left(t_{1}, t_{2} ; H^{1}(\Omega)\right)$, it follows that there exists a sequence of functions $\left\{\varphi_{k}\right\}$, for fixed $t \in\left(t_{1}, t_{2}\right), \varphi_{k}(\cdot, t) \in C_{0}^{\infty}(\Omega)$, and as $k \rightarrow \infty$

$$
\left\|\varphi_{k t}-\varphi_{t}\right\|_{L^{2}\left(t_{1}, t_{2} ; H^{1}(\Omega)\right)} \rightarrow 0, \quad\left\|\varphi_{k}-\varphi\right\|_{L^{\infty}\left(t_{1}, t_{2} ; W_{0}^{1, p}(\Omega)\right)} \rightarrow 0
$$

Choose a function $j(s) \in C_{0}^{\infty}(R)$ such that $j(s) \geq 0$, for $s \in R ; j(s)=0$, for $\forall|s|>1 ; \int_{R} j(s) d s=1$. For $h>0$, define $j_{h}(s)=\frac{1}{h} j\left(\frac{s}{h}\right)$ and

$$
\eta_{h}(t)=\int_{t-t_{2}+2 h}^{t-t_{1}-2 h} j_{h}(s) d s
$$

Clearly $\eta_{h}(t) \in C_{0}^{\infty}\left(t_{1}, t_{2}\right), \lim _{h \rightarrow 0^{+}} \eta_{h}(t)=1$, for all $t \in\left(t_{1}, t_{2}\right)$. In the definition of weak solutions, choose $\varphi=\varphi_{k}(x, t) \eta_{h}(t)$. We have

$$
\begin{array}{r}
\int_{t_{1}}^{t_{2}} \int_{\Omega} u \varphi_{k} j_{h}\left(t-t_{1}-2 h\right) d x d t-\int_{t_{1}}^{t_{2}} \int_{\Omega} u \varphi_{k} j_{h}\left(t-t_{2}+2 h\right) d x d t \\
+\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u \nabla \varphi_{k} j_{h}\left(t-t_{1}-2 h\right) d x d t-\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u \nabla \varphi_{k} j_{h}\left(t-t_{2}+2 h\right) d x d t \\
+\int_{t_{1}}^{t_{2}} \int_{\Omega} u \varphi_{k t} \eta_{h} d x d t+\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u \nabla \varphi_{k t} \eta_{h} d x d t \\
-\int_{t_{1}}^{t_{2}} \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi_{k} \eta_{h} d x d t=0
\end{array}
$$

Observe that

$$
\begin{aligned}
& \left|\int_{t_{1}}^{t_{2}} \int_{\Omega} u \varphi_{k} j_{h}\left(t-t_{1}-2 h\right) d x d t-\int_{\Omega}\left(u \varphi_{k}\right)\right|_{t=t_{1}} d x \mid \\
& =\left|\int_{t_{1}+h}^{t_{1}+3 h} \int_{\Omega} u \varphi_{k} j_{h}\left(t-t_{1}-2 h\right) d x d t-\int_{t_{1}+h}^{t_{1}+3 h} \int_{\Omega}\left(u \varphi_{k}\right)\right|_{t=t_{2}} j_{h}\left(t-t_{1}-2 h\right) d x d t \mid \\
& \leq \sup _{t_{1}+h<t<t_{1}+3 h} \int_{\Omega}\left|\left(u \varphi_{k}\right)\right|_{t}-\left.\left(u \varphi_{k}\right)\right|_{t_{1}} \mid d x,
\end{aligned}
$$

and $u \in C\left(0, T ; L^{2}(\Omega)\right)$. We see that the right hand side tends to zero as $h \rightarrow 0$.
Similarly,

$$
\begin{aligned}
& \quad\left|\int_{t_{1}}^{t_{2}} \int_{\Omega} u \varphi_{k} j_{h}\left(t-t_{2}+2 h\right) d x d t-\int_{\Omega}\left(u \varphi_{k}\right)\right|_{t=t_{2}} d x \mid \rightarrow 0, \quad \text { as } h \rightarrow 0 \\
& \left|\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u \nabla \varphi_{k} j_{h}\left(t-t_{1}-2 h\right) d x d t-\int_{\Omega}\left(\nabla u \nabla \varphi_{k}\right)\right|_{t=t_{1}} d x \mid \rightarrow 0, \quad \text { as } h \rightarrow 0 \\
& \left|\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u \nabla \varphi_{k} j_{h}\left(t-t_{2}+2 h\right) d x d t-\int_{\Omega}\left(\nabla u \nabla \varphi_{k}\right)\right|_{t=t_{2}} d x \mid \rightarrow 0, \quad \text { as } h \rightarrow 0
\end{aligned}
$$

Letting $h \rightarrow 0$ and $k \rightarrow \infty$, we obtain

$$
\begin{aligned}
& \int_{\Omega} u\left(x, t_{1}\right) \varphi\left(x, t_{1}\right) d x+\int_{\Omega} \nabla u\left(x, t_{1}\right) \nabla \varphi\left(x, t_{1}\right) d x \\
& +\int_{t_{1}}^{t_{2}} \int_{\Omega}\left(u \frac{\partial \varphi}{\partial t}+\nabla u \frac{\partial \nabla \varphi}{\partial t}-|\nabla u|^{p-2} \nabla u \nabla \varphi\right) d x d t \\
& =\int_{\Omega} u\left(x, t_{2}\right) \varphi\left(x, t_{2}\right) d x+\int_{\Omega} \nabla u\left(x, t_{2}\right) \nabla \varphi\left(x, t_{2}\right) d x .
\end{aligned}
$$

In particular for $\varphi \in W_{0}^{1, p}(\Omega)$, we have

$$
\begin{aligned}
\int_{\Omega}\left(u\left(x, t_{1}\right)-u\left(x, t_{2}\right)\right) \varphi d x+\int_{\Omega} & \left(\nabla u\left(x, t_{1}\right)-\nabla u\left(x, t_{2}\right)\right) \nabla \varphi d x \\
& -\int_{t_{1}}^{t_{2}} \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi d x d t=0
\end{aligned}
$$

which completes the proof.
For a fixed $\tau \in(0, T)$, set h satisfying $0<\tau<\tau+h<T$. Letting $t_{1}=\tau$, $t_{2}=\tau+h$, then multiply (3.1) by $\frac{1}{h}$, for $\varphi \in W_{0}^{1, p}(\Omega)$, we obtain
$\int_{\Omega}\left(u_{h}(x, \tau)\right)_{\tau} \varphi(x) d x+\int_{\Omega}\left((\nabla u)_{h}(x, \tau)\right)_{\tau} \varphi(x) d x+\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u\right)_{h}(x, \tau) \nabla \varphi d x=0$,
where

$$
u_{h}(x, t)= \begin{cases}\frac{1}{h} \int_{t}^{t+h} u(\cdot, \tau) d \tau, & t \in(0, T-h) \tag{3.2}\\ 0, & t>T-h\end{cases}
$$

Theorem 3.2. Problem (1.1)-(1.3) admits only one weak solution.
Proof. Suppose u_{1}, u_{2} are two solutions of (1.1)-(1.3), then

$$
\begin{aligned}
& \int_{\Omega}\left(u_{1}(x, \tau)-u_{2}(x, \tau)\right)_{h \tau} \varphi(x) d x+\int_{\Omega}\left(\left(\nabla u_{1}-\nabla u_{2}\right)_{h}(x, \tau)\right)_{\tau} \varphi(x) d x \\
&+\int_{\Omega}\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right)_{h}(x, \tau) \nabla \varphi d x=0 .
\end{aligned}
$$

For a fixed τ, we take $\varphi(x)=\left[u_{1}-u_{2}\right]_{h} \in W_{0}^{1, p}(\Omega)$, and hence

$$
\begin{aligned}
& \int_{\Omega}\left(u_{1}(x, \tau)-u_{2}(x, \tau)\right)_{h \tau}\left(u_{1}-u_{2}\right)_{h} d x \\
& +\int_{\Omega} \nabla\left(u_{1}(x, \tau)-u_{2}(x, \tau)\right)_{h \tau} \nabla\left(u_{1}-u_{2}\right)_{h} d x \\
& =-\int_{\Omega}\left[\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right)_{h}\right](x, \tau) \nabla\left(u_{1}-u_{2}\right)_{h} d x
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \int_{\Omega}\left(u_{1}(x, \tau)-u_{2}(x, \tau)\right)_{h \tau}\left(u_{1}-u_{2}\right)_{h} d x \\
& +\int_{\Omega} \nabla\left(u_{1}(x, \tau)-u_{2}(x, \tau)\right)_{h \tau} \nabla\left(u_{1}-u_{2}\right)_{h} d x \\
& =-\int_{\Omega}\left[\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right)_{h}\right](x, \tau) \nabla\left(u_{1}-u_{2}\right)_{h} d x .
\end{aligned}
$$

Integrating the above equality with respect to τ over $(0, t)$,

$$
\int_{\Omega}\left|\left(u_{1}-u_{2}\right)_{h}\right|^{2}(x, t) d x+\int_{\Omega}\left|\nabla\left(u_{1}-u_{2}\right)_{h}\right|^{2}(x, t) d x \leq 0
$$

we have $\int_{\Omega}\left|\left(u_{1}-u_{2}\right)_{h}\right|^{2} d x=0$; therefore, $u_{1}=u_{2}$.
Acknowledgment. The author would like to thank referee for his/her valuable suggestions and for providing the references E. Di Benedtto \& M. Pierre [5] and E. Di Benedetto \& R. E. Showalter [6].

References

[1] G. I. Barwnblatt, Iv. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24(1960), 1286-1303.
[2] Kungching Chang, Oritical point theory and its applications, Shanghai Sci. Tech. Press, Shanghai, 1986.
[3] P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19(1968), 614-627.
[4] B. D. Coleman, R. J. Duffin, and V. J. Mizel, Instability, uniqueness and non-existence theorems for the equations, $u_{t}=u_{x x}-u_{x t x}$ on a strip, Arch. Rat. Mech. Anal., 19(1965), 100-116.
[5] E. DiBenedtto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30(6)(1981), 821-854.
[6] E. DiBenedetto and R. E. Showalter, Implicit decenerate evolution equations and applications, SIAM J. Math. Anal., 12(5)(1981), 731-751.
[7] A. Novick-Cohen and R. L. Pego, Stable patterns in a viscous diffusion equation, Trans. Amer. Math. Soc., 324(1991), 331-351.
[8] V. R. G. Rao and T. W. Ting, Solutions of pseudo-heat equation in whole space, Arch. Rat. Mech. Anal., 49(1972), 57-78.
[9] R. E. Showalter and T. W. Ting, Pseudo-parabolic partial differential equations, SIAM J. Math. Anal., 1(1970), 1-26.
[10] T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl., 45(1974), 23-31.
[11] T. W. Ting, Parabolic and pseudoparabolic partial differential equations, J. Math. Soc. Japan, 21(1969), 440-453.

Changchun Liu
Department of Mathematics, Nanjing Normal University, Nanjing 210097, China
Department of Mathematics, Jilin University, Changchun 130012, China
E-mail address: mathlcc@21cn.com

[^0]: 2000 Mathematics Subject Classification. 35G25, 35Q99, 35K55, 35K70.
 Key words and phrases. Pseudo-parabolic equations, existence, uniqueness. © 2003 Southwest Texas State University.
 Submitted August 5, 2002. Published June 10, 2003.

