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ENERGY DECAY ESTIMATES FOR LIENARD’S EQUATION
WITH QUADRATIC VISCOUS FEEDBACK

ALEXANDER Y. KHAPALOV & PARTHASARATHI NAG

Abstract. This article concerns the stabilization for a well-known Lienard’s

system of ordinary differential equations modelling oscillatory phenomena. It
is known that such a system is asymptotically stable when a linear viscous
(motion-activated) damping with constant gain is engaged. However, in many

applications it seems more realistic that the aforementioned gain is not con-
stant and does depend on the deviation from equilibrium. In this article, we
consider a (nonlinear) gain, introduced in [2], which is proportional to the

square of such deviation and derive an explicit energy decay estimate for so-
lutions of the corresponding “damped” Lienard’s system. We also discuss the

place of our result in the framework of stabilization of so-called critical bilinear

systems.

1. Introduction

Motivation and main results. This article concerns the stabilization of a single
oscillatory motion (or, more generally, of an oscillatory phenomenon) by means of
suitable damping. Without loss of generality (that is, one might need to perform
a routine change of variables first) such motion is described by a two dimensional
system of ordinary differential equations of Lienard’s type like

ẋ =
(

0 −1
1 0

)
x + uBx, (1.1)

where x = (x1, x2) and uBx models a damping device of structure described by
matrix B with gain u = u(x1, x2).

A system like (1.1) is widely used to model various kinds of periodic oscillatory
phenomena, for example, in electrical or civil engineering (see, e.g., [4, 7] and the
references therein). In particular, if we assume that (1.1) models a motion of a
particle, then x1(t) would describe the deviation (position) of this particle with
respect to equilibrium x1 = 0 at time t, while −x2(t) would describe its velocity.

One of the most typical damping devices used in applications is so-called the
“viscous (or motion-activated)” damping which, in the framework of model (1.1),
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is associated with the matrix

B =
(

0 0
0 1

)
and a negative gain u, in which case system (1.1) looks as follows:

ẋ1 = −x2, t > 0,

ẋ2 = x1 + ux2,
(1.2)

x1(0) = x10, x2(0) = x20. (1.3)

Note that the damping term in (1.2) is active only when the “velocity” x2(t) is not
zero and it “acts” in the direction which is opposite of the “motion of the particle”
at any given time t.

It is classical result that system (1.2)–(1.3) is asymptotically stable when a linear
viscous damping with a negative constant gain is engaged, that is, when u in (1.2)
is a negative number. (Note that in this case one can obtain the explicit formula
for solutions.) However, it seems more realistic in many applications that the
aforementioned gain u should depend on deviation from equilibrium. In this respect
we refer the reader to Jurdjevic and Quinn [4] who considered the quadratic gain

u(x1, x2) = −x2
1, (1.4)

in which case the gain is proportional to the square of the magnitude of deviation.
It was shown in [4] that system (1.2)–(1.4) is asymptotically stable. On the other
hand, the method of [4] does not provide any explicit estimates for the energy
decay of the corresponding solutions, which evaluate the effectiveness of nonlinear
feedback (1.4) and thus are of principal importance in applications.

The main goal of this paper is to derive such an explicit energy decay estimate
for system (1.2)–(1.4). It is clear from the start that it cannot be of exponential
type, because system (1.2)–(1.4) is critical (see the discussion in the next section
for details). We have the following result.

Theorem 1.1. There exist positive constants β, γ, and t̄ = t̄(‖ (x10, x20) ‖R2) such
that the energy

E(t) =
x2

1(t) + x2
2(t)

2
of system (1.2)–(1.4) satisfies

E(t) ≤ E(0)
β + γE(0)t

, t > t̄. (1.5)

The values of the constants β and γ are given in the proof of this theorem (see
(2.69) below).

Problem background: Critical bilinear systems. System (1.2)–(1.4) (or (1.1))
is an important principal case of planar, so-called critical bilinear systems (BLS),
which are of traditional interest in the context of asymptotic stabilization (see, e.g.,
[2] for more detail). Let us remind the reader that a planar BLS of the form

ẋ = Ax + u(x1, x2)Bx, x(0) = x0, (1.6)

is called critical if the given matrices A and B satisfy the following two conditions:
• For each u? ∈ R at least one eigenvalue of A + u?B has nonnegative real

part.
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• There exists a u0 ∈ R for which all the real parts of the eigenvalues of
A + u0B are non positive.

Note that the latter condition implies that system (1.6) is stable when the constant
feedback u(x1, x2) = u0 is engaged, while the former condition implies that (1.6) is
not asymptotically stabilizable by any constant feedback.

It is well-known (e.g., [2]) that, by the standard linear change of coordinates and
time-rescaling, all the matrices A satisfying the above-cited two conditions can be
transformed either into the matrix (

0 −1
1 0

)
as our matrix A in (1.1) or in (1.2)–(1.4), associated with a periodic oscillatory
motion, or into one of the following three “simpler” matrices:(

0 0
0 0

)
,

(
0 0
0 −1

)
,

(
0 1
0 0

)
.

We refer the reader to [1, 2, 3, 5] for various positive and negative results on
stabilization of planar critical BLS by means of constant, linear, quadratic and
piecewise constant feedback laws. However, it seems that all the available results
do not provide any explicit energy decay rates.
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Figure 1. Trajectory for system (1.2)–(1.4)

2. Proof of Theorem 1.1

Our plan for this section as follows: First of all, as we are concerned with the
large time behavior of (1.2)–(1.4), without loss of generality (see Step 8 for the
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general case), we can assume that

{(x10, x20)} ⊂ B = {(ξ, η)|ξ2 + η2 ≤ 1
2
}. (2.1)

Select any angle θ0 ∈ (0, π
4 ) and split the ball B into eight sectors I, I,′ II, II,′

III, III ′ and IV,IV ′ as shown on Figure 1, so that the central angles ∠A1OA8,
∠A2OA3, ∠A4OA5 and ∠A6OA7 are all equal to 2θ0. Again, without loss of
generality, we may assume that the initial point (x10, x20) is located at point A1,
also denoted by q0 on Figure 1 (see Step 8 otherwise), where respectively the solid
line starting from q0 describes the trajectory (x1(t), x2(t)) of system (1.2)–(1.4) as
it crosses all the eight aforementioned sectors.

Our plan is to derive the energy decay estimate for the solution to (1.2)–(1.4)
starting from q0 by evaluating its energy subsequently in each of the above men-
tioned sectors I − IV ′. Then we extend this result to the general case.

Remark 2.1. Below we use the notation x1 = x1(t), x2 = x2(t), keeping in mind
that (x1, x2) = (x1(t), x2(t)) represent the solution to (1.2)–(1.4) at hand.

Step 1: Denote by tp1 the time required for the trajectory of (1.2)–(1.4) starting
from q0 = (x1(0), x2(0)) = (x10, x20) to reach point p1. We have (see Figure 1):

x1(t) ≥
√

2E(tp1) sin(θ0), x2(t) ≥
√

2E(0) sin(θ0) (2.2)

and hence
x2

1(t)x
2
2(t) ≥ 4E(0)E(tp1) sin4(θ0). (2.3)

Multiplying equations (1.2)–(1.4) respectively by x1 and x2 and adding them, we
obtain:

x1(t)ẋ1(t) + x2(t)ẋ2(t) =
dE(t)

dt
=

1
2

d ‖ x(t) ‖2R2

dt
= −x2

1(t)x
2
2(t). (2.4)

Integrating this equation over (0, tp1) yields:

E(tp1) =
x2

1(tp1) + x2
2(tp1)

2
= −

∫ tp1

0

x2
1x

2
2dt + E(0). (2.5)

Applying (2.3) (2.5), we obtain

E(tp1) ≤ E(0)− 4E(0)E(tp1) sin4(θ0)tp1 , (2.6)

which yields:

E(tp1) ≤
E(0)

1 + 4E(0)δ2tp1

, (2.7)

where δ = sin2(θ0). Thus, to estimate E(tp1), we need to evaluate tp1 . This evalua-
tion is accomplished in steps 2-4 below, based on the “visualization technique,” [5]
which makes use of the phase-portrait of system (1.2)–(1.4). Namely, to evaluate
tp1 , we intend to derive first explicit estimates both (a) for the length of arc of the
trajectory of (1.2)–(1.4) lying in sector I and (b) for the speed at which the point
describing the position of system (1.2)–(1.4) at time t moves along this arc. These
estimates, obtained in terms of the energy function, will provide us with the bounds
for the duration of the time-interval required by the system to traverse sector I,
that is, for tp1 . It turns out that the derived bounds for tp1 , do not depend on the
energy of the system in sector I.
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Remark 2.2. From (2.4) we conclude that the distance ‖ x(t) ‖R2 monotonically
decreases as t →∞. This in turn implies that the trajectory initiated at q0 remains
in B for all t > 0. In other words, system (1.2)–(1.4) is stable (see also [4]).

Step 2: Estimate for
√

ẋ1(t)2 + ẋ2(t)2 in sector I. In this step we obtain an

estimate for the value of the speed
√

ẋ1
2(t) + ẋ2

2(t) at which the point (x1(t), x2(t))
moves in sector I. Since (x1, x2) ∈ B, in sector I we have

0 < x1 ≤
1√
2
, 0 < x2 ≤

1√
2

and x1x2 ≤
1
2
. (2.8)

Hence, using (1.2) and applying (2.8),

ẋ1 = −x2, ẋ2 = x1 − x2
1x2 = x1(1− x1x2) ≥

x1

2
. (2.9)

Therefore, from (2.9) we derive:

ẋ1
2 + ẋ2

2 ≥ x2
1

4
+ x2

2 ≥
x2

1 + x2
2

4
=

E(t)
2

. (2.10)

Since Ė(t) ≤ 0, in view of (2.10), we have the following estimates:√
ẋ1

2(t) + ẋ2
2(t) ≥

√
E(t)

2
≥

√
E(tp1)√

2
, t ∈ [0, tp1 ]. (2.11)

Applying the triangular inequality to the second equation in (1.2) and using (2.8),
we obtain:

|ẋ2(t)| = |x1(t)− x2
1(t)x2(t)| ≤ |x1(t)|+ x2

1(t)|x2(t)| ≤ |x1(t)|+
|x1(t)|

2
=

3|x1(t)|
2

.

(2.12)

Remark 2.3. Note that inequalities (2.10)–(2.12) hold everywhere in B.

Using (2.12) and the first equation in (1.2), we further derive that for t ∈ [0, tp1 ],√
ẋ1

2(t) + ẋ2
2(t) ≤

√
9x2

1(t)
4

+ x2
2(t) ≤

√
9(x2

1(t) + x2
2(t))

4
≤

3
√

E(0)√
2

. (2.13)

Combining equations (2.11) and (2.13) yields√
E(tp1)√

2
≤

√
ẋ1

2(t) + ẋ2
2(t) ≤

3
√

E(0)√
2

, t ∈ [0, tp1 ]. (2.14)

These estimates will be used to evaluate tp1 in step 4 below.
Step 3: Estimate for |q0p1|. In this step we obtain an estimate for the length of the
curve q0p1 connecting the points q0 and p1 (see Figure 1). It follows from (2.8) and
(2.9) that the curve q0p1 is rising as t increases in [0, tp1 ]. Hence, we can describe
it geometrically as a graph of some monotone decreasing function x2 = x2(x1),
x1 ∈ [

√
2E(tp1) sin(θ0),

√
2E(0) cos(θ0)] and

|q0p1| =
∫ √

2E(0) cos(θ0)

√
2E(tp1 ) sin(θ0)

√
1 + (

dx2

dx1
)2dx1. (2.15)

Using the first equation of (1.2) and the fact that ẋ2(t) is strictly positive on the
interval t ∈ [0, tp1 ], we have from (2.12):

ẋ1 = −x2(t), ẋ2 ≤
3x1(t)

2
. (2.16)
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Note that in sector I, x1(t) and x2(t) are both positive, while ẋ1(t) is strictly
negative. Hence,

ẋ2

−ẋ1
≤ 3x1(t)

2x2(t)
, t ∈ [0, tp1 ]. (2.17)

Therefore, [8, pp.105], we conclude that

|dx2

dx1
| < 3x1(t)

2x2(t)
, t ∈ [0, tp1 ]. (2.18)

Thus,

1 + (
dx2

dx1
)2 ≤ 9(x2

1(t) + x2
2(t))

4x2
2(t)

=
9E(t)
2x2

2(t)
, t ∈ [0, tp1 ]. (2.19)

Using (2.19) and the fact that E(t) is a decreasing function of t, we further obtain
that

1 + (
dx2

dx1
)2 ≤ 9E(0)

2x2(t)2
or

√
1 + (

dx2

dx1
)2 ≤

3
√

E(0)√
2x2(t)

, t ∈ [0, tp1 ]. (2.20)

Since ẋ2(t) is strictly positive,√
2E(0) sin(θ0) ≤ x2(t) ≤

√
2E(tp1) cos(θ0) ≤

√
2E(tp1), t ∈ [0, tp1 ]. (2.21)

Applying (2.21) to (2.20) gives√
1 + (

dx2

dx1
)2 ≤ 3

2 sin(θ0)
, t ∈ [0, tp1 ] . (2.22)

Remark 2.4. Note that, in view of Remark 2.1, inequality (2.22) also holds in
sector I ′, namely in the portion that lies in the first quadrant.

Combining (2.15) with (2.22) yields:

|q0p1| =
∫ √

2E(0) cos(θ0)

√
2E(tp1 ) sin(θ0)

√
1 + (

dx2

dx1
)2dx1

≤
3(

√
2E(0) cos(θ0)−

√
2E(tp1) sin(θ0))

2 sin(θ0)
.

(2.23)

Moreover, since E(0) > E(tp1) and cos(θ0) ≥ sin(θ0) for any θ0 ∈ [0, π
4 ], further

from (2.23), we obtain

|q0p1| =
∫ √

2E(0) cos(θ0)

√
2E(tp1 ) sin(θ0)

√
1 + (

dx2

dx1
)2dx1 ≤

3
√

E(0)√
2 sin(θ0)

. (2.24)

We shall now evaluate the length of the curve q0p1 from below. Once again, (2.9)
yields

ẋ2

−ẋ1
= |dx2

dx1
| ≥ x1(t)

2x2(t)
, t ∈ [0, tp1 ]. (2.25)

Therefore,

1 + (
dx2

dx1
)2 ≥ 4x2

1(t) + x2
2(t)

4x2(t)2
≥ x2

1(t) + x2
2(t)

4x2(t)2
, t ∈ [0, tp1 ].

Applying (2.24) to this inequality, we obtain√
1 + (

dx2

dx1
)2 ≥

√
E(tp1)√
2x2(t)

, t ∈ [0, tp1 ]. (2.26)
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Combining (2.21) with (2.26) yields√
1 + (

dx2

dx1
)2 ≥ 1

2
, t ∈ [0, tp1 ]. (2.27)

Applying (2.27) to (2.15), we obtain the following estimate for the length of the
curve q0p1 from below:

|q0p1| =
∫ √

2E(0) cos(θ0)

√
2E(tp1 ) sin(θ0)

√
1 + (

dx2

dx1
)2dx1

≥
(
√

2E(0) cos(θ0)−
√

2E(tp1) sin(θ0))
2

≥ K√
2

√
E(0),

(2.28)

where K = cos(θ0)− sin(θ0). Combining (2.24) and (2.28), we finally obtain:

3
√

E(0)√
2 sin(θ0)

≥ |q0p1| ≥
K√
2

√
E(0). (2.29)

Step 4: Estimate for tp1 . In this step we shall derive an estimate for tp1 , i.e., the
time required for the trajectory of (1.2)–(1.4), initiated at q0, to reach the point p1.
We begin by computing the lower bound estimate for tp1 . Making use of (2.14)and
(2.29), we obtain that

K√
2

√
E(0) ≤ |q0p1| =

∫ tp1

0

√
ẋ1

2(t) + ẋ2
2(t)dt ≤

3
√

E(0)√
2

tp1 , (2.30)

which in turn yields:
K

3
≤ tp1 . (2.31)

Analogously, it follows from (2.14) and (2.29) that√
E(tp1)√

2
tp1 ≤ |q0p1| =

∫ tp1

0

√
ẋ1

2(t) + ẋ2
2(t)dt ≤

3
√

E(0)√
2 sin(θ0)

, (2.32)

which implies

tp1 ≤
3
√

E(0)
sin(θ0)

√
E(tp1)

. (2.33)

Combining (2.31) and (2.33) yields

K

3
≤ tp1 ≤

3
√

E(0)
sin(θ0)

√
E(tp1)

. (2.34)

Since ẋ2(t) is strictly positive in sector I, we have x2(tp1) ≥ x2(0). Hence,

E(tp1) =
x2

1(tp1) + x2
2(tp1)

2
≥ x2

1(tp1)
2

≥ x2
2(0)
2

= E(0) sin2(θ0)

(see Figure 1), which implies that√
E(0)

E(tp1)
≤ 1

sin(θ0)
. (2.35)

Applying inequality (2.35) to (2.34) yields:

K

3
≤ tp1 ≤

3
sin2(θ0)

. (2.36)
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Step 5: Estimate for the time taken by the trajectory of (1.2)–(1.4) to
pass sectors I and I ′. In this step we shall derive an estimate for tq1 , i.e., for the
time required by the trajectory of (1.2)–(1.4), initiated at q0, to reach point q1 (see
Figure 1). Split the trajectory in sector I ′ into two arcs p1r1 and r1q1 (see Figure
1). Denote the time required by the trajectory of (1.2)–(1.4) to connect the points
p1 and r1 by tp1r1 and the time required to connect the points r1 and q1 by tr1q1 .
Step 5.1: Estimate for time tp1r1 . The arc p1r1 can be described geometrically
as a graph of function x2 = x2(x1), x1 ∈ [0,

√
2E(tp1) sin(θ0)]. Then, applying the

inequality (2.22) (see Remarks 2.1 and 2.4) to (2.37) in sector I ′, we obtain

|p1r1| =
∫ √

2E(tp1 ) sin(θ0)

0

√
1 + (

dx2

dx1
)2dx1 ≤

3
√

2E(tp1) sin(θ0)
2 sin(θ0)

≤
3
√

E(tp1)√
2

.

(2.37)
Since Ė(t) < 0 for any time t ∈ [tp1 , tp1 + tp1r1 ], we have from (2.10),√

ẋ1
2(t) + ẋ2

2(t) ≥
√

x2
1(t) + x2

2(t)
4

=

√
E(t)√
2

≥
√

E(tp1 + tp1r1)√
2

. (2.38)

Hence, in view of (2.37),√
E(tp1 + tp1r1)√

2
tp1r1 ≤ |p1r1| =

∫ tp1+tp1r1

tp1

√
ẋ1

2(t) + ẋ2
2(t)dt ≤ 3

√
E(tp1)√

2
,

(2.39)
which yields

tp1r1 ≤
3
√

E(tp1)√
E(tp1 + tp1r1)

. (2.40)

Since ẋ2(t) is positive, we have x2(tp1 + tp1r1) ≥ x2(tp1). Hence,

E(tp1 + tp1r1) =
x2

2(tp1 + tp1r1)
2

≥ x2
2(tp1)

2
= E(tp1) cos2(θ0),

which implies √
E(tp1)

E(tp1 + tp1r1)
≤ 1

cos(θ0)
. (2.41)

Finally, combining (2.40) and (2.41), we obtain the following estimate for tp1r1 ,

tp1r1 ≤
3

cos(θ0)
. (2.42)

Step 5.2: Estimate for the time tr1q1 . Once again, the arc r1q1 can be described
geometrically as the graph of a function x2 = x2(x1), with x1 in the interval
[−

√
2E(tp1 + tp1r1 + tr1q1) sin(θ0), 0]. Then

|r1q1| =
∫ 0

−
√

2E(tp1+tp1r1+tr1q1 ) sin(θ0)

√
1 + (

dx2

dx1
)2dx1. (2.43)

Note that x1(t), ẋ1(t), and ẋ2(t) are strictly negative on the interval t ∈ [tp1 +
tp1r1 , tp1 + tp1r1 + tr1q1 ], where x2(t) is positive. Since it follows from (1.2)–(1.4)
and (2.12) (see Remark 2.3) that

−ẋ2 ≤ −3x1

2
and ẋ1 = −x2,
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we have

0 ≤ ẋ2

ẋ1
≤ 3x1(t)
−2x2(t)

, t ∈ [tp1 + tp1r1 , tp1 + tp1r1 + tr1q1 ]. (2.44)

Therefore,

1+(
dx2

dx1
)2 ≤ 9(x2

1(t) + x2
2(t))

4x2
2(t)

≤ 9E(t)
2x2

2(t)
, t ∈ [tp1 +tp1r1 , tp1 +tp1r1 +tr1q1 ]. (2.45)

Using (2.45) and the fact that E(t) is a decreasing function of t, we obtain√
1 + (

dx2

dx1
)2 ≤

3
√

E(tp1 + tp1r1)√
2x2(t)

. (2.46)

Since ẋ2(t) is strictly negative, for t in [tp1 + tp1r1 , tp1 + tp1r1 + tr1q1 ],√
2E(tp1 + tp1r1 + tr1q1) cos(θ0) ≤ x2(t) ≤

√
2E(tp1 + tp1r1). (2.47)

Applying (2.47) to (2.46) gives√
1 + (

dx2

dx1
)2 ≤

3
√

E(tp1 + tp1r1)√
2
√

2E(tp1 + tp1r1 + tr1q1) cos(θ0)
, (2.48)

for t ∈ [tp1 + tp1r1 , tp1 + tp1r1 + tr1q1 ]. Thus applying inequality (2.48) to (2.43), we
obtain an upper estimate for the length of the arc r1q1:

|r1q1| =
∫ 0

−
√

2E(tp1+tp1r1+tr1q1 ) sin(θ0)

√
1 + (

dx2

dx1
)2dx1

≤
3
√

2E(tp1 + tp1r1) tan(θ0)√
2

.

(2.49)

Since Ė(t) < 0 for any t ∈ [tp1 + tp1r1 , tp1 + tp1r1 + tr1q1 ], making use of (2.10) (see
Remark 2.3), we derive that√

ẋ1
2(t) + ẋ2

2(t) ≥
√

x2
1(t) + x2

2(t)
4

≥
√

E(tp1 + tp1r1 + tr1q1)√
2

. (2.50)

Using inequalities (2.49) and (2.50), we obtain√
E(tp1 + tp1r1 + tr1q1)√

2
tr1q1 ≤ |r1q1| =

∫ tp1+tp1r1+tr1q1

tp1+tp1r1

√
ẋ1

2(t) + ẋ2
2(t)dt

≤
3
√

E(tp1 + tp1r1) tan(θ0)√
2

.

(2.51)
which, in turn, provides

tr1q1 ≤
3 tan(θ0)

√
E(tp1 + tp1r1)√

E(tp1 + tp1r1 + tr1q1)
. (2.52)

Once again, integrating (2.4) over (tp1 + tp1r1 , tp1 + tp1r1 + tr1q1) yields (compare
with (2.6))

E(tp1 + tp1r1) = E(tp1 + tp1r1 + tr1q1) +
∫ tp1+tp1r1+tr1q1

tp1+tp1r1

x2
1x

2
2dt. (2.53)
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Observe that

x2
2(t) ≤

1
2

and 0 ≤ x2
1(t) ≤ 2E(tp1 + tp1r1 + tr1q1) sin2(θ0)

for any t ∈ [tp1 + tp1r1 , tp1 + tp1r1 + tr1q1 ]. Hence, it follows from (2.53) that

E(tp1 + tp1r1) ≤ E(tp1 + tp1r1 + tr1q1)(1 + tr1q1 sin2(θ0)). (2.54)

Hence, √
E(tp1 + tp1r1)

E(tp1 + tp1r1 + tr1q1)
≤

√
1 + sin2(θ0)tr1q1 . (2.55)

Applying inequality (2.55) to (2.52) yields:

0 < tr1q1 ≤ 3 tan(θ0)
√

1 + sin2(θ0)tr1q1 , (2.56)

which gives the following estimate for tr1q1 :

0 ≤ tr1q1 ≤ C =
9 tan2(θ0) sin2(θ0) + 3 tan(θ0)

√
9 tan2(θ0) sin4(θ0) + 4

2
. (2.57)

Step 5.3: Estimate for time tq1 . Combining (2.36), (2.42) and (2.57) yields

K

3
≤ tq1 = tp1 + tp1r1 + tr1q1 ≤

3
sin2(θ0)

+
3

cos(θ0)
+ C. (2.58)

Step 6: Estimates for E(tp1) and E(tq1). Substituting the lower bound for tp1

from (2.36) into (2.7) and recalling that since E(t) is decreasing in time, we obtain
from (2.7) that

E(tq1) ≤ E(tp1) ≤
E(0)

1 + 4E(0)δ2 K
3

. (2.59)

Step 7: Estimate for E(t) for any time t > 0. It is not hard to see that in the
next two sectors II and II ′ one can apply the same strategy as described in the
above steps 1-6, namely, leading to estimate (2.59). Denote the time required by
the trajectory of (1.2)–(1.4) to reach points p2 and q2 from q0 respectively by tp2

and tq2 . Then, similarly as in (2.59) and (2.36), (2.58) (see Remark 2.3), we obtain:

E(tq2) ≤ E(tp2) ≤
E(tq1)

1 + 4E(tq1)δ2(tp2 − tq1)
≤ E(tq1)

1 + 4E(tq1)δ2 K
3

, (2.60)

where, analogously to (2.58), we have:

K

3
≤ tp2 − tq1 ≤ tq2 − tq1 ≤ 3

sin2(θ0)
+

3
cos(θ0)

+ C.

Remark 2.5. Consider the function f(x) = x
1+κx , with κ a positive constant which

is associated with the right hand sides in (2.59), (2.60), considered as functions of
energy. Since f ′(x) > 0 for all x > 0, f(x) is a monotonically increasing function.

Since E(tq1) ≤ E(tp1) and (2.59) holds, Remark 2.5 implies

E(tq2) ≤
E(0)

1+4E(0)δ2 K
3

1 + 4 E(0)

1+4E(0)δ2 K
3

δ2 K
3

=
E(0)

1 + 2K
3 4E(0)δ2

. (2.61)
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Denote the following subsequent intersecting points of the trajectory at hand with
the lines OA6, OA7, . . . by p3, q3, . . . , pn, qn, . . . . Analogously, we have

E(tqn
) ≤ E(tpn

) ≤ E(0)
1 + nK

3 4E(0)δ2
, ∀n = 1, . . . . (2.62)

Consider any t > 0. Then there exists a positive integer n such that

tqn−1 ≤ t ≤ tqn
≤ 3n

sin2(θ0)
+

3n

cos(θ0)
+ nC, (2.63)

where, thus,
t

3
sin2(θ0)

+ 3
cos(θ0)

+ C
≤ n. (2.64)

Note that, since t > tqn−1 and E(t) decreases in time, (2.62) also implies that

E(t) ≤ E(tqn−1) ≤
E(0)

1 + (n−1)K
3 4E(0)δ2

. (2.65)

Combined with (2.63), this gives the following energy decay estimate for any t > 0
in the case when the initial state (x10, x20) lies in B on the line OA1 as shown on
Figure 1:

E(t) ≤ E(0)

1− 4KE(0)δ2

3 + 4KE(0)δ2

3 ( 3
sin2(θ0)

+ 3
cos(θ0)

+ C)−1t
. (2.66)

Step 8: The general case. Consider any initial point (x10, x20). Since (1.2)–
(1.4) has an isolated equilibrium point (0, 0), by Poincare-Bendixson theorem (see
[7]), the trajectory to (1.2)–(1.4) starting from (x10, x20) after some finite time will
enter the ball B and intersect the line OA1. Denote the time of this intersection
by t0. Then, by the scheme discussed in steps 1-7, we have

E(t) ≤ E(t0)

1− 4KE(t0)δ2

3 + αE(t0)(t− t0)
, t ≥ t0, (2.67)

where

α =
4K sin2(θ0) cos(θ0) sin4(θ0)

3C sin2(θ0) cos(θ0) + 9 sin2(θ0) + 9 cos(θ0)
.

Using (2.1) (i.e., E(t0) ≤ 1
4 ) and the argument of Remark 2.5, we derive from (2.67)

that

E(t) ≤ E(t0)

1− 4E(t0)Kδ2

3 + αE(t0)(t− t0)

≤ E(t0)
1− Kδ2

3 + αE(t0)(t− t0)

≤ E(0)
1− Kδ2

3 + αE(0)(1− t0
t )t

t > t0.

(2.68)

Choose t̄ = 2t0 and denote

β = 1− K sin4(θ0)
3

, γ =
α

2
. (2.69)

Recall that δ = sin2(θ0) and θ0 is any number in (0, π
4 ).

Then (2.68) implies (1.2). This concludes the proof of Theorem 1.1.
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