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EVOLUTION OF FLUID-FLUID INTERFACE IN POROUS
MEDIA AS THE MODEL OF GAS-OIL FIELDS

CERASELA-ILIANA CALUGARU, DAN-GABRIEL CALUGARU, JEAN-MARIE CROLET,

& MICHEL PANFILOV

Abstract. This article proposes a generalized model for describing deforma-

tions of the mobile interface separating two immiscible weakly compressible
fluids in a weakly deformable porous medium. It describes a gravity non-
equilibrium processes, including evolution of the gravitational instability and

can be reduced in two cases. This paper deals with the first case in which
elastic perturbations are propagating much slower than gravity perturbations.
The obtained model has analytical solutions and is applied to simulate the

behavior of oil-gas or water-oil interface in oil-gas reservoirs.

1. Introduction

This paper studies the behaviour of the mobile interface between two immiscible
fluids which can be distinguished by viscosity and density. Two-phase flow with
mobile interface is one of the more complicated objects in mathematical analysis
and is usually described by a system of partial differential equations which are
true on either side of the interface. They are linked by some dynamic and kinetic
conditions on the interface. The major difficulty is the transform of such a system
to some explicit closed differential equation for a selected coordinate of the mobile
surface. More generally speaking, if the interface equation is F (x, y, z; t) = 0, or
z = h(x, y; t), then the problem is to deduce the closed differential equation for the
function F (x, y, z; t) or h(x, y; t).

In fluid mechanics, it can be done in three basic cases. First of all, this is the
case when the viscous forces can be neglected for both fluids [9], which does not
concern flow in porous media.

Secondly, this is the case when one of two fluids has no viscosity, as for instance
in case of water-air flow. The theory of shallow water [9] yields a classical example
of such an explicit model for the function h describing the surface waves on water.
The model for h gets the form of the Korteweg-de Vries equation. Another example
corresponds to the groundwater flow in unconfined aquifer [1, 2] which leads to the
nonlinear parabolic Boussinesq equation with respect to h. In [1] this model has
been deduced by a simple integration of flow equations over the vertical coordinate
z and assuming the hydrostatic pressure distribution along z. In [6] the same
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model has been obtained by asymptotic expansion method, assuming the vertical
size of the porous reservoir is much smaller than its horizontal length. More general
models have been obtained in [4, 7] where the gravity equilibrium hypothesis has
been removed.

When both fluids are viscous, the explicit equations were deduced in [8] assuming
the steady-state flow for two the fluids and that the horizontal flow velocity is
constant along z. The first condition is often replaced by the gravity equilibrium
condition.

In case of two-liquid flow, the condition of gravity equilibrium, i.e., the hy-
drostatic pressure distribution, becomes excessively strong. It does not allow the
description of development of fast gravity perturbations. In particular, it is impos-
sible to analyze the evolution of instability within the framework of such a model.
Condition of steady-state flow does not allow the study of flow of rather compress-
ible liquids, when the elastic perturbation is propagating slower than the gravity
perturbation.

In this paper both fluids are assumed to be viscous and compressible. The hypo-
thesis of gravity equilibrium is removed. The flow is non-stationary.

2. Formulation of the problem

Physical model. Let us introduce an orthogonal coordinate system (x1, x2, z),
where z is the “vertical” coordinate, which has the same direction as the gravity
vector, while (x1, x2) are coordinates of the horizontal plane.

Let us examine a horizontal porous stratum of a height H, in a domain Ω⊂R3

where two immiscible fluids are separated from each other by an interface, which
does not cross the top and bottom boundaries, as is shown in Fig.1.

Figure 1. Scheme of the process

Let the value h(x1, x2; t) denote the height of the interface with respect to the
bottom of the stratum, and the indexes i = I, II correspond to the lower and the
upper fluid.
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Mathematical formulation. The porous stratum is assumed to be homogeneous,
but anisotropic, in such a way that the tensor of permeability K≡{Kij}3i,j=1 is
diagonal with Kz≡K33, Kx1≡K11 and Kx2≡K22.

Equations of flow. Flow of the weakly compressible i−th fluid in a weakly elastic
medium can be described by the usual system of equations with respect to the fluid
pressure P i and the flow rate ~V i:

∂P i

∂t
=

∂

∂xk

(
ækj

∂Φi

∂xj

)
, (2.1a)

~V i = −K
µi

gradΦi i = I, II (2.1b)

where ρ is the fluid density, g the gravity acceleration, µ is the fluid viscosity and
Φi≡P i+ρigz. The summation is done with respect to repeated indexes k and j. The
piezo-conductivity tensor ækj is defined as ækj = (Kkjβ

i
∗)/µ

i, where the parameter
βi
∗ has a dimension of pressure and is a measure of fluid/medium compressibility.

Cinematic equation for the interface. For further deductions, an explicit cinematic
equation for the height of the mobile interface h(x1, x2; t) can be written in the
following way.

Let the interface equation be:

z = h(x1, x2; t) (2.2)

This function is assumed to exist and to be unique, therefore, formation of some
loops is excluded.

Assuming the interface remains always smooth, we get the following cinematic
equation:

∂h

∂t
+ ~U(h) gradh = Uz(h) (2.3)

with ~U being the true velocity of the surface, while grad being the 2-D operator:

grad ≡ ∂

∂x1
~q1 +

∂

∂x2
~q2

where ~qk is the basis vector along the axis xk.

Conditions at the interface. The following three necessary conditions should be
imposed on the interface:

i) continuity of the pressure;
ii) continuity of the normal flow velocity;
iii) equivalence between velocity of the interface and physical velocity of the

fluid in each point of the interface.
Then

P I
∣∣∣
h

= P II
∣∣∣
h
≡P (2.4a)

V I
n

∣∣∣
h

= V II
n

∣∣∣
h

(2.4b)

m
∂h

∂t
+ ~V I(h) gradh = V I

z (h) (2.4c)

m
∂h

∂t
+ ~V II(h) gradh = V II

z (h) (2.4d)
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because the true flow velocity is equal to ~V /m, with m being the medium porosity.
Only two from three last relations are independent. We will use the equation

(2.4c) and the following one, which results from (2.4c) and (2.4d):

~V I(h) gradh− V I
z (h) = ~V II(h) gradh− V II

z (h) (2.5)

Conditions at the top and bottom of the medium. The top and the bottom surfaces
of the stratum, which are horizontal, are assumed to be impermeable:

V II
z

∣∣
z=H

= V I
z

∣∣
z=0

= 0 (2.6)

3. Averaged equations

Since the study of such a system of equations with a mobile boundary is too
complex, it is easier to deduce an explicit equation for the interface height h(x, t).
This can be done by integrating (2.1a) over the vertical coordinate z within the
intervals 0≤z≤h and h≤z≤H. This technic allows a simplification of the equations
in such a way that the unknowns don’t depend on z. However, this integration
leads to some loss of information. Such a loss must be restored by introducing
some hypothesis about the vertical distribution of the velocity or the pressure field.
An assumption of linear behavior of the vertical velocity along z is used.

Deduction of equations averaged over the vertical coordinate. The simple
integration of (2.1a) over intervals 0≤z≤h and h≤z≤H yields the following set of
equations:

∂(hP
I
)

∂t
− P ∂h

∂t
=div

(
æI

x grad (hΦ
I
)
)
− æI

x

∂ΦI

∂xj

∣∣∣
h

∂h

∂xj

− div
(
æI

xΦI(h) gradh
)

+ æI
z

∂ΦI

∂z

∣∣∣
h

(3.1a)

∂(hIIP
II

)
∂t

− P ∂h
II

∂t
=div

(
æII

x grad (hIIΦ
II

)
)

+ æII
x

∂ΦII

∂xj

∣∣∣
h

∂h

∂xj

− div
(
æII

x ΦII(h) gradhII
)
− æII

z

∂ΦII

∂z

∣∣∣
h

(3.1b)

m
∂h

∂t
− Kx

µI

∂ΦI

∂xj

∣∣∣
h

∂h

∂xj
= −Kz

µI

∂ΦI

∂z

∣∣∣
h

(3.1c)

Kx

µI

∂ΦI

∂xj

∣∣∣
h

∂h

∂xj
− Kz

µI

∂ΦI

∂z

∣∣∣
h

=
Kx

µII

∂ΦII

∂xj

∣∣∣
h

∂h

∂xj
− Kz

µII

∂ΦII

∂z

∣∣∣
h

(3.1d)

hII≡H−h , (3.1e)

where

f
I ≡ 1

h

∫ h

0

fdz, f
II ≡ 1

hII

∫ H

h

fdz, f(h) ≡ f(x1, x2, h)

for any function f(x1, x2, z), and P is the pressure at the interface.
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Hypothesis about the vertical distribution of velocity. Let us assume that
the vertical distribution of flow velocity is linear:

V I
z (x1, x2, z) =

Kzη
I(x1, x2)
µI

z

V II
z (x1, x2, z) =

Kzη
II(x1, x2)
µII

(z−H)

where conditions (2.6) have been taken into account.
Usually an hypothesis on hydrostatic pressure distribution which is equivalent

to zero vertical flow velocity is retained [1, 2]. Such an assumption seems to be
sufficient if the interface deformation is rather small, if the boundary is free (the
upper fluid has no viscosity and density) and if the transition phenomena are not
taken into account.

For a rather general case studied in this paper a more general assumption is
needed. Moreover, one can show that the hypothesis dealing with a zero vertical
flow velocity leads to an overdetermined, contradictory system of equations. On
the other hand, any other law of velocity distribution (quadratic, etc) leads to a
non closed system.

Using this hypothesis we can define the functions ΦI and ΦII in the following
form:

ΦI = ΦI(h)−
ηI

(
z2−h2

)
2

, ΦII = ΦII(h)−η
II

2
[
(z−H)2−(h−H)2

]
(3.2)

and, at last, the derivatives ∂Φi

∂z and ∂Φi

∂xj
at the interface in (3.1):

−∂ΦI

∂z

∣∣∣
h

= ηIh ,
∂ΦI

∂xj

∣∣∣
h

=
∂ΦI(h)
∂xj

+
1
2
ηI ∂h

2

∂xj
(3.3a)

−∂ΦII

∂z

∣∣∣
h

= ηII(h−H),
∂ΦII

∂xj

∣∣∣
h

=
∂ΦII(h)
∂xj

+
1
2
ηII ∂(H−h)2

∂xj
(3.3b)

New parameters ηi can be defined via Φ
i−Φi(h) after integrating equations (3.2):

hηI =
3
h

(
Φ

I−ΦI(h)
)
, hIIηII =

3
hII

(
Φ

II−ΦII(h)
)

(3.4)

Closed form of the averaged equations. After substituting (3.3) and (3.4) in
(3.1), we get

LI
(
RI+

ρIgh2

2
)
+hLIP = −3æI

zR
I

h2
− æI

x

(
ρIg +

3RI

h2

)
(gradh)2

LII
(
RII − ρIIg(hII)2

2
)
+hIILIIP = æII

x

(
ρIIg − 3RII

(hII)2
)
(gradh)2 − 3æII

z R
II

(hII)2

µIm

Kx

∂h

∂t
− gradP gradh−

(
ρIg +

3RI

h2

)
(gradh)2 − 3εzR

I

h2
= 0

(1−µ) gradP gradh+ 3εz

(RI

h2
+ µ

RII

(hII)2
)

+
[
ρIg +

3RI

h2
− µ

(
ρIIg − 3RII

(hII)2
)]

(gradh)2 = 0 ,
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where

Li ≡ ∂

∂t
− æi

x∆, i = I, II

RI ≡ h
(
Φ

I − ΦI(h)
)
, RII≡hII

(
Φ

II − ΦII(h)
)

Then, four equations define four functions, Φ
I
, Φ

II
, P and h.

Small deformations of the interface. Assuming the deformations of the inter-
face and the lateral pressure gradients are small, and neglecting the small values of
second order, we obtain the simplified system:

LI
(
RI+

ρIg

2
h2

)
+ hLIP = −3æI

zR
I

h2

LII
(
RII−ρ

IIg

2
(hII)2

)
+ hIILIIP = −3æII

z R
II

(hII)2

µIm

Kx

∂h

∂t
=

3εzR
I

h2
,

RI

h2
+µ

RII

(hII)2
= 0

(3.5)

This system can be written in the following dimensionless form:

LI
(
ϕ2+

λ2
1ωτ∗
3εz

ϕ2 ∂ϕ

∂τ

)
+ λ2ϕLIξ = −ωτ∗

∂ϕ

∂τ
(3.6a)

LII
(
−ψ2 +

λ2
1ρωτ∗

3εzµλ0
ψ2 ∂ψ

∂τ

)
+ λ2λ0ρψLIIξ = −ρλ0ωτ∗

µ

∂ψ

∂τ
(3.6b)

ψ = −λ0ϕ+λ0+1 (3.6c)

where new variables are denoted as:

ϕ≡ h

h0
, ψ≡h

II

hII
0

, ξ≡P
P 0

, τ≡ t

t∗
, y≡ x

L

where L is the horizontal scale of the domain; h0, hII
0 are the heights of the lower

and the upper layers in an unperturbed state; P0 is the pressure at the interface in
the unperturbed state.

The new operators are:

LI≡τ∗
∂

∂τ
−∆yy , LII≡τ∗β

µ

∂

∂τ
−∆yy

where the symbol ∆yy denotes Laplace’s operator written via variable y. The
following set of parameters defines the process:

λ0≡
h0

hII
0

, λ1≡
h0

L
, λ2≡

2P0

ρIgh0
, ω≡2mβI

∗
ρIgh0

=
tgr

tel
, τ∗≡

tel

t∗

β≡ βI
∗

βII
∗
, µ≡ µI

µII
, ρ≡ ρI

ρII
, εz≡

Kz

Kx

(3.7)

Two characteristic times have been introduced:

tel =
µIL2

KxβI
∗
, tgr =

2µImL2

KxρIgh0
,

where tel defines the time of propagation of an elastic perturbation within the scale
L, while tgr is the time of complete extraction of the fluid from the medium due to
the gravity drop.
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The time t∗ may be chosen in two various ways:

t∗ =

{
tel, when tgr�tel, or ω�1
tgr, when tel�tgr, or ω�1

(3.8)

The first case, where the elasticity of fluid/medium can be neglected respectively
to the gravity governed motion, will be examined in section 4.

Relation for flow rates and averaged pressures. For further consideration
the relation for flow rates averaged over the layer thickness will be necessary to
set boundary conditions. Let us examine any cylindrical surface F orthogonal to
the plane (x, y) and intersecting the top and the bottom of the domain Ω. Let G
be a closed plate line which results as the intersection of the surface F with any
orthogonal horizontal plane. Volume flow rate of the upper and the lower fluids
across the interface F is defined as:

QI≡
∫
G

∫ h

0

VndzdG , QII≡
∫
G

∫ H

h

VndzdG

where Vn is the component of flow velocity normal to F .
Let us introduce the dimensionless densities of the flow rates across F as:

qI≡ t∗
h0L

∫ h

0

Vndz , qII≡ t∗
hII

0 L

∫ H

h

Vndz

which are related to Qi as

QI =
h0L

t∗

∫
G
qIdG , QII =

hII
0 L

t∗

∫
G
qIIdG (3.9)

For dimensionless flow rates it is easy to get the following relations via variables ϕ,
ψ, ξ:

qI = − 1
ωτ∗

{ ∂

∂n

(
ϕ2+

λ2
1ωτ∗
3εz

ϕ2 ∂ϕ

∂τ

)
+λ2ϕ

∂ξ

∂n

}
qII = − µ

ωτ∗ρλ2
0

{ ∂

∂n

(
−ψ2+

λ2
1ρωτ∗

3εzµλ0
ψ2 ∂ψ

∂τ

)
+λ2λ0ρψ

∂ξ

∂n

} (3.10)

where ∂/∂n means the derivation along the normal direction to the surface F .
For the averaged pressures P

I
and P

II
the following relations are true by defi-

nition:

hP
I

= hP+
ρIgh2

2
+RI , hIIP

II
= hIIP − ρIIg(hII)2

2
+RII

and then we get from (3.5):

hP
I

= hP+
ρIgh2

2
+
h2µIm

3εzKx

∂h

∂t
, hIIP

II
= hIIP−ρ

IIg(hII)2

2
− (hII)2µIm

3εzKxµ

∂h

∂t
,

or in the dimensionless form:

ϕpI = ϕ2+
λ2

1ωτ∗
3εz

ϕ2 ∂ϕ

∂τ
+λ2ϕξ,

ψpII = −ψ2+
λ2

1ρωτ∗
3εzµλ0

ψ2 ∂ψ

∂τ
+λ2λ0ρψξ ,

(3.11)
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where

pI≡ 2P
I

ρIgh0
, pII≡ 2P

II

ρIIghII
0

Note the function ξ can be excluded from (3.11), if we multiply the first equation
by λ0ρψ , the second equation by ϕ, and substract the second equation from the
first one.

λ0ρp
I−pII = λ0

(
ρ−1

)
ϕ+1+λ0+

λ2
1λ0ρωτ∗

3εz

(
ϕ+

1
µλ0

[
1+λ0−λ0ϕ

])∂ϕ
∂τ

(3.12)

Partial linearization. The condition of small perturbation being accepted, the
following simplification is justified. In the left-hand part of system (3.6), the second
term can be linearized assuming that ϕ'1, ψ'1. Then system (3.6) gets the form

LI
(
ϕ2+

λ2
1ωτ∗
3εz

ϕ2 ∂ϕ

∂τ
+λ2ξ

)
= −ωτ∗

∂ϕ

∂τ
(3.13a)

LII
(
−ψ2+

λ2
1ρωτ∗

3εzµλ0
ψ2 ∂ψ

∂τ
+λ2λ0ρξ

)
= −ρλ0ωτ∗

µ

∂ψ

∂τ
(3.13b)

ψ = −λ0ϕ+λ0+1 (3.13c)

In the next section only this partially linearized system of equations will be studied.
Relations (3.10) for the dimensionless flow rates across any vertical surface F take
the form

qI = − 1
ωτ∗

∂

∂n

(
ϕ2+

λ2
1ωτ∗
3εz

ϕ2 ∂ϕ

∂τ
+λ2ξ

)
(3.14)

qII = − µ

ωτ∗ρλ2
0

∂

∂n

(
−ψ2+

λ2
1ρωτ∗

3εzµλ0
ψ2 ∂ψ

∂τ
+λ2λ0ρξ

)
(3.15)

Note that the function ξ might be excluded from these relations:

ρωτ∗
ρ+λ0

(λ0

µ
qII−qI

)
=

∂

∂n

(
ϕ2−2(λ0+1)

ρ+λ0
ϕ+

λ2
1ρωτ∗

3εz(ρ+λ0)
(
ϕ2+

1
λ0µ

[
1+λ0−λ0ϕ

]2)∂ϕ
∂τ

) (3.16)

4. Slow elastic perturbations

Examine the case of strongly deformable fluids and medium, where the time of
elastic wave propagation is large with respect to the gravity time (ω�1).

It is necessary to note that such situation may happen when the layer is rather
thin, i.e., the condition λ1�1 should be added.

The scale of the time t∗ should be chosen as equal to tel, according to (3.8).
Then τ∗ = 1. Therefore, we get from (3.13):

LI
(
ϕ2+λ2ξ

)
= 0, LII

(
−ψ2+λ2λ0ρξ

)
= 0, ψ = −λ0ϕ+λ0+1

LI≡ ∂

∂τ
−∆yy, LII≡β

µ

∂

∂τ
−∆yy

(4.1)

Let us introduce the new functions

SI≡ϕ2+λ2ξ and SII≡−ψ2+λ2λ0ρξ (4.2)
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which represent the averaged pressure over the corresponding layer height, as it
follows from (3.11). Then, the system (4.1) can be written in the following form

∂SI

∂τ
−∆yyS

I = 0,
β

µ

∂SII

∂τ
−∆yyS

II = 0,

ϕ = α
[
1+

√
ρλ0SI−SII

αλ0

(
1+λ0

)− ρ

λ0

]
,

(4.3)

where α≡(1+λ0)/(ρ+λ0). By solving two linear parabolic equations with respect to
SI and SII , the function ϕ is obtained as a simple solution of a quadratic equation.
The function ξ may be found as: ξ = 1

λ2

(
SI−ϕ2

)
.

Problem of oil-water or oil-gas interface. Let us examine the problem of oil
extraction from a porous reservoir by a well in the framework of the model (4.3).
The lower layer is saturated by water (index I). Construction of the well is assumed
to be multitube, in such a way that each fluid can be extracted separately one
from other through its own tube. The engineering problem consists of controlling
deformations of the oil-water interface in order to reduce extraction of water. Such
technology has been analyzed, for instance, in [5].

The similar problem arises in a gas-oil system. Then, the indexes I and II are
associated to oil and gas correspondingly.

Examine the following problem of radial flow towards a single well located in
the center of a cylindrical porous domain with the radius R∗, the height H, the
porosity m and the permeability K.

Let the well be a vertical cylinder of radius Rw. Let Qi, (i = I, II) be the
volumic flow rate of extraction of the i-th fluid by the well, which are specified. Let
us assume the normal flow velocity at the well border does not depend on the polar
angle. Then, using (3.9), we get the following equation relating Qi with qi|r=rw

,
where r2 = y2

1+y2
2 , rw = Rw/L:

QI = 2πRw

h∫
0

Vn|r=rw
dz =

2πR2
∗h0

tel
rwq

I
∣∣
r=rw

, QII =
2πR2

∗h
II
0

tel
rwq

II
∣∣
r=rw

(4.4)
Then using (4.3), we obtain

∂SI

∂τ
−1
r

∂

∂r

(
r
∂SI

∂r

)
= 0,

β

µ

∂SII

∂τ
−1
r

∂

∂r

(
r
∂SII

∂r

)
= 0,

SI
∣∣
τ=0

= 1+λ2, SII
∣∣
τ=0

= −1+λ2λ0ρ,

SI
∣∣
r→r∗

= 1+λ2, SII
∣∣
r→r∗

= −1+λ2λ0ρ,

r
∂SI

∂r

∣∣
r=rw

=
ωεm

2
, r

∂SII

∂r

∣∣
r=rw

=
ωεγmλ0

2Q
,

(4.5)

where

r =
R

R∗
, ε =

tel

T
=

QIµI

πh0mKxβI
∗
, Q =

QI

QII
, T =

πR2
∗h0m

QI
, γ =

ρλ2
0

µ
,

T is the time of full extraction of the fluid I by the well. This value defines some
new “technological” time scale of the system. Boundary conditions at the well
border represent the fixed flow rates of each fluid and are written using relations
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(3.14). After this problem is solved, the interface height ϕ(r, τ) can be determined
using the last equation in (4.3).

Self-similar solution. When the reservoir is infinite (R∗→∞), and the well radius is
zero (Rw→0), then the problem (4.5) written in dimensional variables has the exact
analytical solution in term of SI = SI(ξ), SII = SII(ξ), ξ≡R/

√
t. The problem

takes the form

− t∗
R2
∗

ξ

2
dSI

dξ
=

1
ξ

d

dξ

(
ξ
dSI

dξ

)
− t∗
R2
∗

ξ

2
β

µ

dSII

dξ
=

1
ξ

d

dξ

(
ξ
dSII

dξ

)
SI

∣∣
ξ=∞ = 1 + λ2, SII

∣∣
ξ=∞ = −1 + λ2λ0ρ

ξ
dSI

dξ

∣∣
ξ=0

=
ωεm

2
, ξ

dSII

dξ

∣∣
ξ=0

=
ωεmγλ0

2Q
The solutions have the form

SI =
ωεm

4
Ei

(
− ξ2t∗

4R2
∗

)
+1+λ2,

SII =
ωεmγλ0

4Q
Ei

(
− ξ2βt∗

4µR2
∗

)
+λ2λ0ρ−1 ,

where Ei is the integral exponential function defined as

Ei(x)≡
∫ x

−∞

eu

u
du

Using the property of this function, we get for ξ→0:

SI ∼ ωεm

4
[
ln
ξ2t∗
4R2

∗
+Ce+ . . .

]
+1+λ2 ,

SII ∼ ωεmγλ0

4Q

[
ln
ξ2βt∗
4µR2

∗
+Ce+ . . .

]
+λ2λ0ρ−1

where Ce = 0.5772 . . . is the Euler constant. Then the function ϕ is

ϕ

α
= 1+

√√√√ρλ0+1+ εωm
4

[
ρλ0Ei

(
− ξ2t∗

4R2
∗

)
−γλ0

Q
Ei

(
− ξ2βt∗

4µR2
∗

)]
αλ0

(
1+λ0

) − ρ

λ0

Numerical solution. A numerical solution of problem (4.5) has been obtained. For
the space discretization, a conventional scheme of order 2 obtained by a finite
difference method has been used. For the time discretization a θ - scheme has been
considered. In the presented numerical tests the value θ = 0.5 has been used, which
corresponds to the Cranck-Nickolson scheme.

For all numerical tests we supposed that the initial position of the interface is
horizontal and it corresponds to the unperturbed interface, such that ϕ(r, 0)≡1
(i.e. h0(·) = h(·, 0)≡20m). The physical dimensions of the reservoir are given by
its depth (H = 40m) and its radius (100m).

Figures 2, 3 and 4 show the evolution of the oil-water interface for different values
of flow rates. In each case, the interface is presented at four time instants: 1 day,
20 days, 40 days, 60 days.
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For the first numerical test, the flow rates of the upper liquid (oil) and of the
lower liquid (water) are considered to be equal, i.e. QI = QII = 1000m3/day.
The pumping of oil leads to an ascent of water from below (fig. 2) even if water
is extracted with the same flow rate. This characteristic of the process can be
explained by the difference of viscosity (the viscosity ratio µII = 10µI has been
used for all tests).

18

19

20

21

22

23

24

25

-100 -50 0 50 100

’INITIAL STATE’
’01 DAY’
’20 DAYS’
’40 DAYS’
’60 DAYS’

Figure 2. Evolution of the interface oil-water for QI = QII =
1000 m3/day

In fact, using the previous analytical solution, it can be proved the existence of a
critical value (denotedQ

∗
) of the ratio between the flow rates. If the flow rates verify

QI/QII < Q
∗
, then one can predict that, around the well, the interface evolves

above its initial position. In the contrary case, the interface evolves below the initial
position. When the initial layers are equal (as in our tests : h0 = hII

0 = 20m), this
critical value becomes µII/µI . A complete analysis dealing with the stability of the
interface will be described in a forthcoming paper.

The evolution shown in fig. 3 corresponds to the critical value QI/QII = 10 =
Q
∗
. One can observe that the interface remains relatively close to the initial state

and tends towards this state. Therefore, the evolution of the interface can be easily
controlled, but the amount of pumped water has to be ten times larger than the
amount of pumped oil.

In the last test, the water flow rate is maintained at 1000 m3/day, but the
oil flow rate is increased: QII = 10000 m3/day. In fig. 4, one can observe an
evolution similar to the first test. However, the deformation is more significant :
the interface approaches the higher limit of the reservoir. The quantity of oil which
was already pumped is significant, but the well can become not exploitable because
of the complete covering of the oil layer by water near the well.

Conclusion

A new model to simulate interface evolution between two fluids in porous media
has been developed. It generalizes previous models by removing the classical con-
dition of hydrostatic pressure distribution and considering a non-stationary flow.
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Figure 3. Evolution of the interface oil-water for
QI = 1000 m3/day, QII = 100 m3/day
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Figure 4. Evolution of the interface oil-water for
QI = 1000 m3/day, QII = 10000 m3/day

Instead of these hypothesis, an assumption of linear behavior of the vertical velocity
along vertical coordinate is used.

The application of this model to simulate the oil-water or gas-oil interface de-
formations in oil reservoir is shown. The physical parameters of this problem are
supposed to verify that gravity perturbations are propagating much faster than
elastic perturbations. Then, the model consists of two linear diffusion equations
respectively to the two averaged fluid pressures, while the vertical coordinate of the
interface is related with them by a nonlinear algebraic equation.

However it can describe many other real situations, including the classical well-
known cases of groundwater flow with free surface. It is able also to take into
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account more complex phenomena, as gravitational instability with finger growth.
These different applications of the model are studied in [3].
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