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THE KOLMOGOROV EQUATION WITH TIME-MEASURABLE
COEFFICIENTS

JAY KOVATS

Abstract. Using both probabilistic and classical analytic techniques, we in-
vestigate the parabolic Kolmogorov equation

Ltv + ∂v
∂t
≡

1

2
aij(t)vxixj + bi(t)vxi − c(t)v + f(t) + ∂v

∂t
= 0

in HT := (0, T )×Ed and its solutions when the coefficients are bounded Borel
measurable functions of t. We show that the probabilistic solution v(t, x) de-

fined in H̄T , is twice differentiable with respect to x, continuously in (t, x), once
differentiable with respect to t, a.e. t ∈ [0, T ) and satisfies the Kolmogorov

equation Ltv + ∂v
∂t

= 0 a.e. in H̄T . Our main tool will be the Aleksandrov-
Busemann-Feller Theorem. We also examine the probabilistic solution to the
fully nonlinear Bellman equation with time-measurable coefficients in the sim-

ple case b ≡ 0, c ≡ 0. We show that when the terminal data function is a
paraboloid, the payoff function has a particularly simple form.

1. Introduction

It is well-known in the theory of diffusion processes [2, 3] that when g ∈ C2(Ed)
and the coefficients a(t, x), b(t, x), c(t, x) and free term f(t, x) are sufficiently
smooth in (t, x) and satisfy certain growth conditions, with c(t, x) ≥ 0, then the
function

v(t, x) = E
[∫ T

t

f(r, ξr(t, x))e−ϕr(t,x) dr + e−ϕT (t,x)g(ξT (t, x))
]
,

ϕs(t, x) =
∫ s

t

c(r, ξr(t, x)) dr

(1.1)

belongs to C1,2(HT ) and satisfies the Kolmogorov equation Lv(t, x) + ∂v
∂t (t, x) =

0,∀ (t, x) ∈ H̄T , where Lv := 1
2aij(t, x)vxixj + bi(t, x)vxi − c(t, x)v + f(t, x), with

v(T, x) = g(x). In (1.1), for fixed (t, x) ∈ H̄T , ω ∈ Ω and s ≥ t, ξs(t, x) =
ξs(ω, t, x) is the solution of the stochastic equation ξs = x +

∫ s

t
σ(r, ξr) dwr +∫ s

t
b(r, ξr) dr, where (Ω,F , P ) is a complete probability space on which (wt,Ft) is a

d1-dimensional Wiener process, defined for t ≥ 0. Furthermore, σ(t, x) and b(t, x)
are assumed continuous in (t, x) and have values in the set of d × d1 matrices, Ed

respectively, with a = σσ∗. The fact that the probabilistic solution v satisfies the
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Kolmogorov equation throughout H̄T is proved using Itô’s formula and relies heavily
on the continuity in t of the coefficients to establish the existence and continuity in
(t, x) of ∂v

∂t [3, Chapter 5]. In this paper, we show that if the coefficients are only
bounded Borel measurable functions of t, the second derivatives vxixj (t, x) exist
and are continuous in (t, x) (Theorem 2.1) but in general, ∂v

∂t exists only in the
generalized sense (Theorem 2.3) and the Kolmogorov equation will be satisfied only
in the almost everywhere sense (Theorem 2.5). For example, consider the function
v(t, x) = |x|2 + 2d( 1

2 − t)+. For t 6= 1
2 , ∂v

∂t (t, x) exists and equals −2d I0≤t< 1
2

and
hence for t 6= 1

2 , v is a solution of the degenerate equation I0≤t< 1
2
∆v + ∂v

∂t = 0 in
[0, 1)× Ed. Note ∂v

∂t (t, x) is discontinuous in t.
When the coefficients and free term are independent of x, the right hand side of

our stochastic equation is independent of ξ. and the probabilistic solution (1.1) takes
a decidedly more convenient form (see (3.4)). Since the other terms in (3.4) are
independent of x and their derivatives with respect to t can be explicitly calculated
(almost everywhere) it suffices to investigate the function v(t, x) = Eg(ξT (t, x)).

We do this in two ways. In section 1, we use probabilistic arguments to show
that for g ∈ C2(Ed), the function v(t, x) = Eg(ξT (t, x)) is twice differentiable with
respect to x, continuously in (t, x) and once differentiable with respect to t, a.e.
t ∈ [0, T ). We then apply the Aleksandrov-Busemann-Feller theorem to a variant of
v to show that v satisfies the Kolmogorov equation 1

2aij(t)vxixj + bi(t)vxi + ∂v
∂t = 0

a.e. in HT . From this it follows (by our previous remark) that the simplified
version of (1.1), given by (3.4) satisfies the more general Kolmogorov equation a.e.
in HT . In section 2, we use the fact that ξT (t, x) is a Gaussian vector to express
v as a convolution (in x) of g with a kernel p which is the fundamental solution
of the Kolmogorov equation (a.e. t). Our proof that this convolution satisfies the
Kolmogorov equation amounts to showing that we can differentiate the kernel under
the integral sign. Here we assume only that g is continuous and slowly increasing,
that is |g(x)| ≤ C1e

C2|x|2 . Our derivative estimates are done under the assumption
that the coefficient matrix a(t) is non-degenerate. This assumption was not needed
in section 1, (due to the assumption g ∈ C2(Ed)) yet we do get a slightly more
refined result here, namely v(t, x) = Eg(ξT (t, x)) satisfies the Kolmogorov equation
for almost every t ∈ [0, T ) and any x ∈ Ed. Finally in section 4, we examine
the payoff function for the fully nonlinear Bellman equation in the simple case
b ≡ 0, c ≡ 0. It turns out that when g is a paraboloid, the probabilistic solution of
the Bellman equation has a particularly simple form.

2. The Probabilistic Approach

Throughout this section, we assume the following.
Let g ∈ C2(Ed) and assume that for all x, y ∈ Ed, |g(x)|, |g(y)(x)|, |g(y)(y)(x)| ≤

K(1 + |x|m), where for any twice differentiable function u(x) and l ∈ Ed, u(l)(x) =
|l|−1ux(x) · l, u(l)(l)(x) = |l|−2l∗uxx(x)l. For t ∈ [0, T ] and x ∈ Ed, we define, for
s ∈ [t, T ], the diffusion process ξs(t, x) = x +

∫ s

t
σ(r) dwr +

∫ s

t
b(r) dr, where the

Borel measurable coefficients σ(t), b(t) are defined on [0, T ], independent of ω ∈ Ω
and satisfy ∫ T

0

[
‖σ(t)‖2 + |b(t)|

]
dt < ∞. (2.1)

Under these assumptions, we prove our first theorem.
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Theorem 2.1. For (t, x) ∈ H̄T , the function v(t, x) = Eg(ξT (t, x)) is twice differ-
entiable with respect to x, continuously in (t, x) and for any y, ȳ ∈ Ed, vyȳ(t, x) =
Egyȳ(ξT (t, x)).

Proof. We show that v(t, x) is differentiable with respect to x. Writing ξT (t, x) =
x + ηT (t), where ηT (t) :=

∫ T

t
σ(r) dwr +

∫ T

t
b(r) dr, note that for any y ∈ Ed and

any sequence hn → 0 as n →∞

∆1
hn,yv(t, x) :=

v(t, x + hny)− v(t, x)
hn

= E∆1
hn,yg(x + ηT (t)) = E∆1

hn,yg(ξT (t, x)).

Since gy is continuous, the Mean Value Theorem yields

∆1
hn,yg(ξT (t, x)) =

∫ 1

0

gy(ξT (t, x) + rhny) dr = gy(ξT (t, x)) + θhny),

for some θ ∈ [0, 1]. Since g ∈ C1(Ed), ∆1
hn,yg(ξT (t, x)) → gy(ξT (t, x)) as n → ∞.

Furthermore, as n →∞
E∆1

hn,yg(ξT (t, x)) → Egy(ξT (t, x)). (2.2)

To see this observe that

|∆1
hn,yg(ξT (t, x))| = |gy(ξT (t, x) + θhny)|

≤ |y|K (1 + |ξT (t, x) + θhny|m)

≤ 2mK|y| (1 + |ξT (t, x)|m + |θhny|m)

≤ N |y|
(
1 + |x|m +

∣∣∣ ∫ T

t

σ(r)dwr

∣∣∣m +
∣∣∣ ∫ T

t

b(r) dr
∣∣∣m + |y|m

)
,

where N = N(m,K). By (2.1), the Burkholder-Davis-Gundy inequalities and the
fact that σ, b are independent of ω, the last expression above has finite expectation.
Hence by [3, Lemma III.6.13 (f)], (2.2) holds. Since {hn} was an arbitrary sequence
converging to 0 as n →∞, we conclude

lim
h→0

E∆1
h,yg(ξT (t, x)) = Egy(ξT (t, x)).

Thus v(t, x) is differentiable with respect to x and for any y ∈ Ed, vy(t, x) =
limh→0 E∆1

h,yg(ξT (t, x)) = Egy(ξT (t, x)). We now show that v(t, x) is twice differ-
entiable with respect to x. By the above expression for vy(t, x), we have, for any
ȳ ∈ Ed

vy(t, x + hȳ)− vy(t, x)
h

= E∆1
h,ȳ gy(ξT (t, x)). (2.3)

But since gyȳ is continuous, for any sequence hn → 0 as n → ∞, the Mean Value
Theorem yields

∆1
hn,ȳ gy(ξT (t, x)) =

∫ 1

0

gyȳ(ξT (t, x) + rhny) dr = gyȳ(ξT (t, x)) + θhny),

for some θ ∈ [0, 1]. Since g ∈ C2(Ed), ∆1
hn,ȳ gy(ξT (t, x)) → gyȳ(ξT (t, x)) as n →∞.

By the argument immediately following (2.2), except with |y|2 + |ȳ|2 in place of |y|
and using the growth condition on |g(y)(y)(x)|, we see that |∆1

hn,ȳ gy(ξT (t, x))| is
bounded above (independently of n) by a random variable which has finite expec-
tation. Hence

E∆1
hn,ȳgy(ξT (t, x)) → Egyȳ(ξT (t, x)) as n →∞.
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Since {hn} was an arbitrary sequence converging to 0 as n →∞,

lim
h→0

E∆1
h,ȳ gy(ξT (t, x)) = Egyȳ(ξT (t, x)).

Thus by (2.3), vyȳ(t, x) exists and since y, ȳ ∈ Ed were arbitrary, v(t, x) is twice
differentiable with respect to x and

vyȳ(t, x) = lim
h→0

E∆1
h,ȳ gy(ξT (t, x)) = Egyȳ(ξT (t, x)).

We now show the continuity of vyȳ(t, x) in (t, x). To this end, fix (t, x) and let
tn → t+, xn → x. It suffices to show vyȳ(tn, xn) → vyȳ(t, x). We have

|vyȳ(tn, xn)− vyȳ(t, x)| ≤ E|gyȳ(ξT (tn, xn))− gyȳ(ξT (t, x))|. (2.4)

Observe that ξT (tn, xn) P→ ξT (t, x) and since gyȳ is continuous, gyȳ(ξT (tn, xn)) P→
gyȳ(ξT (t, x)). Since |gyȳ(ξT (tn, xn))| ≤ η with Eη < ∞, the right hand side of (2.5)

tends to zero as n → ∞. The details are as follows. To see that ξT (tn, xn) P→
ξT (t, x), observe that

|ξT (tn, xn)− ξT (t, x)|

≤ |xn − x|+
∣∣∣ ∫ T

tn

σ(r)dwr −
∫ T

t

σ(r)dwr

∣∣∣ +
∣∣∣ ∫ T

tn

b(r) dr −
∫ T

t

b(r) dr
∣∣∣. (2.5)

The middle summand tends to zero in probability as n →∞ by [3, Theorem III.6.6]
and the fact that∫ T

0

‖Itn≤rσ(r)− It≤rσ(r)‖2 dr =
∫ T

0

‖σ(r)‖2It≤r<tn dr → 0 as n →∞

by (2.1) and the Dominated Convergence Theorem. The third summand on the
right hand side of (2.5) tends to zero by the Dominated Convergence Theorem.
Since xn → x, we have ξT (tn, xn) P→ ξT (t, x). Since gyȳ(x) is continuous,

gyȳ(ξT (tn, xn)) P→ gyȳ(ξT (t, x)),

by [3, Theorem III.6.13 (c)]. Finally,

|gyȳ(ξT (tn, xn))|
≤ K(|y|2 + |ȳ|2)(1 + |ξT (tn, xn)|m)

≤ 3mK(|y|2 + |ȳ|2)
{

1 + |xn|m +
∣∣∣ ∫ T

tn

σ(r) dwr

∣∣∣m +
∣∣∣ ∫ T

tn

b(r) dr
∣∣∣m}

.

(2.6)

Since ∣∣∣ ∫ T

tn

σ(r) dwr

∣∣∣m ≤ 2m sup
s

∣∣∣ ∫ s∧T

0

σ(r) dwr

∣∣∣m
as xn → x and

∣∣ ∫ T

tn b(r) dr
∣∣m ≤

( ∫ T

0
|b(r)| dr

)m, the right hand side of (2.6) is
bounded uniformly in n by a random variable, which, by the Burkholder-Davis-
Gundy inequalities and (2.1), has finite expectation. Hence, by [3, Theorem III.6.13
(f)],

E|gyȳ(ξT (tn, xn))− gyȳ(ξT (t, x))| → 0 as n →∞
and hence by (2.4), vyȳ(tn, xn) → vyȳ(t, x). �
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The proof that v(t, x) and vy(t, x) are continuous in H̄T follow same the technique
shown here, except we use the respective assumptions |g(x)|, |g(y)(x)| ≤ K(1+|x|m).
Observe that by (2.6) and the Burkholder-Davis-Gundy inequalities, we obtain the
following estimate, which holds for (t, x) ∈ H̄T

‖vxx(t, x)‖

≤ N(d, m,K)
{

1 + |x|m +
( ∫ T

t

‖σ(r)‖2 dr
)m/2

+
( ∫ T

t

|b(r)| dr
)m}

.
(2.7)

If in addition, σ, b satisfy supt≤T (‖σ(t)‖+ |b(t)|) ≤ K, inequality (2.7) yields, with
N1 = N1(d, m,K)

‖vxx(t, x)‖ ≤ 2N(1 ∨Km)(1 + |x|m) {1 + (T − t)m}

≤ 4N(1 ∨Km)(1 + |x|m)e(T−t)m

≤ N1(1 + |x|)meN1(T−t).

(2.8)

The following lemma appears in [3, p. 195]. We will use this lemma and the fact
that v, vx, vxx are continuous in (t, x) to show that when σ(t), b(t) are bounded,
v(t, x) is differentiable with respect to t for almost every t ∈ [0, T ].

Lemma 2.2. Let ξs(t, x) = x +
∫ s

t
σ(r) dwr +

∫ s

t
b(r) dr, where supt≤T (‖σ(t)‖ +

|b(t)|) ≤ K. For ε > 0 and (t, x) ∈ Q, let

τε(t, x) = inf{s ≥ t : (s, ξs(t, x)) /∈ Qε(t, x)},

where Qε(t, x) = (t − ε3, t + ε3) × Bε(x). Then for any compact set Γ ⊂ Q+ :=
Q ∩ {t ≥ 0},

ε−3P{τε(t, x)− t < ε3} → 0, ε−3E[τε(t, x)− t] → 1,

uniformly in (t, x) ∈ Γ, as ε → 0+.

Theorem 2.3. Under the hypotheses of Theorem 2.1 suppose that supt≤T (‖σ(t)‖+
|b(t)|) ≤ K. Then for any x ∈ Ed, the function v(t, x) = Eg(ξT (t, x)) is differen-
tiable with respect to t for almost every t ∈ [0, T ).

Proof. Fix any (t, x) ∈ HT and choose ε so small that t + ε3 < T . Since absolutely
continuous functions of a single real variable are differentiable almost everywhere,
it suffices to show that v(t, x) is Lipschitz in t. By the strong Markov property we
can write

v(t, x) = Ev(τε(t, x), ξτε(t,x)(t, x)), (2.9)

which we henceforth abbreviate as Ev(τε, ξτε
). By Itô’s formula applied to the C2

function (of x) v(t + ε3, ·), we have

v(t, x)− v(t + ε3, x)

= E[v(τε, ξτε)− v(t + ε3, ξτε)] + E[v(t + ε3, ξτε)− v(t + ε3, ξt)]

= E Iτε<t+ε3 [v(τε, ξτε
)− v(t + ε3, ξτε

)] + E
∫ τε

t

Lrv(t + ε3, ξr) dr

(2.10)

Certainly |v(τε, ξτε)−v(t+ ε3, ξτε)| ≤ 2 sup
[t,t+ε3]×Bε(x)

|v|. We recall that v, vx, vxx

are continuous and hence bounded in any compact set. By definition, Lrv(t +
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ε3, ξr) = 1
2 tr[a(r) vxx(t+ε3, ξr)]+b(r)·vx(t+ε3, ξr). From the elementary inequality

|tr[a ·m]| ≤ ‖a‖ ‖m‖ and the fact that ‖σ(t)‖+ |b(t)| ≤ K, we get, for r ∈ [t, τε],∣∣Lrv(t + ε3, ξr)
∣∣ ≤ K2

2
‖vxx(t + ε3, ξr)‖+ K|vx(t + ε3, ξr)|

≤ N(K)( sup
Bε(x)

‖vxx(t + ε3, ·)‖+ sup
Bε(x)

|vx(t + ε3, ·)|).
(2.11)

So in any small closed cylinder Q̃ ⊃ [t, t + ε3] × Bε(x), we have, by (2.10) and
Lemma 2.2, for sufficiently small ε,

|v(t, x)− v(t + ε3, x)|
≤ 2 sup

Q̃

|v| · P{τε − t < ε3}+ N(K)(sup
Q̃

‖vxx‖+ sup
Q̃

|vx|)E[τε − t]

≤ N1(K)(sup
Q̃

|v|+ sup
Q̃

|vx|+ sup
Q̃

‖vxx‖)ε3.

Since t, ε were arbitrary (such that t+ ε3 < T ), we get, for any s, t ∈ [0, T ) and any
fixed x ∈ Ed,

|v(t, x)− v(s, x)| ≤ N2|t− s|,
where N2 is independent of s, t, x. Hence the generalized derivative ∂v

∂t exists and∣∣∂v
∂t (t, x)

∣∣ ≤ N2. �

We will now show that the function v(t, x) = Eg(ξT (t, x)) satisfies the Kol-
mogorov equation almost everywhere in HT , under the assumptions of Theorem
2.3. Our main tool will be the Aleksandrov-Busemann-Feller (ABF) theorem (see
[4, Theorem 1.1]) for continuous functions which are convex in x and non-increasing
in t.

Theorem 2.4 (Aleksandrov-Busemann-Feller). Let u(t, x) be convex in x, non-
increasing in t and continuous in H̄T . Let P (s, x, t, y) = u(s, x) + u

(0)
s (s, x)t +

ux(s, x) · y + 1
2y∗u

(0)
xx (s, x)y, where u

(0)
s , u

(0)
xixj denote generalized derivatives. Then

for almost all (s, x) ∈ Ed+1, u(s + t, x + y) = P (s, x, t, y) + o(|t|+ |y|2) as (t, y) →
(0, 0).

Equivalently, for almost all (t0, x0) ∈ Ed+1, u(t, x) = P(t0,x0)(t, x) + o(|t − t0| +
|x− x0|2) as (t, x) → (t0, x0), where P(t0,x0)(t, x) = u(t0, x0) + u

(0)
t (t0, x0)(t− t0) +

ux(t0, x0) · (x − x0) + 1
2 (x − x0)∗u

(0)
xx (t0, x0)(x − x0). We want to apply the ABF

theorem to a variant of v. To this end, note that by (2.6), for any l ∈ Ed, we have∣∣v(l)(l)(t, x)
∣∣ ≤ E

∣∣g(l)(l)(ξT (t, x))
∣∣ ≤ NeN(T−t)(1 + |x|)m,

where N = N(m,K). Direct calculation shows that for any l, x ∈ Ed, (m +
2)2−

m
2 (1 + |x|)m ≤

[
(1 + |x|2)m

2 +1
]
(l)(l)

. Hence∣∣v(l)(l)(t, x)
∣∣ ≤ NeN(T−t)2

m
2

m + 2
[
(1 + |x|2)m

2 +1
]
(l)(l)

≤ NeN(T−s)
[
(1 + |x|2)m

2 +1
]
(l)(l)

which yields

0 ≤
(
v(t, x) + NeN(T−t)(1 + |x|2)m

2 +1
)

(l)(l)
∀(t, x) ∈ HT , l ∈ Ed.

That is, the function v(t, x) + NeN(T−t)(1 + |x|2)m
2 +1 is convex in x. We may also

consider this function to be decreasing in t by the following argument. By Lemma



EJDE–2003/77 THE KOLMOGOROV EQUATION 7

2.2, the first summand on the right hand side of (2.10) is o(ε3) as ε → 0. By the
continuity of vxx(t, x), vx(t, x), the last factor on the right hand side of (2.11) tends
to ‖vxx(t, x)‖+|vx(t, x)| as ε → 0. Since the estimate |vx(t, x)| ≤ NeN(T−t)(1+|x|)m

also holds, dividing (2.10) by ε3, letting ε → 0, using (2.8) and applying the second
result in Lemma 2.2, we get for almost every t ∈ [0, T ) and any x ∈ Ed∣∣∣∣∂v

∂t
(t, x)

∣∣∣∣ ≤ NeN(T−t)(1 + |x|)m ≤ NeN(T−t)(1 + |x|2)m
2 +1, (2.12)

where N = N(d, m,K). From (2.12) it follows, as before, that for some N =
N(d, m,K), v(t, x) + NeN(T−t)(1 + |x|2)m

2 +1 := v + v0 is decreasing in t.

Theorem 2.5. Under the assumptions of Theorem 2.3, the function v(t, x) =
Eg(ξT (t, x)) satisfies the Kolmogorov equation almost everywhere in HT .

Proof. Since the ABF theorem holds for the function v + v0 and v0 is smooth,
the ABF theorem also holds for v. Since v has continuous second derivatives (by
Theorem 2.1), v

(0)
xx = vxx almost everywhere. So fix any (t, x) ∈ HT for which

the assertion of the ABF theorem holds for v, v
(0)
xx (t, x) = vxx(t, x) and t is in

the Lebesgue set of the operator Ls ≡ 1
2aij(s) ∂2

∂xi∂xj + bi(s) ∂
∂xi . By the strong

Markov property, v(t, x) = Ev(τε, ξτε
), where τε(t, x) is as in Lemma 2.2. By the

ABF theorem, v(τε, ξτε) = P(t,x)(τε, ξτε) + o(|τε − t| + |ξτε − x|2) as ε → 0. Since
ξt(t, x) = x and P(t,x)(t, x) = v(t, x), applying Itô’s formula to the parabaloid P(t,x)

yields

0 = E
∫ τε

t

(
LrP +

∂P

∂r

)
(r, ξr) dr + E[o(|τε − t|+ |ξτε

− x|2)]. (2.13)

Since 0 ≤ τε−t ≤ ε3, the estimates E|ξτε−x|p ≤ N(p, K)ε
3p
2 (1+ε

3p
2 ) and |v(t, x)| ≤

N(T,m,K)(1+|x|)m imply that the second summand on the right of (2.13) is o(ε3).
Let us write the first summand on the right of (2.13) as

EIτε<t+ε3

∫ τε

t

(
LrP+

∂P

∂r

)
(r, ξr) dr+EIτε=t+ε3

∫ t+ε3

t

(
LrP+

∂P

∂r

)
(r, ξr) dr. (2.14)

Since the coefficients of Lr are uniformly bounded and r ∈ [t, τε] implies |ξr−x| < ε,
the integrand in the first summand of (2.14) satisfies∣∣(LrP +

∂P

∂r

)
(r, ξr)

∣∣ ≤ (K2 + Kε)‖vxx(t, x)‖+ K|vx(t, x)|+ |v(0)
t (t, x)|.

Since ε ∈ (0, 1),∣∣∣EIτε<t+ε3

∫ τε

t

(
LrP +

∂P

∂r

)
(r, ξr) dr

∣∣∣
≤ N(K)(‖vxx(t, x)‖+ |vx(t, x)|+ |v(0)

t (t, x)|) · P{τε < t + ε3},

and hence the first expectation in (2.14) is o(ε3) by Lemma 2.2. Dividing the second
expectation in (2.14) by ε3 and evaluating it explicitly yields

EIτε=t+ε3
1
ε3

∫ t+ε3

t

(
Lrv(t, x) + v

(0)
t (t, x)

)
dr

+ EIτε=t+ε3
1
ε3

∫ t+ε3

t

b(r)∗vxx(t, x)(ξr − x) dr.

(2.15)
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Since t is a Lebesgue point for Ls, we have (almost surely)

Iτε=t+ε3
1
ε3

∫ t+ε3

t

(
Lrv(t, x) + v

(0)
t (t, x)

)
dr → Ltv(t, x) + v

(0)
t (t, x) as ε → 0

and since ∣∣∣Iτε=t+ε3
1
ε3

∫ t+ε3

t

(
Lrv(t, x) + v

(0)
t (t, x)

)
dr

∣∣∣
≤ K2‖vxx(t, x)‖+ K|vx(t, x)|+ |v(0)

t (t, x)|,

the first expectation in (2.15) converges to Ltv(t, x) + v
(0)
t (t, x) as ε → 0. The

second expectation in (2.15) converges to 0 as ε → 0. Recalling that 0 ≤ τε− t ≤ ε3

and that r ∈ [t, τε] implies |ξr − x| < ε, we immediately get the bound∣∣∣Iτε=t+ε3
1
ε3

∫ t+ε3

t

b(r)∗vxx(t, x)(ξr − x) dr
∣∣∣ ≤ 1

ε3
‖vxx(t, x)‖Kε4 = ‖vxx(t, x)‖Kε.

Hence dividing (2.13) by ε3 and letting ε → 0, we get Ltv(t, x) + v
(0)
t (t, x) = 0. �

3. Fundamental solutions of the Kolmogorov equation - the
analytic approach

Even the “analytic” proof that v(t, x) = Eg(ξT (t, x)) is a solution of the Kol-
mogorov equation relies on the well known probabilistic fact that since coefficients
σ(t), b(t) are independent of ω, the vector ξT (t, x) is a Gaussian vector with param-
eters

(
x +

∫ T

t
b(r) dr,

∫ T

t
a(r) dr

)
. Hence, the distribution PξT (t, x)−1 has density

function

p(T, t, y) =
e−

1
2 〈C−1(t)(y−x−

∫ T
t

b(r)dr),y−x−
∫ T

t
b(r)dr〉

(2π)
d
2
√

det C(t)
,

where C(t) = CT (t) =
∫ T

t
a(r) dr. From this, it follows that a solution to the

problem{
1
2aij(t)vxixj (t, x) + bi(t)vxi(t, x) + ∂v

∂t (t, x) = 0 a. e. t ∈ [0, T )

v(T, x) = g(x) x ∈ Ed

(3.1)

is given by

v(t, x) = Eg(ξT (t, x))

=
∫

Ed

g(y) P ξ−1
T (t, x) (dy)

=
∫

Ed

g(y)
e−

1
2 〈C−1(t)(y−x−

∫ T
t

b(r)dr),y−x−
∫ T

t
b(r)dr〉

(2π)
d
2
√

det C(t)
dy,

(3.2)

where a(r) = σ(r)σ∗(r) is non-degenerate. We prove this in Theorem 3.1 below,
for slowly increasing g ∈ C0(Ed). Viewed analytically, since the function

p(T, t, x) =
e−

1
2 〈C−1(t)(x+

∫ T
t

b(r)dr),x+
∫ T

t
b(r)dr〉

(2π)
d
2
√

detC(t)
(3.3)
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is a fundamental solution (in x) of the equation Ltp(t, x) + ∂p
∂t (t, x) = 0 a.e. t ∈

[0, T ), all x 6= −
∫ T

t
b(r)dr, where Lt ≡ 1

2aij(t) ∂2

∂xi∂xj + bi(t) ∂
∂xi , a solution to (3.1)

will be given by the convolution

v(t, x) = [g ∗ p(T, t, ·)] (x)

=
∫

Ed

g(y) p(T, t, x− y) dy

=
∫

Ed

g(y)
e−

1
2 〈C−1(t)(x−y+

∫ T
t

b(r)dr),x−y+
∫ T

t
b(r)dr〉

(2π)
d
2
√

detC(t)
dy,

providing, of course, we can differentiate under the integral sign. Regarding nota-
tion, by fundamental solution, we mean that for all t ∈ [0, T ), p(T, t, x) is infinitely
differentiable in x and

∫
Ed

p(T, t, x) dx = 1.
By Lebesgue’s differentiation theorem, p(T, t, x) in (2) is differentiable with

respect to t, only in the almost everywhere sense. This is in contrast to the
case where a(t) = Id, b(t) = b (const.) and the Kolmogorov equation is simply
1
2∆u(t, x) + b · ux(t, x) + ∂u

∂t (t, x) = 0 for all (t, x) ∈ HT . In this case, p(T, t, x) =

(2π(T − t))−
d
2 e

−|x+b(T−t)|2
2(T−t) is infinitely differentiable in both t and x.

Theorem 3.1. For t ∈ [0, T ] and x ∈ Ed and s ∈ [t, T ], let ξs(t, x) = x +∫ s

t
σ(r) dwr +

∫ s

t
b(r) dr, where supt≤T (‖σ(t)‖ + |b(t)|) ≤ K. Assume ∃δ > 0 for

which δId ≤ a(t), for all t ∈ [0, T ], where a(t) = σ(t)σ∗(t). Then for p(T, t, x) as
in (2) and g continuous and slowly increasing, the function

v(t, x) = Eg(ξT (t, x)) =
∫

Ed

g(y) p(T, t, x− y) dy

satisfies the Kolmogorov equation 1
2aij(t)vxixj (t, x) + bi(t)vxi(t, x) + ∂v

∂t (t, x) = 0
a.e. t ∈ [0, T ) and any x ∈ Ed.

Proof. Direct calculation shows that for almost every t ∈ [0, T ) and any x 6=
−

∫ T

t
b(r)dr ∈ Ed, p(T, t, x) is a solution of the Kolmogorov equation. Thus we

need only show that we can differentiate under the integral sign. Omitting the con-
stant factor of (2π)−d/2, direct calculation shows that for almost every t ∈ [0, T ),
with z = y − x and ηt :=

∫ T

t
b(r) dr,

∂p

∂t
(T, t, x− y)

=
e−

1
2 〈C−1(t)(z−ηt),z−ηt〉

2
√

det C(t)

{
tr[a(t)C−1(t)]− 〈C−1(t) a(t) C−1(t)(z − ηt), z − ηt〉

+ 2〈C−1(t)(y − x), b(t)〉+ 2〈C−1(t) b(t), ηt〉
}

and hence∣∣∂p

∂t
(T, t, x− y)

∣∣
≤ e−

1
2 〈C−1(t)(z−ηt),z−ηt〉√

detC(t)

{
‖a(t)‖‖C−1(t)‖

+ ‖C−1(t) a(t)C−1(t)‖|z − ηt|2 + ‖C−1(t)‖|z||b(t)|+ ‖C−1(t)‖|b(t)||ηt|
}

.
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Since supt≤T (‖σ(t)‖+ |b(t)|) ≤ K and ‖ab‖ ≤ ‖a‖ ‖b‖, ‖a(t)‖ = ‖σ(t)σ∗(t)‖ ≤ K2.

From the estimate ‖C(t)‖ ≤
√

T − t
√∫ T

t
‖a(r)‖2 dr, we have ‖C(t)‖ ≤ K2(T −

t). Moreover, by the uniform non-degeneracy condition δ|λ|2 ≤ aij(t)λiλj , which
holds for all t ∈ [0, T ] and all λ ∈ Ed, we get ‖C−1(t)‖ ≤

√
d

δ(T−t) . We also have
Cij(t)λiλj ≥ δ|λ|2(T − t), from which it immediately follows that detC(t) ≥ [δ(T −
t)]d. Obviously, |ηt| ≤ K(T − t). This gives∣∣∂p

∂t
(T, t, x− y)

∣∣
≤ e−

1
2 〈C−1(t)(z−ηt),z−ηt〉

(δ(T − t))d/2

×
{ K2

√
d

δ(T − t)
+

2dK2

δ2(T − t)2
(
|y − x|2 + K2(T − t)2

)
+

K
√

d

δ(T − t)
|x− y|+ K2

√
d

δ

}
.

Similarly, the gradient and hessian of p(T, t, x− y) satisfy

px(T, t, x− y) =
e−

1
2 〈C−1(t)(z−ηt),z−ηt〉√

detC(t)
C−1(t) · (z − ηt)

pxx(T, t, x− y)

=
e−

1
2 〈C−1(t)(z−ηt),z−ηt〉√

detC(t)

{
C−1(t)(z − ηt)[C−1(t)(z − ηt)]∗ − C−1(t)

}
.

Thus

|px(T, t, x− y)| ≤ e−
1
2 〈C−1(t)(z−ηt),z−ηt〉

(δ(T − t))d/2
‖C−1(t)‖ · |z − ηt|

≤
√

d e−
1
2 〈C−1(t)(z−ηt),z−ηt〉

(δ(T − t))d/2+1

{
|y − x|+ K(T − t)

}
,

‖pxx(T, t, x− y)‖

≤ e−
1
2 〈C−1(t)(z−ηt),z−ηt〉

(δ(T − t))d/2

{
‖C−1(t)‖2 · |z − ηt|2 + ‖C−1(t)‖

}
≤ e−

1
2 〈C−1(t)(z−ηt),z−ηt〉

(δ(T − t))d/2

{ 2d

δ2(T − t)2
(
|y − x|2 + K2(T − t)2

)
+

√
d

δ(T − t)

}
.

To estimate the exponential term in each derivative, we use the inequality |z−ηt|2
K2(T−t) ≤〈

C−1(t)(z − ηt), z − ηt

〉
and Young’s inequality (twice): |z − ηt|2 ≥

∣∣|z| − |ηt|
∣∣2 ≥

1
2 |z|

2 − |ηt|2 ≥ 1
2 |y − x|2 −K2(T − t)2 ≥ 1

4 |y|
2 − 1

2 |x|
2 −K2(T − t)2 to conclude

e−
1
2 〈C−1(t)(z−ηt),z−ηt〉 ≤ e

− |y|2

8K2(T−t)
+

|x|2

4K2(T−t)
+ T−t

2 .

Denoting any of the derivatives pt, px, pxx by p′(T, t, x− y), we see that

|p′(T, t, x− y)| ≤ N · e−
|y|2

8K2(T−t)
+

|x|2

4K2(T−t)
+ T−t

2

(T − t)
d
2 +2

q(T − t, |y − x|),
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where N = N(δ, d,K) and q(a, b) is a paraboloid in a and b. Hence if (t, x) ∈
[0, t0]×BR, where 0 ≤ t0 < T , then

|p′(T, t, x− y)| ≤ N · e−
|y|2

8K2T
+ R2

4K2(T−t0)
+T

(T − t0)
d
2 +2

q(T, |y|+ R).

So if we require that |g(x)| ≤ Ne
|x|2

16K2T , we see that the integrals
∫

Ed
g(y)p′(T, t, x−

y) dy converge uniformly with respect to (t, x) ∈ [0, t0]×BR. This implies v(t, x) is
twice differentiable with respect to x, once differentiable with respect to t (almost
everywhere) and its derivatives can be evaluated by differentiating under the inte-
gral sign. Since p(T, t, x − y) satisfies the Kolmogorov equation for almost every
t ∈ [0, T ), so does v(t, x). �

Remark. The above growth condition for g is obviously satisfied when g has
polynomial growth, |g(x)| ≤ K(1 + |x|m). Furthermore, direct calculation shows
that for any d-dimensional multi-index α, any derivative of p(T, t, x−y) with respect
to x satisfies

|Dα
x p(T, t, x− y)| ≤ N · e−

|y−x|2

4K2(T−t)
+ T−t

2

(T − t)
d
2 +|α|

· qα(T − t, |y − x|),

where N = N(δ, d,K, |α|) and qα(a, b) is a polynomial of degree less than or equal to
|α| in a and b, from which it follows, as above, that v(t, x) is infinitely differentiable
with respect to x.

More generally, if c(t) ≥ 0 is bounded and measurable in [0, T ] and we define
φs(t) =

∫ s

t
c(r)dr, the function p̃(T, t, x) := p(T, t, x)e−φT (t) is an infinitely dif-

ferentiable solution (in x) of the equation Ltu(t, x) − c(t)u(t, x) + ∂u
∂t (t, x) = 0

a.e. t ∈ [0, T ). Since [g ∗ p̃(T, t, ·)] (x) = e−φT (t) [g ∗ p(T, t, ·)] (x), a solution to the
problem 

1
2aij(t)vxixj (t, x) + bi(t)vxi(t, x)− c(t)v(t, x) + ∂v

∂t (t, x) = 0

a.e. t ∈ [0, T ), all x ∈ Ed

v(T, x) = g(x) x ∈ Ed

is given by

v(t, x) = e−φT (t)Eg(ξT (t, x)),

while if
∫ T

0
|f(r)|e−φr(t) dr < ∞, direct calculation shows that the function

v(t, x) = e−φT (t)Eg(ξT (t, x)) +
∫ T

t

f(r)e−φr(t) dr (3.4)

satisfies
1
2aij(t)vxixj (t, x) + bi(t)vxi(t, x)− c(t)v(t, x) + f(t) + ∂v

∂t (t, x) = 0

a.e. t ∈ [0, T ) all x ∈ Ed

v(T, x) = g(x) x ∈ Ed.
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4. Paraboloid solutions of the Simplest Time-Measurable Bellman
equations

In this section, we prove a result about the payoff function for the Bellman
equation in the simple case where the equation depends only on second derivatives
and t and the coefficients are Borel measurable functions of t. Let A be a separable
metric space, where for (α, t) ∈ A× [0, T ], σ(α, t) is a d× d1 matrix and fα(t) is a
function, both continuous in α and Borel measurable in t. Now let (Ω,F , P ) be a
complete probability space on which (wt,Ft) is a d1-dimensional Wiener process.
We consider the controlled diffusion process ξs(α, t, x), defined for s ∈ [0, T ] by
ξs(α, t, x) = x +

∫ s

0
σ(αr, t + r) dwr, where t ∈ [0, T ], x ∈ Ed are fixed and αt is a

strategy in class U , that is, progressively measurable with values in A.
Suppose g ∈ C2(Ed) and satisfies |g(x)|, |g(y)(x)|, |g(y)(y)(x)| ≤ K(1 + |x|m),

∀x, y ∈ Ed, where K, m are nonnegative constants. It is known [4] that if for any
α ∈ A, fα, σ(α, ·) are differentiable with respect to t with derivatives not exceeding
K, then the payoff function

v(t, x) = sup
α∈U

E
[ ∫ T−t

0

fαr (r + t) dr + g(ξα
T−t(t, x))

]
(4.1)

satisfies the Bellman equation

sup
α∈A

{aij(α, t)vxixj (t, x) + fα(t)}+
∂v

∂t
(t, x) = 0 a. e. HT , v(T, x) = g(x).

In the special case where g is a paraboloid, the payoff function takes a very conve-
nient form and clearly satisfies the Bellman equation under the weak assumption
that supα∈A fα, supα∈A σ(α, ·) ∈ L1([0, T ]), L2([0, T ]), respectively.

Theorem 4.1. Let p(x) be any paraboloid defined on Ed, i.e. p(x) = 1
2x∗mx +

l · x + l0, where m ∈ Ed2 , l ∈ Ed, l0 ∈ E1. Then the probabilistic solution of the
Bellman equation sup

α∈A
{aij(α, t)vxixj (t, x) + fα(t)}+

∂v

∂t
(t, x) = 0 a.e. t ∈ [0, T )

v(T, x) = p(x) x ∈ Ed.

is given by

v(t, x) = p(x) +
∫ T

t

sup
α∈A

{tr[a(α, r)m] + fα(r)} dr. (4.2)

Proof. From the theory of controlled diffusion processes [2], the probabilistic solu-
tion to this Bellman equation is the payoff function (4.1) with g = p and a(α, t) =
1
2σ(α, t)σ(α, t)∗. It immediately follows from Itô’s formula that ∀α ∈ U, t ∈ [0, T ]
and x ∈ Ed, we have

Ep(ξα
T−t(t, x)) = p(x) + E

∫ T−t

0

tr[a(αr, t + r)m] dr. (4.3)

We give a more direct proof of (4.3) using Wald’s identity. Writing ξα
T−t =

ξα
T−t(t, x), we have p(ξα

T−t(t, x)) =
ξα ∗
T−tmξα

T−t

2
+ l · ξα

T−t + l0 and

ξα ∗
T−tmξα

T−t = 〈mξα
T−t, ξ

α
T−t〉 = 〈mx, x〉+ 2〈mx, ηα,t

T−t〉+ 〈mηα,t
T−t, η

α,t
T−t〉,
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where ηα,t
T−t :=

∫ T−t

0
σ(αr, t + r) dwr. Writing m = ODO∗, where D = (λiδij), we

get

〈mηα,t
T−t, η

α,t
T−t〉 = 〈ODO∗ηα,t

T−t, η
α,t
T−t〉 = 〈Dzα,t

T−t, z
α,t
T−t〉 =

d∑
i=1

λi
(
zα,t,i
T−t

)2

where

zα,t
T−t := O∗ · ηα,t

T−t =
∫ T−t

0

O∗ · σ(αr, t + r) dwr :=
∫ T−t

0

σ̃(αr, t + r) dwr.

Orthogonality and the Wald identity yield

E
(
zα,t,i
T−t

)2 = E
d∑

k=1

( ∫ T−t

0

σ̃ik(αr, t + r) dwk
r

)2

=
d∑

k=1

E
∫ T−t

0

[σ̃ik(αr, t + r)]2 dr,

and hence

E〈mηα,t
T−t, η

α,t
T−t〉 =

d∑
i=1

λi
d∑

k=1

E
∫ T−t

0

[σ̃ik(αr, t + r)]2 dr

= 2E
∫ T−t

0

tr[a(αr, t + r)m] dr.

By Wald’s identity, we also have E〈mx, ηα,t
T−t〉 = 0 and E[l · ξα

T−t + l0] = E[l · (x +
ηα,t

T−t) + l0] = l · x + l0. Thus

Ep(ξα
T−t(t, x)) = E

[ξα∗
T−tmξα

T−t

2
+ lξα

T−t + l0

]
= p(x) + E

∫ T−t

0

tr[a(αr, t + r)m] dr.

Therefore,

v(t, x) = p(x) + sup
α∈U

E
[ ∫ T−t

0

tr[a(αr, t + r)m] + fαr (r + t) dr
]

= p(x) +
∫ T

t

sup
α∈A

{tr[a(α, r)m] + fα(r)} dr.

�

This result is hardly a surprise since the second-order derivatives of any parab-
oloid are constant. Hence by Lebesgue’s differentiation theorem, for any operator
F (b, t) for which

∫ T

0
|F (b, t)| dt < ∞, the function

u(t, x) = p(x) +
∫ T

t

F (pxx(x), r) dr

satisfies  F (uxx(t, x), t) +
∂u

∂t
(t, x) = 0 a.e. t ∈ [0, T )

u(T, x) = p(x) x ∈ Ed .
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