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SOLUTIONS FOR A HYPERBOLIC SYSTEM WITH BOUNDARY
DIFFERENTIAL INCLUSION AND NONLINEAR

SECOND-ORDER BOUNDARY DAMPING

JONG YEOUL PARK & SUN HYE PARK

Abstract. In this paper we study the existence of generalized solutions for
a hyperbolic system with a discontinuous multi-valued term and nonlinear
second-order damping terms on the boundary.

1. Introduction

The main purpose of this paper is to investigate the initial boundary value prob-
lem for a hyperbolic system with differential inclusion on the boundary

u′′ −∆u′ −M(‖∇u‖2)∆u = f in (x, t) ∈ Q = Ω× (0, T ),

u(x, 0) = u′(x, 0) = 0 in x ∈ Ω,

u = 0 on Σ0 = Γ0 × (0, T ),

∂u′

∂ν
+M(‖∇u‖2)

∂u

∂ν
+K(u)u′′ + |u′|ρu′ + Ξ = 0 on Σ1 = Γ1 × (0, T ),

Ξ(x, t) ∈ ϕ(u′(x, t)) a.e. (x, t) ∈ Σ1 = Γ1 × (0, T ),

(1.1)

where Ω is a bounded open set of Rn(n ≥ 3) with sufficiently smooth boundary
Γ = ∂Ω such that Γ = Γ0 ∪ Γ1, Γ̄0 ∩ Γ̄1 = ∅ and Γ0,Γ1 have positive measures, ρ ∈
(1,∞),M(s) is a C1 class function such that M(s) > m0 > 0 for some constant m0,
K(s) is a continuously differentiable positive function, ∆u =

∑n
i=1

∂2u
∂x2

i
, ‖∇u‖2 =∑n

i=1

∫
Ω
| ∂u
∂xi

|2dx, ν is the outward unit normal vector on Γ, ϕ is a discontinuous
and nonlinear set valued mapping and T is a positive real number. The precise
hypothesis on the above system will be given in the next section.

The background of these problems is in physics, especially in solid mechanics,
where non-monotone and multi-valued constitutive laws lead to differential inclu-
sion. For a brief account of the works on such variational inequalities we refer
the reader to [3,4,5]. Doronin et al. [1] investigated the existence of generalized
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solutions for the hyperbolic equation of the form

u′′ −∆u = f in (x, t) ∈ Q,
∂u

∂ν
+K(u)u′′ + |u′|ρu′ = 0 on Σ1 = Γ1 × (0, T ),

u = 0 on Σ0 = Γ0 × (0, T ),

u(x, 0) = u′(x, 0) = 0 on Ω.

Motivated the results of [1], in this paper we study the existence of solutions of
the variational inequalities (1.1). It is important to observe that as far as we are
concerned it has never been considered differential inclusion acting on the boundary
in the literature. The plan of this paper is as follows. In section 2, the assumptions
and the main results are given. In section 3, the existence of a solution to problem
(1.1) is proved.

2. Assumptions and Main results

Throughout this paper we denote

H1(Ω) = {u ∈ H1(Ω) : u = 0 on Γ0}, (u, v) =
∫

Ω

u(x)v(x)dx,

(u, v)Γ1 =
∫

Γ1

u(x)v(x)dΓ, ‖u‖p,Γ1 = (
∫

Γ1

|u(x)|pdΓ)1/p.

For simplicity, we denote ‖ · ‖L2(Ω) and ‖ · ‖2,Γ1 by ‖ · ‖ and ‖ · ‖Γ1 , respectively. We
formulate the following assumptions:

(A1) K(s) is a continuous real function satisfying the conditions

0 < K0 ≤ K(s) ≤ K1(1 + |s|ρ), (2.1)

|K ′(s)|
ρ

ρ−1 ≤ K2(1 +K(s)), (2.2)

for some K0,K1,K2 > 0.
(A2) b : R → R is a locally bounded function satisfying

|b(s)| ≤ µ1(1 + |s|), ∀s ∈ R, (2.3)

for some µ1 > 0.
The multi-valued function ϕ : R → R is obtained by filling in jumps of a function

b : R → R by means of the functions bε, bε, b, b : R → R as follows:

bε(t) = ess inf |s−t|≤εb(s), bε(t) = ess sup |s−t|≤εb(s),

b(t) = lim
ε→0+

bε(t), b(t) = lim
ε→0+

bε(t),

ϕ(t) = [b(t), b(t)].

We shall use the regularization of b defined by

bm(t) = m

∫ ∞

−∞
b(t− τ)ρ(mτ)dτ,

where ρ ∈ C∞0 ((−1, 1)), ρ ≥ 0 and
∫ 1

−1
ρ(τ)dτ = 1.

Remark 2.1. It is easy to show that bm is continuous for all m ∈ N and that bε,
bε, b, b, bm satisfy condition (A2) with a possibly different constant when b satisfies
(A2).
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Definition A function u(x, t) such that

u ∈ L∞(0, T ;H1(Ω)),

u′ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;Lρ+2(Γ1)),

u′′ ∈ L2(0, T ;L2(Ω) ∩ L2(Γ1)),

u(x, 0) = u′(x, 0) = 0

is a generalized solution to (1.1) if there exists Ξ ∈ L2(0, T ;L2(Γ1)) and for any
functions v ∈W = H1(Ω)∩Lρ+2(Γ1) and ψ ∈ C1(0, T ) with ψ(T ) = 0 the relations
hold: ∫ T

0

{
(u′′, v) + (∇u′,∇v) +M(‖∇u‖2)(∇u,∇v)

+ (|u′|ρu′ −K ′(u)(u′)2 + Ξ, v)Γ1

}
ψ(t)dt−

∫ T

0

(K(u)u′, v)Γ1ψ
′(t)dt

=
∫ T

0

(f, v)ψ(t)dt,

(2.4)

Ξ(x, t) ∈ ϕ(u′(x, t)) a.e. (x, t) ∈ Σ1. (2.5)

Now we are in position to state our existence result.

Theorem 2.2. Assume that (A1) and (A2) hold and f ∈ L2(0, T ;L2(Ω)). Then,
for all T > 0 there exists a generalized solution to the problem (1.1).

3. Proof of main theorem

In this section we are going to show the existence of solution for problem (1.1)
using the Faedo-Galerkin’s approximation. For this end we represent by {wj}j≥1

a basis in W = H1(Ω) ∩ Lρ+2(Γ1). Let Wm = span{w1, w2, . . . , wm}. Next we
define the approximations um(t) =

∑m
j=1 gjm(t)wj , where gjm(t) are solutions to

the Cauchy problem

(u′′m, wj) + (∇u′m,∇wj) +M(‖∇um‖2)(∇um,∇wj)

+(K(um)u′′m + |u′m|ρu′m + bm(u′m), wj)Γ1 = (f, wj),
(3.1)

um(0) = u′m(0) = 0. (3.2)

By the same argument as in [1], the approximate system (3.1) and (3.2) has solutions
um(t) in [0, tm). The extension of these solutions to the whole interval [0, T ] is a
consequence of the priori estimate which we are going to prove below.
Step 1 : A priori estimate. Multiplying (3.1) by g′jm(t) and summing from
j = 1 to j = m, we get

1
2
d

dt

{
‖u′m(t)‖2 + M̄(‖∇um(t)‖2) +

∫
Γ1

K(um(t))(u′m(t))2dΓ
}

+ (bm(u′m(t)), u′m(t))Γ1 + ‖∇u′m(t)‖2 + ‖u′m(t)‖ρ+2
ρ+2,Γ1

− 1
2

∫
Γ1

K ′(um(t))(u′m(t))3dΓ

= (f(t), u′m(t)),

(3.3)
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where M̄(s) =
∫ s

0
M(r)dr. By the condition (A2), we have

‖bm(u′m(t))‖2
Γ1

=
∫

Γ1

(
bm(u′m(x, t))

)2
dΓ

≤
∫

Γ1

c1(1 + |u′m(x, t)|)2dΓ

≤ 2c1
∫

Γ1

(1 + |u′m(x, t)|2)dΓ = c2 + 2c1‖u′m(t)‖2
Γ1
,

(3.4)

where c1, c2 are positive constants(dependent on the geometry of Γ but independent
of m). In what follows ci(i ≥ 3) denote generic constants independent of m.
Inequality (3.4) and Hȯlder’s inequality imply that∣∣ ∫ t

0

(bm(u′m(s)), u′m(s))Γ1ds
∣∣

≤ (
∫ t

0

‖bm(u′m(s))‖2
Γ1
ds)1/2(

∫ t

0

‖u′m(s)‖2
Γ1
ds)1/2

≤
( ∫ t

0

(c2 + 2c1‖u′m(s)‖2
Γ1

)ds
)1/2( ∫ t

0

‖u′m(s)‖2
Γ1
ds

)1/2

≤ c3(1 +
∫ t

0

‖u′m(s)‖2
Γ1
ds).

Note that, by Young’s inequality,∫ t

0

{‖u′m(s)‖ρ+2
ρ+2,Γ1

− 1
2

∫
Γ1

K ′(um(s))(u′m(s))3dΓ}ds

≥
∫ t

0

∫
Γ1

|u′m(s)|2{|u′m(s)|ρ − ε|u′m(s)|ρ − C(ε)|K ′(um(s))|
ρ

ρ−1 }dΓds,
(3.5)

where ε is an arbitrary positive number. Therefore, integrating (3.3) over (0, t) and
taking ε = 1

2 in (3.6), from (2.2), (3.5) and (3.6) we obtain

1
2
{
‖u′m(t)‖2 + M̄(‖∇um(t)‖2) +

∫
Γ1

K(um(t))(u′m(t))2dΓ
}

+
∫ t

0

‖∇u′m(s)‖2ds+
1
2

∫ t

0

‖u′m(s)‖ρ+2
ρ+2,Γ1

ds

≤ c3(1 +
∫ t

0

‖u′m(s)‖2
Γ1
ds) +

∫ t

0

‖f(s)‖2ds+
∫ t

0

‖u′m(s)‖2ds

+ c4

∫ t

0

∫
Γ1

|u′m(s)|2(1 +K(um(s)))dΓds.

(3.6)

On the other hand, note that K(u) ≥ C0(1 + K(u)) where 2C0 = min{1,K0}.
Thus, letting

Em(t) =
1
2
(‖u′m(t)‖2 + M̄(‖∇um(t)‖2) + C0

∫
Γ1

(1 +K(um(t)))|u′m(t)|2dΓ),

from (3.7) we have Em(t) ≤ c5(1 +
∫ t

0
Em(s)ds). Thus, by Gronwall’s lemma, we

conclude that
Em(t) ≤ c6, ∀t ∈ [0, T ]. (3.7)
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This inequality and (3.7) imply that for all t ∈ (0, T )∫ t

0

‖∇u′m(s)‖2ds ≤ c7,

∫
Γ1

|u′m(t)|2dΓ ≤ c8. (3.8)

By imbedding theorem, from (3.9) we have∫ t

0

‖u′m(s)‖2ds ≤ c9. (3.9)

Furthermore, from (3.4) and (3.9) we obtain∫ t

0

‖bm(u′m(s))‖2
Γ1
ds ≤ c10. (3.10)

Since M̄(‖∇um(t)‖2) ≥ m0‖∇um(t)‖2, by (3.8)

‖∇um(t)‖2 ≤ c11. (3.11)

Next, multiplying (3.1) by g′′jm(t) and summing from j = 1 to j = m, we have

‖u′′m(t)‖2 +
1
2
d

dt
‖∇u′m(t)‖2 + M(‖∇um(t)‖2)

d

dt
(∇um(t),∇u′m(t))

−M(‖∇um(t)‖2)‖∇u′m(t)‖2 + (bm(u′m(t)), u′′m(t))Γ1

+
∫

Γ1

K(um(t))(u′′m(t))2dΓr +
1

ρ+ 2
d

dt
‖u′m(t)‖ρ+2

ρ+2,Γ1

= (f(t), u′′m(t)).

(3.12)

Integrating this inequality over (0, t) and using (2.1) and Young’s inequality, we
obtain∫ t

0

‖u′′m(s)‖2ds+
1
2
‖∇u′m(t)‖2 +K0

∫ t

0

‖u′′m(s)‖2
Γ1
ds+

1
ρ+ 2

‖u′m(t)‖ρ+2
ρ+2,Γ1

≤
∫ t

0

M(‖∇um(s)‖2)‖∇u′m(s)‖2ds−M(‖∇um(t)‖2)(∇um(t),∇u′m(t))

+ 2M ′(‖∇um(t)‖2)(∇um(t),∇u′m(t))2 + ε

∫ t

0

‖u′′m(s)‖2
Γ1
ds (3.13)

+ C(ε)
∫ t

0

‖bm(u′m(s))‖2
Γ1
ds+ ε

∫ t

0

‖u′′m(s)‖2ds+ C(ε)
∫ t

0

‖f(s)‖2ds,

where we have used um(0) = u′m(0) = 0. Since ε is arbitrary and M(s) is a C1

function, from (3.8),(3.9),(3.11) and (3.12), we conclude that∫ t

0

‖u′′m(s)‖2ds+ ‖∇u′m(t)‖2 +
∫ t

0

‖u′′m(s)‖2
Γ1
ds+ ‖u′m(t)‖ρ+2

ρ+2,Γ1
≤ c12. (3.14)

From (3.8)-(3.12), and (3.15), taking into consideration that u
∣∣
Γ0

= 0, we obtain

(um) is bounded in L∞(0, T ;H1(Ω)),

(u′m) is bounded in L∞(0, T ;H1(Ω)) ∩ L∞(0, T ;Lρ+2(Γ1)),

(u′′m) is bounded in L2(0, T ;L2(Ω) ∩ L2(Γ1)),

(bm(u′m)) is bounded in L2(0, T ;L2(Γ1)).

(3.15)
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Step 2 : Passage to the limit. Multiplying (3.1) by ψ ∈ C1(0, T ) with ψ(T ) = 0
and integrating over (0, T ), we obtain∫ T

0

{
(u′′m(t), wj) + (∇u′m(t),∇wj) +M(‖∇um(t)‖2)(∇um(t),∇wj)

+ (bm(u′m(t)), wj)Γ1 + (|u′m(t)|ρu′m(t)−K ′(um(t))(u′m(t))2, wj)Γ1

}
ψ(t)dt

−
∫ T

0

(K(um(t))u′m(t), wj)Γ1ψ
′(t)dt

=
∫ T

0

(f(t), wj)ψ(t)dt.

(3.16)

From (3.16), we have subsequences (in the sequel we denote subsequences by the
same symbols as original sequences) such that

um → u weakly star in L∞(0, T ;H1(Ω)), (3.17)

u′m → u′ weakly star in L∞(0, T ;H1(Ω)) ∩ L∞(0, T ;Lρ+2(Γ1)), (3.18)

u′′m → u′′ weakly in L2(0, T ;L2(Ω) ∩ L2(Γ1)), (3.19)

bm(u′m) → Ξ weakly in L2(0, T ;L2(Γ1)). (3.20)

From (3.18)–(3.21), considering that the imbedding H1(Ω) ↪→ L2(Γ) is continuous
and compact and using Aubin compactness theorem [2], we have

|u′m|ρu′m,K(um)u′m,K
′(um)(u′m)2 ∈ Lq(Σ1), q =

ρ+ 2
ρ+ 1

> 1, (3.21)

um → u a.e. on Σ1 and u′m → u′ a.e. on Σ1 . (3.22)

Therefore,
|u′m|ρu′m → |u′|ρu′, K(um)u′m → K(u)u′,

K ′(um)(u′m)2 → K ′(u)(u′)2 a.e. on Σ1.
(3.23)

Step 3 : (u,Ξ) is a solution of (1.1). Letting m tend to infinity in (3.17) and
using (3.18)-(3.24), we have∫ T

0

{
(u′′(t), wj) + (∇u′(t),∇wj) +M(‖∇u(t)‖2)(∇u(t),∇wj)

+ (Ξ(t), wj)Γ1 + (|u′(t)|ρu′(t)−K ′(u(t))(u′(t))2, wj)Γ1

}
ψ(t)dt

−
∫ T

0

(K(u(t))u′(t), wj)Γ1ψ
′(t)dt

=
∫ T

0

(f(t), wj)ψ(t)dt.

(3.24)

Since {wj} is dense in H1(Ω) ∩ Lρ+2(Γ), we conclude that (2.4) hold. It remains
to show that (2.5), i.e., Ξ(x, t) ∈ ϕ(u′(x, t)) a.e. (x, t) ∈ Σ1. By the Aubin-Lions
compactness Lemma[2], we get from (3.19)-(3.20) that

u′m → u′ strongly in L2(0, T ;L2(Γ1)).

This implies u′m(x, t) → u′(x, t) a.e. in Σ1. Thus, for given η > 0, using the
theorems of Lusin and Egoroff, we can choose a subset ω ⊂ Σ1 such that meas(ω) <
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η, u′ ∈ L∞(Σ1 \ ω) and u′m → u′ uniformly on Σ1 \ ω. Thus, for each ε > 0, there
is an N > 2

ε such that

|u′m(x, t)− u′(x, t)| < ε

2
, ∀(x, t) ∈ Σ1 \ ω.

Then, if |u′m(x, t) − s| < 1/m, we have |u′(x, t) − s| < ε for all m > N and
(x, t) ∈ Σ1 \ ω. Therefore,

bε(u
′(x, t)) ≤ bm(u′m(x, t)) ≤ bε(u′(x, t)), ∀m > N, (x, t) ∈ Σ1 \ ω.

Let φ ∈ L∞(Σ1), φ ≥ 0. Then∫
Σ1\ω

bε(u
′(x, t))φ(x, t)dΓdt ≤

∫
Σ1\ω

bm(u′m(x, t))φ(x, t)dΓdt

≤
∫

Σ1\ω
bε(u′(x, t))φ(x, t)dΓdt.

(3.25)

Letting m approach ∞ in (3.26) and using (3.21), we obtain∫
Σ1\ω

bε(u
′(x, t))φ(x, t)dΓdt ≤

∫
Σ1\ω

Ξ(x, t)φ(x, t)dΓdt

≤
∫

Σ1\ω
bε(u′(x, t))φ(x, t)dΓdt.

(3.26)

Letting ε→ 0+ in (3.27), we infer that

Ξ(x, t) ∈ ϕ(u′(x, t)) a. e. in Σ1 \ ω,
and letting η → 0+ we get

Ξ(x, t) ∈ ϕ(u′(x, t)) a.e. in Σ1.

This completes the proof.
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Gauthier Villars, Paris (1969)

[3] M. Miettinen, A parabolic hemivariational inequality, Nonlinear Anal. 26(1996), 725-734

[4] M. Miettinen and P. D. Panagiotopoulos, On parabolic hemivariational inequalities and ap-
plications, Nonlinear Anal. 35(1999), 885-915

[5] J. Rauch, Discontinuous semilinear differential equations and multiple valued maps, Proc.
Amer. Math. Soc.64(1977), 277-282

Department of Mathematics, Busan National University,
30 Changjeon-dong, Keumjeong-ku, Busan, 609-735, South Korea

E-mail address, Jong Yeoul Park: jyepark@pusan.ac.kr


