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THE GENERALIZED AIRY DIFFUSION EQUATION

FRANK M. CHOLEWINSKI & JAMES A. RENEKE

Abstract. Solutions of a generalized Airy diffusion equation and an associ-
ated nonlinear partial differential equation are obtained. Trigonometric type
functions are derived for a third order generalized radial Euler type operator.

An associated complex variable theory and generalized Cauchy-Euler equations

are obtained. Further, it is shown that the Airy expansions can be mapped
onto the Bessel Calculus of Bochner, Cholewinski and Haimo.

1. Introduction

The Airy diffusion equation arises from the radial part of a third order Laplace
type operator on n-dimensional Euclidean space. In the one-dimensional case, the
Airy Diffusion equation of Widder [33] is obtained. The difficult problem of rep-
resentation of solutions encountered by Widder persists in the generalized Airy
equation case.

In this paper we obtain a sequence of polynomial solutions of the Airy diffu-
sion equation, which are analogous to the heat polynomials of Widder or the heat
polynomials associated with the generalized heat polynomials of Cholewinski and
Haimo [11] or of L. R. Bragg [8]. In the classical cases the heat polynomials are
modified Hermite polynomials and therefore have an orthogonality relation with
respect to a positive measure. The diffusion polynomial solutions obtained in this
paper are 3-parity polynomials and therefore by a result of Daboul and Rathie [14]
they can not be orthogonal in the usual sense.

We also relate the solutions of the generalized Airy equation to solutions of
a nonlinear diffusion type partial differential equation. The diffusion polynomial
solutions lead to dispersive waves which vanish at infinity.

Let F (x1, x2, . . . , xn) = F (r) be a radial function on n-dimensional Euclidean
space, where r = (x2

1 + x2
2 + · · ·+ x2

n)1/2. Then a calculation shows that

n∑
k=1

r

xk

∂3F

∂x3
k

=
∂3F

∂r3
+

3(n− 1)
r

∂2F

∂r2
− 3(n− 1)

r2

∂F

∂r
(1.1)
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Let ν be a fixed nonnegative number, we define a linear third order differential
operator ϑν by

ϑν =
d3

dz3
+

3 ν

z

d2

dz2
− 3 ν

z

d

dz
(1.2)

The generalized Airy diffusion equation is defined by

ϑν u(x, t) =
∂u(x, t)

∂t
(1.3)

If ν = 0, we have the Airy equation of Widder [33], and if ν = n − 1 we have a
radial diffusion on n-dimensional Euclidean space. If ν is not an integer, we have
an analogue of the situation encountered by Bochner [7], Weinstein [31, 32] and
others in the Bessel function case. The operator ϑν can be factored as

ϑν =
d

dz
(z−3ν d

dz
z3ν d

dx
) =

d

dz
∆z(

2
3

ν) (1.4)

where

∆z(µ) =
d2

dz2
+

2µ

z

d

dz
(1.5)

is the radial part of the Laplace operator on n-dimensional Euclidean space Rn

with µ = n−1
2 .

A number of solutions of the third order radial diffusion are shown to be related
to solutions of the radial heat equation. In fact we show that the source solution of
the generalized Airy diffusion equation is mapped onto the source solution of the
radial heat equation. In the case that ν = 0, that is the one dimensional radial
diffusion, the source kernel is mapped onto the normal distribution function.

2. Preliminary Results

Let ν be a fixed nonnegative number. A simple calculation shows that

ϑνx3n = 33n(n + ν − 1/3)(n− 2/3)x3(n−1) (2.1)

and therefore ϑν acts as a delta operator on the “basic” sequence {x3n}∞n=0. By
iteration we find that

ϑk
νx3n = 33k Γ(n + 1)Γ(n + ν + 2/3)Γ(n + 1/3)

Γ(n− k + 1)Γ(n− k + ν + 2/3)Γ(n− k + 1/3)
x3(n−k) (2.2)

For k = n, we get

ϑn
ν x3n = 33n!

Γ(n + 1/3)
Γ(1/3)

Γ(n + ν2/3)
Γ(ν + 2/3)

= 33n(1)n(1/3)n(ν + 2/3)n

= α(3n, ν) := α3n(ν),

(2.3)

where

(a)n = a(a + 1)(a + 2) . . . (a + n− 1) =
Γ(a + n)

Γ(a)
(2.4)

is the Pockhammer rising factorial function.
A Humbert type of Bessel function Gν(z) is defined as the hypergeometric func-

tion
Gν(z) =0 F2(1/3, ν + 2/3 | (z/3)3)

=
∞∑

n=0

Γ(1/3)Γ(ν + 2/3)z3n

33n n! Γ(n + 1/3)Γ(n + ν + 2/3)
(2.5)
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for z ∈ C, the complex numbers. A calculation using Stirling’s formula, shows that

log α3n(ν)
3n log 3n

→ 1 as n →∞

and
3n

(α3n(ν))
1
3n

→ e as n →∞

It follows that Gν(z) is an entire function of order one and of exponential type 1.
By Marichev [25], we also have the asymptotic estimate

Gν(z) ∼ Γ(1/3)Γ(ν + 2/3)3ν√
(3) 2π

ez

zν
as z →∞, | arg z| < π (2.6)

Furthermore, for Gν(z) defined by Gν(z) = Gν(−z) we have

Gν(z) = Gν(−z) =0 F2[1/3, ν + 2/3 | − (z/3)3]

∼ Γ(1/3)Γ(ν + 2/3)√
3 π

1
(z/3)ν

ez/2 cos(z
√

3
2
− ν π

9
)

(2.7)

with arg z = 0. Using the estimate in [3, p. 47],

Γ(ν + 2/3)
Γ(ν + 2/3 + n)

∼ (ν + 2/3)−n ∼ ν−n as ν →∞

and the Lebesgue Dominated Convergence Theorem, it follows that

Gν(3 ν1/3 (
x

2
)2/3) → 2−2/3 Γ(1/3)x2/3 I−2/3(x) as ν →∞ (2.8)

where Iν(x) is a modified Bessel function of the first kind. Thus for large ν, behaves
as an entire modified Airy Bessel function. Recall that

Γ(ν + 1) (z/2)−ν Iν(z) =
∞∑

m=0

z2m

22m m! (ν + 1)m
(2.9)

is an entire function for ν > −1.
In the Widder case of ν = 0, we get upon application of the Gauss cubic factorial

equation that

G0(z) =
∞∑

k=0

z3k

(3k)!
=

1
3

(ez + 2 e−z/2 cos
√

3
2

z) (2.10)

Using (2.1) it readily follows that

ϑν Gν(xy) = ϑν
x Gν(xy) = y3 Gν(xy) (2.11)

Thus Gν should play the role of the exponential function in a calculus associated
with the ϑν operator.

Next we define a generalized addition formula associated with the ϑν operator.
This addition in terms of hypergeometric functions is an analogue of the addition
for Bessel functions presented by Bochner [7]. If x and y are arbitrary complex
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numbers and n is a nonnegative integer, we define

(x⊕ν y)3n

= x3n
3F2

[
−n,−n + 2/3,−n + 1/3− ν

1/3, ν + 2/3

∣∣∣∣− (
y

x
)3
]

=
n∑

k=0

(
n

k

)
Γ(ν + 2/3)Γ(1/3)Γ(n + ν + 2/3) y3kx3(n−k)

Γ(k + 1/3)Γ(n− k + 1/3)Γ(n− k + ν + 2/3)Γ(k + ν + 2/3)

(2.12)

It readily follows that (x⊕ν y)3n is a solution of the partial differential equation

∂3 u

∂x3
+

3ν

x

∂2 u

∂x2
− 3ν

x2

∂u

∂x
=

∂3 u

∂y3
+

3ν

y

∂2 u

∂y2
− 3ν

y2

∂u

∂y
(2.13)

which satisfies the boundary conditions u(x, 0) = x3n and u(0, y) = y3n. (2.13)
can be considered as a third order Euler-Poisson-Darboux equation, see [13] or
Weinstein [32]. The ordinary wave equation

∂2 u

∂x2
=

∂2 u

∂y2
(2.14)

has solutions f(x + y) corresponding to a boundary value function f(x), whereas
(2.13) has in general solutions f(x⊕ν y) corresponding to boundary value functions
with 3rd order symmetry. Using Whipple’s equation, see Henrici [20], p. 43, we
also have that

(x⊕ν y)3n = (x3 + y3)n
3F2

[
−n/2, 1−n

2 ,−n + ν
1/3, ν + 2/3

∣∣∣∣ 4(xy)3

(x3 + y3)2

]
(2.15)

a result that relates the cubic addition associated with ϑν to ordinary addition.
Thus (x⊕ν y)3n ∼ (x3 + y3)n as x →∞ for y fixed, for the 3F2 polynomial goes to
its constant term as x goes to infinity.

Furthermore, a calculation employing Equations 2.2 and 2.3 yields the opera-
tional equation

Gν(y ϑx(ν)1/3)x3n = (x⊕ν y)3n (2.16)
This equation is the 3rd order analogue of the extremely important equation

eyDxn = (x + y)n (2.17)

where D = d
dx is the derivative operator. In the case of ν = 0, we get the binomial

formula

(1⊕0 x)3n =
n∑

k=0

(
3n

3k

)
x3k (2.18)

In the particular case of x = 1, we get the evaluation

(1⊕0 1)3n =
n∑

k=0

(
3n

3k

)
=

1
3

(23n + (−1)n2) (2.19)

See [18, p. 3]. Furthermore, a series multiplication yields

Gν(x) Gν(y) = Gν(x⊕ν y) (2.20)

which is the 3rd order analogue of the fundamental relation ex ey = ex+y. Using
Stirling’s formula, we also obtain the third order binomial limit

(1⊕ν
x

n
)3n → Gν(x) as n →∞ (2.21)
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Once again this is the analogue of the elementary calculus result

(1 +
x

n
)n → ex as n →∞ (2.22)

The function

Gν(z) = Gν(−z) = Gν(β3z) =0 F2

[1
3
, ν + 2/3| − (

z

3
)3
]

where β3 = eiπ/3 is a primitive root of −1, which plays the role of e−x in many
calculations. However, it is not the multiplicative inverse of Gν(z) as is seen in the
following development. By Erdélyi [17, Volume 1, p. 186], we have

0F2(a, b|z) 0F2(a, b| − z) = 3F8

[
1
3 (a + b− 1), 1

3 (a + b + 1)
a, b, a

2 , a+1
2 , b

2 , b+1
2 , a+b−1

2 , a+b
2

∣∣∣∣− 27
64

z2

]
Taking a = 1/3 and b = ν + 2/3, we get

Gν(z)Gν(z)

=3 F8

[
ν/3, ν+1

3
ν+2
3

1/3, ν + 2/3, 1/6, 2/3, 1
2 (ν + 2/3), 1

2 (ν + 5/3), ν
2 , ν+1

2

∣∣∣∣− z6

123

]
= Gν((1⊕ν (−1))z)

(2.23)

Since

G0(x) =
1
3
(e−x + 2 ex/2 cos

√
3

2
x)

we find that

G0(x)G0(x) =
1
9
{3 + 4 cosh(

3
2
x) cos(

√
3

2
x) + 2 cos(

√
3x)}

The generalized translation of a function f(x) ∈ C∞ is defined by

Gν(y ϑ1/3
ν ) f(x) =

∞∑
n=0

y3n

α3n
ϑn

ν f(x) = f(x⊕ν y)

provided that the infinite series converges locally uniformly in x and y. In Section
3 we show that if f(x) is an entire function then f(x⊕ν y) is also an entire function
in the variables x and y. The translation operator can also be defined for formal
power series. Next we let Mν(R+) be the collection of positive measures on R+

such that the integral
∫∞
0

eτ y2
dγ(y) is finite for τ ≥ τ0 ≥ 0 and dγ(y) ∈ Mν .

If γ(y) is an increasing function on R+ with compact spectrum, that is the set of
points of increase are contained in a compact set, then the Stieltjes measure dγ(y) is
in Mν(R+). Let dγ(y) be an element of Mν(R+) and let f(x) =

∫∞
0
Gν(xy) dγ(y).

Since Gν(x) is an entire function of order one and type one, the integral converges
locally uniformly in x.

By the uniform convergence, we also get

ϑn
ν f(x) =

∫ ∞

0

(−y)3n Gν(xy) dγ(y)

which is also uniformly convergent. Interchanging the summation and integration
we get

Gν(z ϑ1/3
ν )f(x) =

∫ ∞

0

Gν(zy)Gν(xy) dγ(y) = f(x⊕ν z)
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The uniform convergence justifies the interchange of summation and integration.
For x and z in a compact set; we have∣∣∣ ∫ ∞

0

Gν(zy) Gν(xy) dγ(y)
∣∣∣ ≤ ∫ ∞

0

Gν(Ay) Gν(By) dγ(y)

≤ M

∫ ∞

0

e(A+B)y dγ(y) < ∞

The functions Gν(z) and Gν(z) have Poisson type integral representations for ν ≥ 1
or Re ν ≥ 1.

Theorem 2.1. Let ν ≥ 1, then

Gν(z) =
Γ(ν + 2/3)

3 Γ(2/3) Γ(ν)

∫ 1

0

τ (1 + τ3)ν−1 (ezτ + 2 e−
1
2 zτ cos

√
3

2
zτ) dτ (2.24)

and

Gν(z) =
Γ(ν + 2/3)

3 Γ(2/3) Γ(ν)

∫ 1

0

τ (1 + τ3)ν−1 (e−zτ + 2 e
1
2 zτ cos

√
3

2
zτ) dτ (2.25)

Proof. Using Gauss’ cubic equation (3n)! = 33n+1/2

2π n! Γ(n + 1/3) Γ(n + 2/3) and
the integral representation of the Beta function, the general term of the Gν(z) can
be written as

Γ(1/3) Γ(ν + 2/3) z3n

33n n! Γ(n + 1/3) Γ(n + ν + 2/3)

=
√

3
2π

Γ(1/3) Γ(ν + 2/3)
Γ(ν)

z3n

(3n)!

∫ 1

0

tν−1 (1− t)n−1/3 dt

Now the series
∑∞

n=1
z3n

(3n)! t
ν−1 (1 − t)n−1/3 converges uniformly with respect to t

in the interval [0, 1] for ν ≥ 1. Since the term with n = 0 converges, we can
interchange the summation. Hence

Gν(z) =
√

3
2π

Γ(1/3) Γ(ν + 2/3)
Γ(ν)

∫ 1

0

tν−1 (1− t)−1/3
∞∑

n=1

z3n (1− t)n

(3n)!
dt

=
Γ(ν + 2/3)
Γ(2/3) Γ(ν)

∫ 1

0

tν−1 (1− t)−1/3 G0((1− t)1/3 z) dt

With the change of variable τ = (1− t)1/3, we get

Gν(z) =
Γ(ν + 2/3)
Γ(2/3) Γ(ν)

∫ 1

0

τ (1− τ3)ν−1 (ezτ + 2 e−
1
2 zτ cos

√
3

2
zτ) dτ

(2.25) also follows from this result. �

The integral representations (2.24) and (2.25), yield the inequalities

|Gν(x)| = Gν(x) ≤ Γ(ν + 2/3)
Γ(2/3) Γ(ν)

3 ex

and

|Gν(x)| ≤ Γ(ν + 2/3)
Γ(2/3) Γ(ν)

3 ex/2

for x ≥ 0 and ν ≥ 1.
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Next we introduce the entire Bessel functions

J(z) = 2ν−1/2 Γ(ν + 1/2) z1/2−ν Jν−1/2(z), (2.26)

I(z) = 2ν−1/2 Γ(ν + 1/2) z1/2−ν Iν−1/2(z) (2.27)

where Jν−1/2(z) is the ordinary Bessel function of order ν − 1/2 and Iν−1/2(z) is
the Bessel function of imaginary argument. We have the series expansion

Jν(z) =
∞∑

n=0

(−1)n z2n

b2n(ν)
(2.28)

where b2n(ν) = 22n n! (ν + 1/2)n = 22n n! Γ(ν+1/2+n)
Γ(ν+1/2) . The Bessel function Jµ(z)

has the asymptotic expansion

Jµ(z) ' (
2

π z
)1/2 cos(z − 1

2
µπ − π/4), −π < arg z < π (2.29)

see Erdelyi [16, Volume 2, p. 85]. In the next section it is shown that the source
solution for the third order diffusion is an ordinary Bessel function.

3. The Source Function

The formal Dirac delta function associated with our third order calculus is

Dν(x) =
∫ ∞

0

Gν(xy) dην(y) (3.1)

where dην(y) = y3ν+1 dy
3ν−1/3 Γ(ν+2/3)

. This is analogous to the classical representation

δ(x) =
1
2π

∫ ∞

−∞
eixy dy (3.2)

or the Bessel representation

Dν(x) =
∫ ∞

0

Jν(xy) dµν(y) (3.3)

see [11]. In general, solutions of the third order diffusion equation

∂

∂t
u(x, t) =

∂3u

∂x3
+

3ν

x

∂2u

∂x2
− 3ν

x2

∂ν

∂x
= ϑν u(x, t) (3.4)

are formally given by the semigroup operation

u(x, t) = et ϑν f(x) (3.5)

with u(x, 0) = f(x).
We say that a function u(x, t) in C3([0, a]) in x and C1(0 ≤ t ≤ σ) in t is in

Hν([0, a]× [0, σ]) if
∂

∂t
u(x, t) = ϑν u(x, t)

in the set [0, a] × [0, σ]. We call a function in the class Hν an Airy or ν-diffusion.
Taking f(x) = Dν(x), we get

Kν(x, t) = et ϑν Dν(x) = et ϑν

∫ ∞

0

Gν(xy) dην(y)

=
∫ ∞

0

e−tx3
Gν(xy) dην(y)

(3.6)
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Using the series expansion (2.6), term by term integration, and a change of variables,
we get

Kν(x, t) =
1

(3t)ν+2/3

∞∑
n=0

(−1)n x3nt−n

33n n! (1/3)n
(3.7)

Since G is an entire function of order 1, the term by term integration is valid
based on the absolutely and uniform convergence of the integral. Further, we have
the representations

Kν(x, t) =
1

(3t)ν+2/3 0F1(1/3 | −x3

27t
)

=
Γ(4/3)
3ν+2/3

tν+1xJ−2/3(
2x3/2

√
27t

)

=
1

(3t)ν+3/2
J−1/6(

2x3/2

√
27t

)

(3.8)

Based on the asymptotic expansion (2.29), we see that

Kν(x, t) ∼ Γ(2/3)
π

3ν+3/2tν+19/12 (
x

3
)1/4 cos(

2x3/2

√
27t

+
π

12
) (3.9)

as x → ∞. In the classical case for the ordinary heat equation and for the radial
heat equation the source solutions are Gaussian type functions and go to zero at
infinity of order e−cx2

. In contrast, the source solution Kν(x, t) oscillates between
infinite values for large values of x.

Applying the translation operator to the third order delta function we formally
get

Gν(zϑν)Dν(x) = Dν(x⊕ν z)

=
∫ ∞

0

Gν(zϑx)Gν(xy) dην(y)

=
∫ ∞

0

Gν(x⊕ν z) dην(y)

=
∫ ∞

0

Gν(xy)Gν(zy) dην(z)

(3.10)

Hence the Poisson type integral gives solutions of the third order diffusion equation
(3.4) with u(x, 0) = f(x) has the formal solution

u(x, t) = etϑν f(x) =
∫ ∞

0

Kν(x⊕ν z, t) f(z) dην(z) (3.11)

Indeed the Poisson type integral gives solutions of the third order diffusion equation
(3.4) provided the function has suitable behavior at infinity. It is easy to see that if
f is a C∞ function with compact support in [0,∞), then u(x, t) given by (3.11) is
a solution of the third order diffusion equation. The case ν = 0 is associated with
Widder’s Airy transform [33].

To study the integral transform (3.11) we need to have order estimates on the
translated kernel Kν(x⊕ν z, t). Let

B(x, y) =
Γ(x) Γ(y)
Γ(x + y)

=
∫ 1

0

tx (1− t)y−1 dt
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denote the beta function. From the integral representation for the beta function,
it readily follows that if 0 < x ≤ x1 and 0 < y ≤ y1, then

B(x1, y1) ≤ B(x, y)

or equivalently
Γ(x + y)
Γ(x) Γ(y)

≤ Γ(x1 + y1)
Γ(x1) Γ(y1)

(3.12)

Theorem 3.1. If ν ≥ 0 and x, y ≥ 0, then

(x⊕ν y)3n ≤ Γ(1/3) Γ(ν + 2/3) (n + 2{ν}+ 1)3({ν}+1) (x + y)3(n+{ν}) (3.13)

where {ν} = ceil(ν).

Proof. . For k 6= 0 or n, using (3.11) we see that

(ν + 2/3)n

(ν + 2/3)n−k (ν + 2/3)k

=
Γ(ν + 2/3) Γ(n + ν + 2/3)

Γ(n + 2ν + 4/3)
Γ(n + 2ν + 4/3)

Γ(n− k + ν + 2/3) Γ(k + ν + 2/3)

≤ Γ(ν + 2/3)
(n + ν + 2/3)[ν+2/3]

Γ(n + 2{ν}+ 2)
Γ(n− k + {ν}+ 1)Γ(k + {ν}+ 1)

≤ Γ(ν + 2/3)
(n + ν + 2/3)[ν+2/3]

Γ(n + 2{ν}+ 2)
Γ(n + {ν}+ 1)

(
n + {ν}

k

)
≤ Γ(ν + 2/3)

(n + {ν}+ 1){ν}+1

(n + ν + 2/3)[ν+2/3]

(
n + {ν}

k

)
(3.14)

where [x] is the greatest integer less than or equal to x. Employing the asymptotic
expansion for the quotients of Gamma functions, it follows that

(n + {ν}+ 1){ν}+1

(n + ν + 2/3)[ν+2/3]
∼ n{ν}+1−[ν+2/3] = O(n2)

as n →∞. In the same manner, we get

(1/3)n

(1/3)n−k (1/3)k
≤ Γ(1/3) Γ(n + 1/3)

Γ(n + 2/3)
(n + 1)

(
n

k

)
≤ Γ(1/3) (n + 1)

(
n

k

)
Note that Γ(n + 1/3)/Γ(n + 2/3) ∼ n−1/3 as n →∞. Next we obtain an estimate
on the binomial. We have(

n

k

)
=

Γ(n + 1)
Γ(n + 2)

Γ(n + 2)
Γ(n− k + 1) Γ(k + 1)

≤ 1
n + 1

Γ(n + 2{ν}+ 2)
Γ(n− k + {ν}+ 1)Γ(k + {ν}+ 1)

≤ 1
n + 1

Γ(n + 2{ν}+ 2)
Γ(n + {ν}+ 1)

Γ(n + {ν}+ 1)
Γ(n− k + {ν}+ 1) k!

=
1

n + 1
(n + {ν}+ 1){ν}+1

(
n + {ν}

k

)
(3.15)
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It follows that[
α3n

α3k

]
=
(

n

k

)
(1/3)n

(1/3)n−k (1/3)k

(ν + 2/3)k

(ν + 2/3)n−k (ν + 2/3)k

≤ Γ(ν + 2/3) Γ(1/3)
(1 + n)

Γ(n + 1/3)
Γ(n + 2/3)

(n + {ν}+ 1)3{ν}+1

(n + ν + 2/3)[ν+2/3]

(
n + {ν}

k

)3

≤ Γ(ν + 2/3) Γ(1/3) (n + 2{ν}+ 1)3({ν}+1)

(
n + {ν}

k

)3

(3.16)

Thus we find that

(x⊕ν y)3n

= x3n + y3n +
n−1∑
k=1

(
α3n(ν)
α3k(ν)

)
x3k y3(n−k)

≤ Γ(1/3) Γ(ν + 1/3) (n + 2{ν}+ 1)3({ν}+1)
n∑

k=0

(
n + {ν}

k

)3

x3k y3(n−k)

≤ Γ(1/3) Γ(ν + 1/3) (n + 2{ν}+ 1)3({ν}+1) (x + y)3(n+{ν})

(3.17)

Let f(z) =
∑∞

n=0 an z3n be an entire function, then by the Cauchy-Hadamard
formula

ρr = [lim sup
n→∞

|an|1/3n]−1 = ∞

Consider f(z ⊕ w) =
∑∞

n=0 an (z ⊕ν w)3n, we have

|f(z⊕w)| ≤ Γ(1/3) Γ(ν+2/3) (|z|+|w|)3{ν}
∞∑

n=0

|an| (n+2{ν}+1)3({ν}+1) (|z|+|w|)3n

Since lim sup(n + 2{ν}+ 1)
3({ν}+1)

3n = 1, it follows that

[lim sup |an|
1
3n (n + 2{ν}+ 1)

3({ν}+1)
3n ]−1 = [lim sup |an|1/3n]−1 = ∞

Thus f(z ⊕ w) is an entire function in the z and w variables.
Further, let ν0 = lim supn→∞ 3n |an|

ρ
3n . Recall that if 0 < ν0 < ∞ then f(z) is

of order ρ and type τ if and only if ν = eτρ. If ν0 = 0 then f is of growth (ρ, 0)
and if ν0 = ∞ then f is of growth not less than (ρ,∞).

If f(z) is of growth (ρ, τ), we find that

lim sup
n→∞

3n |an(n + 2{ν}+ 1)3({ν}+1)|
ρ
3n = lim sup

n→∞
3n |an|

ρ
3n = eτρ

Thus for fixed complex w, f(z ⊕ w) is also of growth (ρ, τ). The translated func-
tions occur as kernels in various integral transforms. Thus the convergence of the
transforms can be related to the growth properties of non-translated functions f(z).

Applying the above results to Kν(x, t) and using Stirling’s formula, it follows
that

ρ = lim sup
n→∞

3n log 3n

log( 1
33n tn (1/3)n n! )

= 3/2

and

ν0 = lim sup
n→∞

3n

|33ntn (1/3)n n!| ρ
3n

=
e

(3t)1/2
= eτ

3
2
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It follows that Kν(x, t) is of growth (3/2, 2√
27t

) for t > 0. Since the derivative of a
functionf of growth (ρ, τ) is also of growth (ρ, τ), see [6], p. 13, it follows that all
the derivatives of Kν(x, t) are also of growth (3/2, 2√

27t
) for t > 0. �

Now
∂

∂t
Kν(x, t) =

1
3ν+2/3 tν+5/3

∞∑
n=0

(−1)n+1 (n + ν + 2/3) x3nt−n

33n n! (1/3)n

and a simple calculation shows that ∂
∂t Kν(x, t) is of order 3/2. Since limn→∞(n +

ν + 2/3)
1
2n = 1, it also follows that ∂

∂t Kν is also of type 2/
√

27t for t > 0. This
result is used to confirm local uniform convergence in the following theorem.

Theorem 3.2. Let f(x) be a function on R+ = [0,∞) such that f(x) = O(e−cxρ

)
with ρ > 3/2 and c > 0. Then

u(x, t) =
∫ ∞

0

Kν(x⊕ν y, t) f(y) dην(y) (3.18)

is a solution of the Airy diffusion equation, that is, u(x, t) ∈ Hν for t > 0.

Proof. Based on the estimates for Kν(x⊕ν y, t) and its derivatives it follows that the
integral in (3.18) and the integrals with kernels ∂n

∂xn Kν(x ⊕ν y, t) locally converge
uniformly, thus the operations of differentiation and integration can be exchanged.
Thus

ϑν u(x, t) =
∫ ∞

0

ϑν Kν(x⊕ν y, t) f(y) dην(y)

=
∫ ∞

0

∂

∂t
Kν(x⊕ν y, t) f(y) dην(y)

=
∂

∂t
u(x, t)

(3.19)

Since the function Kν(x⊕ν y, t) is not an approximate identity kernel, the boundary
value f(x) of u(x, t) given by (3.18) is only recaptured in a formal way. �

Next we present an example of a ν-Airy heat function which is not an entire
function of the space variable for a fixed t. We let

H1(t) =
2

3(3ν+5)/2 Γ(ν + 2/3)
t

ν
2 + 5

6 Kν− 1
3
(2

√
t

27
)

where Kν− 1
3

is a modified Bessel function. By Erdélyi [17] we have the Mellin
transform ∫ ∞

0

ts−1H1(t) dt = 33s Γ(s + 1)Γ(s + ν + 2/3)
Γ(ν + 2/3)

for Re s > −1. The function H2(t) = x1/3e−x/Γ(1/3) has the Mellin transform∫ ∞

0

ts−1H2(t) dt =
Γ(s + 1/3)

Γ(1/3)
for Re s > −1/3. Thus the mellin convolution of H1(x) and H2(x) is given by

Oν(x) =
∫ ∞

0

H2(x/t)H1(t)
dt

t

=
2x1/3

3(3ν+5)/2 Γ(1/3)Γ(ν + 2/3)

∫ ∞

0

t
1
2 (ν−1) e−

x
t Kν−1/3(2

√
t

27
) dt
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for x ≥ 0. By the Mellin convolution theorem [30] it follows that∫ ∞

0

xs−1Oν(x) dx = 33s Γ(s + 1)Γ(s + 1/3)Γ(s + ν + 2/3)
Γ(1/3)Γ(ν + 2/3)

= α3s(ν)

for Re s > −1/3. Letting

φ(t) =
∫ ∞

0

e−txOν(x)x−1 dx

it follows that

φ(n)(t) = (−1)n

∫ ∞

0

e−txxn−1Oν(x) dx

for t ≥ 0 and n = 0, 1, 2, . . . . Thus φ(t) ∈ C∞(R+) and |φ(n)(t)| ≤ α3n(ν) for t ≥ 0.
Hence

u(x, t) =
∞∑

n=0

φ(n)(t)
x3n

α3n(ν)

is a ν-Airy diffusion for −1 < x < 1, t > 0. Further, we have

u(x, 0) =
∞∑

n=0

φ(n)(0)
x3n

α3n(ν)
=

∞∑
n=0

(−1)nx3n =
1

1 + x3

for −1 < x < 1. Hence the analytic extension u(z, 0) has singularities on the unit
circle at the cube roots of -1. Thus u(z, 0) can not be extended to an entire function.
It is holomorphic in the unit circle.

4. Time Series Solutions

Solutions for the partial differential equation ϑν u = ut are obtained for the
Cauchy data given on the t-axis, that is,

u(0, t) = g(t) and ux(0, t) = 0

Let Dt stand for differentiation with respect to t. The function

u(x, t) = Gν(xD
1/3
t ) g(t) (4.1)

Gives a formal solution of the ν-diffusion equation we have

ϑν u(x, t) = ϑν Gν(xD
1/3
t ) g(t)

= Dt Gν(xD
1/3
t ) g(t)

= Dt u(x, t)

Using the power series expansion of Gν(x), we define

Gν(xD
1/3
t ) g(t) =

∞∑
n=0

x3n

α3n
g(n)(t) (4.2)

provided the series converges locally uniformly for g a C∞ function. Term by term
x-differentiation by the ϑν operator gives

∞∑
n=1

x3(n−1)

α3(n−1)
g(n)(t) =

∞∑
n=0

x3n

α3n
g(n+1)(t) (4.3)

Thus the series gives the formal solution.
Let C∞

00 (0,∞) be the class of functions f(x) infinitely differentiable and vanishing
outside a compact subset of 0 < x < ∞.
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Theorem 4.1. If f ∈ C∞
00 (0,∞) then the function

f̂(t) =
∫ ∞

0

f(x)Gν(xt) dην(x) (4.4)

is a continuous function in L1((0,∞), dην(x)).

Proof. Clearly the integral converges locally uniformly and defines a continuous
function. Since ϑν Gν(xt) = −t3 Gν(xt), we find by integration by parts that

t3 f̂(t) = −
∫ ∞

0

f(x) ϑν Gν(xt) dην(x)

=
∫ ∞

0

(
∂

∂x
x3ν ∂

∂x
x−3ν ∂

∂x
x3ν+1 f(x)

)
Gν(xt)

dx

cν

=
1
cν

∫ ∞

0

ϑ−νx3ν+1 f(x)Gν(xt) dx

Clearly ϑ−νx3ν+1 f(x) is in C∞
00 (0,∞). Repeated applications yield

t3n f̂(t) =
1
cν

∫ ∞

0

ϑn
−ν (x3ν+1 f(x))Gν(xt) dx

Hence for n sufficiently large, we have∫ ∞

1

|f̂(t)| t
3ν+1

cν
dt =

∫ ∞

1

t3n |f̂(t)| t
−3n+3ν+1

cν
dt < M2 < ∞

and it follows that∫ ∞

0

|f̂(t)| dην(t) =
∫ 1

0

|f̂(t)|t3ν+1 dt

cν
+
∫ ∞

1

t3n |f̂(t)| x
−3n+3ν+1

cν
dt

< M1 + M2 < ∞ .

Next we let g(t) = e−ty3
, then

Gν(xD
1/3
t ) e−ty3

=
∞∑

n=0

x3n

α3n
(−y)3n e−ty3

= Gν(xy) e−ty3
(4.5)

�

Theorem 4.2. Let φ(x) be an entire function of growth (2, τ) and let

g(t) =
∫ ∞

0

e−ty3
φ(y) dην(y) (4.6)

then

Gν(xD
1/3
t ) g(t) =

∫ ∞

0

e−ty3
φ(y)Gν(xy) dην(y) = u(x, t) (4.7)

Proof. Clearly the integral (4.6) and all of its derivatives converge uniformly for
t > 0. Thus

Gν(xD
1/3
t ) g(t) =

∞∑
n=0

x3n

α3n

∫ ∞

0

(−y)3n e−ty3
φ(y) dην(y)

=
∫ ∞

0

e−ty3
φ(y)Gν(xy) dην(y)

Since Gν(z) is an entire function of order one, the uniform convergence allows the
interchange of summation and integration. �
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Corollary 4.3. If φ(x) ∈ C∞
00 (0,∞) and if

g(t) =
∫ ∞

0

e−ty3
φ(y) dην(y)

then

Gν(xD
1/3
t ) g(t) =

∫ ∞

0

e−ty3
φ(y)Gν(xy) dην(y) = u(x, t) (4.8)

is a ν-diffusion for t > 0. Moreover, u(x, t) is in L1(R+, dην) and u(x, 0) = φ̂(x).

Proof. The integrability follows from Theorem 4.1. Next we define ga(t) for a > 1/2
by

ga(t) =

{
exp(−t−a) for t > 0
0 for t ≤ 0

(4.9)

Then by an application of Cauchy’s integral formula, there is a θ = θ(a) such that

|g(k)
a (t)| = k!

(θt)k
exp(

1
2
t−a) (4.10)

see for example Widder [34, p. 46]. Let ua(x, t) = Gν(xD
1/3
t ) g(t). Since k!

(3k)! ≤
1

(2k)! , we find using Gauss’ cubic equation that for t > 0 and arbitrary complex x

|ua(x, t)| ≤
∞∑

k=0

|x|3k |g(k)(t)|
α3k

≤
∞∑

k=0

k!
α3k

|x|3k

(θt)k
exp(−1

2
t−a)

≤
∞∑

k=0

k!
(3k)!

(2/3)k

(ν + 2/3)k

|x|3k

(θt)k
exp(−1

2
t−a)

≤
∞∑

k=0

1
(2k)!

|x3/2|2k

(θt)k
exp(−1

2
t−a)

= cosh(
|x3/2|
(θt)1/2

) exp(−1
2
t−a)

≤ exp(
|x3/2|
(θt)1/2

− 1
2
t1/2−a)

= exp(
1

t1/2
{ |x|

3/2

θ1/2
− 1

2
t1/2−a})

(4.11)

or

|ua(x, t)| ≤ exp
( 1

t1/2
{ |x|

3/2

θ1/2
− 1

2
t1/2−a}

)
(4.12)

Hence the series defining ua(x, t) converges uniformly and absolutely for t > 0 and
x in an arbitrary compact set. The previous inequality shows that

lim
t→0+

ua(x, t) = 0

locally uniformly. It follows that

ua(x, t) =
∞∑

n=0

x3n

α3n(ν)
|g(n)

a (t)| (4.13)



EJDE–2003/87 THE GENERALIZED AIRY DIFFUSION EQUATION 15

is a nontrivial solution of the ν-diffusion equation with boundary values ua(x, 0) = 0
for every a > 1. Therefore the solutions of the ν-diffusion boundary value problem
are not necessarily unique.

Inequality (4.12) shows that ua(x, t) is an entire function of growth (3/2, 1/t)
for t > 0. However, ua is not analytic in t since ua(0, t) vanishes for all t ≤ 0 and
ua(0, t) = ga(t) > 0 for t > 0. The ua(x, t) are Tychonoff type solutions of the
ν-diffusion equation. �

5. ϑν-Trigonometric Functions

The ordinary trigonometric functions play an important role in the theory of
the heat and wave equations on Euclidean spaces. In order to study solutions of
equations connected with the ϑν operator, it is necessary to develop an associated
trigonometric theory.

We define the ν-hyperbolic functions by the series

Gν(z) =
∞∑

n=0

z3n

α3n
=

∞∑
k=0

z6k

α6k
+

∞∑
k=0

z6k+3

α6k+3
:= coshν(z) + sinhν(z) (5.1)

It follows that coshν(z) and sinhν(z) are entire functions of order one. Since

α6k(ν) = 66k k! (1/2)k (1/6)k (2/3)k (1/2 + 1/3)k (ν/2 + 5/6)k (5.2)

and

α6k+3(ν) = 9(ν + 2/3) 66k k! (3/2)k (2/3)k (7/6)k (ν/2 + 5/6)k (ν/2 + 4/3)k (5.3)

we obtain the hypergeometric representations

coshν(z) :=
∞∑

k=0

z6k

α6k
=0 F5(1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 |

(x
6
)6) (5.4)

and

sinhν(z) :=
∞∑

k=0

z6k+3

α6k+3

=
x3

9(ν + 2/3) 0F5(3/2, 2/3, 7/6, ν/2 + 5/6, ν/2 + 4/3 |
(x
6
)6) (5.5)

In particular for ν = 0, a calculation shows that

cosh0(z) =
1
3

cosh z +
2
3

cos(
√

3
2

z) cosh(z/2) , (5.6)

sinh0(z) =
1
3

sinh z +
2
3

cos(
√

3
2

z) sinh(z/2) (5.7)

Since
coshν(ax) =

1
2
{Gν(ax) + Gν(−ax)} (5.8)

we get

ϑν cos hν(ax) = a3 sinhν(ax) , (5.9)

ϑν sinhν(ax) = a3 cos hν(ax) (5.10)

Thus coshν(ax) and sinhν(ax) are solutions of the harmonic type equation

(ϑ2
ν − a6) y(x) = 0 (5.11)
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We note that coshν is an even function and sinhν is an odd function. Since Gν(x) =
Gν(−x) = coshν(x)− sinhν(x), we get

Gν(x)Gν(−x) = cosh2
ν(x)− sinh2

ν(x) = Gν((1⊕ν (−1))x) (5.12)

See Equation (2.3) for a hypergeometric representation.
In terms of the umbral ν-translation, we obtain a number of identities. We define

an umbral multiplication in terms of repeated addition. We have

(2�ν x)3n = (x⊕ν x)3n = x3n
n∑

k=0

(
α3n(ν)
α3k(ν)

)
(5.13)

and, for m ≥ 2, we have the generalized ν-multinomial

(m�ν x)3n = (x⊕ν · · · ⊕ν x)3n

= x3n ·
∑

`1 + `2 + · · ·+ `m = n
`j ≥ 0

α3n(ν)
α3`1 α3`2 . . . α3`m

(5.14)

Now
Gν(x) Gν(±y) = Gν(x⊕ν (±y))

= coshν(x⊕ν (±y)) + sinhν(x⊕ν (±y))

= coshν(x) cos hν(y)± sinhν(x) sinhν(y)

+ sinhν(x) cos hν(y)± coshν(x) sinhν(y) .

(5.15)

Equating the even and odd parts, we obtain the angle-sum and angle-difference
ν-relations,

coshν(x⊕ν (±y)) = coshν(x) cos hν(y)± sinhν(x) sinhν(y) , (5.16)

sinhν(x⊕ν (±y)) = sinhν(x) cos hν(y)± coshν(x) sinhν(y) . (5.17)

Thus we also get the multiple angle relations

sinhν(2�ν x) = 2 sinhν(x) cos hν(x) (5.18)

coshν(2�ν x) = cosh2
ν(x) + sinh2

ν(x) . (5.19)

Using the binomial theorem, we obtain the general multiple angle relations

coshν(n�ν x) =
[n/2]∑
`=0

(
n

2`

)
sinh2`

ν (x) cos hn−2`
ν (x) (5.20)

sinhν(n�ν x) =
[n/2]−1∑

`=0

(
n

2` + 1

)
sinh2`+1

ν (x) coshn−2`−1
ν (x) (5.21)

In terms of hypergeometric functions, using umbral variables, Equation (5.20) yields
the identity

0F5

(
1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 |

(n�ν x

6
)6)

=
[n/2]∑
`=0

(
n

2`

)
x6`

92` (ν + 2/3)2` 0F5(3/2, 2/3, 7/6, ν/2 + 5/6, ν/2 + 4/3 | (x

6
)6)2`

× 0F5(1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 | (x

6
)6)n−2` .

(5.22)
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Also from (5.1) we get the hypergeometric identity

0F2

(
1/3, ν + 2/3 | (n�ν x)3

9
)

=
n∑

`=0

(
n

`

)
x3`

9` (ν + 2/3)` 0F5(3/2, 2/3, 7/6, ν/2 + 5/6, ν/2 + 4/3 | (x

6
)6)`

× 0F5(1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 | (x

6
)6)n−` .

(5.23)

Next we introduce an umbral subtraction for ν-translation. The generalized
subtraction associated with the Bessel functions was developed by Cholewinski [9].
Since Gν(0) = 1, we can define a “ν-Mobius” sequence {γ3k(ν)}∞k=0 by the equation

Gν(γux) =
1

Gν(x)
or Gν(γux)Gν(x) = 1 . (5.24)

By multiplication of series, we must have
n∑

k=0

(
α3n

α3k

)
γ3k = δn,0, (5.25)

the Kronecker delta. For n = 0, we get γ0 = 1. Hence the sequence {γ3k(ν)} is
obtained inductively by the equation

γ3n(ν) = −
n−1∑
k=0

(
α3n

α3k

)
γ3k(ν) (5.26)

The first four values are γ0 = 1, γ3(ν) = −1, γ6(ν) = −1 + 8(ν + 5/3)/(ν + 2/3),
and γ9(ν) = −1− 126(ν + 8/3)(ν + 2)/(ν + 2/3)2. Further, we get

Gν(x) Gν(γuy) = Gν(x⊕ν γuy) = coshν(x⊕ν γuy) + sinhν(x⊕ν γuy) . (5.27)

Multiplying the series on the left and equating even and odd parts, it follows that

coshν(x⊕ν γuy) = coshν(x) coshν(γuy) + sinhν(x) sinhν(γuy) = 1 (5.28)

sinhν(x⊕ν γuy) = sinhν(x) coshν(γuy) + coshν(x) sinhν(γuy) = 0 (5.29)

The coshν identity above is an analogue of the familiar result cosh2 x − sinh2 x =
1. Of course Equation (5.28) can be expressed as a complicated hypergeometric
identity. With the obvious notation we get the ν-hyperbolic tangent identity

1 + tanhν(x)tanhν(γux) = sechν(x) sechν(γux)

Using Equations (5.18) and (5.19), we obtain the multiple angle relation

tanhν(2�ν x) =
2 tanhν(x)

1 + tanh2
ν(x)

. (5.30)

In the case ν = 0, the ν-hyperbolic tangent is

tanh0(x) =
sinhx− 2/3 cos

√
3

2 x sinh x
2

coshx + 2/3 cos
√

3
2 x cosh x

2

= tanh(x)

(
1− cos

√
3

2 x

3 cosh x
2

)
(
1 + (2/3) cos

√
3

2 x cosh x
2

cosh x

)
Next

tanhν(x) =
1−Gν(−x)Gν(γux)
1 + Gν(−x) Gν(γux)

(5.31)
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which implies that

tanhν(x) = 1 + 2
∞∑

n=1

(−1)n Gν(−x)n

Gν(x)n
(5.32)

which converges for x > 0, since |Gν(−x)| < Gν(x) for x > 0. In umbral notation
Equation (5.32) can be written as

tanhν(x) = 1 + 2
∞∑

n=1

(−1)n Gν(n�ν (x(−1⊕ν γu))) . (5.33)

This is the analogue of the elementary formula

tanh(x) = 1 + 2
∞∑

n=1

(−1)n e−2nx, for Re x > 0 (5.34)

A complex ν-exponential function Eν(x) is defined by the equation

Eν(x) = Gν(ω6x) =
∞∑

n=0

inx3n

α3n(ν)
(5.35)

where ω6 = e
π
6 i =

√
3

2 + 1
2 i. The function Eν(x) is the eix in the the ν-calculus

associated with ϑν , it is an entire function of order one. We define generalized sine
and cosine functions by the equation

Eν(x) =
∞∑

k=0

(−1)kx6k

α6k(ν)
+ i

∞∑
k=0

(−1)kx6k+3

α6k+3(ν)
= cosν(x) + i sinν(x) . (5.36)

From our previous results, we have

cosν(x) = coshν(ω6x) , (5.37)

sinhν(ω6x) = i sinν(x) . (5.38)

The hypergeometric representations are

cosν(x) =0 F5

(
1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 | − (

x

6
)6
)
, (5.39)

sinν(x) =
x3

9(ν + 2/3) 0F5

(
3/2, 2/3, 7/6, ν/2 + 5/6, ν/2 + 4/3 | − (

x

6
)6
)
. (5.40)

The trigonometric identities for the ν-hyperbolic functions are easily converted to
identities for the ν-sine and cosine functions. We have

cosν(x⊕ν y) = cosν(x) cosν(y)− sinν(x) sinν(y) , (5.41)

sinν(x⊕ν y) = sinν(x) cosν(y) + sinν(x) cosν(y) . (5.42)

In particular,

cosν(2�ν x) = cos2ν(x)− sin2
ν(x) , (5.43)

sinν(2�ν x) = 2 sinν(x) cosν(x) . (5.44)
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In terms of hypergeometric functions, (5.42) yields the identity

0F5

(
1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 | −

(x⊕ν y

6
)6)

=0 F5

(
1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 | − (

x

6
)6
)

× 0F5

(
1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 | − (

y

6
)6
)

− (xy)6

92 (ν + 2/3) 0F5

(
3/2, 2/3, 7/6, ν/2 + 5/6, ν/2 + 4/3 | − (

x

6
)6
)

× 0F5

(
3/2, 2/3, 7/6, ν/2 + 5/6, ν/2 + 4/3 | − (

y

6
)6
)

.

(5.45)

In the case ν = 0, the equations are

sin0(x) = −1
3

sinx +
2
3

sin
x

2
cosh

√
3

2
x , (5.46)

cos0(x) = −1
3

cos x +
2
3

cos
x

2
cosh

√
3

2
x . (5.47)

The ν-derivatives are

ϑν sinν(ax) = a3 cosν(ax) , (5.48)

ϑν cosν(ax) = −a3 sinν(ax) . (5.49)

Thus sinν(ax) and cosν(ax) are solutions of the differential equation

ϑν y(x) + a6 y(x) = 0 .

Complex variable type addition equations are

cosν(x⊕ν ω6 y) = cosν(x)coshν(y)− i sin2
ν(x) sinhν(y) ,

sinν(x⊕ν ω6 y) = sinν(x) coshν(y)− i cosν(x) sinhν(y)

which are analogues of the complex variable formulas for sin(z) and cos(z) with
z = x + i y.

Theorem 5.1 (A ν-DeMoivre’s Formula). Let ν > 0 and n be a positive integer.
Then

(cosν(x) + i sinν(x))n = cosν(n�ν x) + i sinν(n�ν x)

Proof. We have Eν(x)n = Eν(n�ν x) and the equation follows. �

Since Eν(γuz)Eν(z) = Gν(γu ω6 z) Gν(ω6 z) = 1, it follows that

cosν(z) cosν(γuz)− sinν(z) sinν(γuz) = 1 ,

sinν(z) cosν(γuz) + sinν(γuz) cosν(z) = 0 .

In the case that ν = 0,

E0(z) =
1
3

(e−iz + 2 e
i z
2 cosh(

√
3

2
z) .

Obviously, the functions G0(x) and E0(x) are not periodic in the ordinary sense.
We will obtain umbral periods associated with the ν-translation.

Theorem 5.2. For ν ≥ 0, the function Gν takes on the values +1 and -1 for
infinitely many real values of x.
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Proof. The theorem easily follows from the asymptotic expansion of Gν . We have

Gν(x) =0 F2

(
1/3, ν + 2/3 |(−x

3
)3
)

∼ Γ(1/3)Γ(ν + 2/3)
π
√

3
(
x

3
)−ν ex/2 cos

(√3
2

x− νπ

2
) (5.50)

as x →∞, see Marichev [25], for example. Hence the theorem follows. �

Since the zeros of an entire function cannot have a finite limit point, there
is a smallest x2π(ν) > 0 such that Gν(x2π(ν)) = 1 and, likewise, a smallest
xπ(ν) > 0 such that Gν(xπ(ν)) = −1. Next we let P2π(ν) = −x2π(ν) e−

i π
6 e

2π i
3 · · · =

−x2π(ν) i, then

Eν(P2π(ν)) = Gν(−x2π(ν) e−
i π
6 ω6) = Gν(x2π(ν)) = 1 .

Hence
Eν(z ⊕ν P2π(ν)) = Eν(z) Eν(P2π(ν)) = Eν(z)

and therefore P2π(ν) is an umbral period of Eν . In the case ν = 0, P2π(0) is
approximately -5.549831i.

By Theorem 2.24, we obtain Poisson type representations for the trigonometric
functions of this section. For ν ≥ 1, we have

Eν(x) =
Γ(ν + 2/3)
Γ(2/3) Γ(ν)

∫ 1

0

τ (1− τ3)ν−1 (e−ix τ + 2e
ix τ
2 cosh

√
3

2
x τ) dτ , (5.51)

coshν(x) =
Γ(ν + 2/3)
Γ(2/3) Γ(ν)

∫ 1

0

τ (1− τ3)ν−1 (cosh(x τ) + 2 cos(
√

3
2

x τ) cosh(
x τ

2
) dτ ,

sinhν(x) =
Γ(ν + 2/3)
Γ(2/3) Γ(ν)

∫ 1

0

τ (1− τ3)ν−1(sinh(x τ)− 2 cos(
√

3
2

x τ) sinh(
x τ

2
) dτ ,

cosν(x) =
Γ(ν + 2/3)
Γ(2/3) Γ(ν)

∫ 1

0

τ (1− τ3)ν−1 (cos(x τ) + 2 cos(
√

3
2

x τ) cos h(
x τ

2
) dτ ,

sinν(x) =
Γ(ν + 2/3)
Γ(2/3) Γ(ν)

∫ 1

0

τ (1− τ3)ν−1(−sin(x τ) + 2 sin(
√

3
2

xτ) cosh(
x τ

2
) dτ .

From these equations, one can obtain order estimates for the individual functions,
for example

Eν(x) = O(e
√

3x/2) as x →∞
by (5.51).

In the following example we need to know the smallest real zero of cosν(2x). We
have

cosν(2x) =0 F5

(
1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6 | − (

x

3
)6
)

∼ Γ(1/2, 1/6, 2/3, ν/2 + 1/3, ν/2 + 5/6)√
6 (2π)5/2

2 (
x

2
)−3 e

√
3x cos(x− νπ

6
)

as x →∞, where

Γ(1/2, 1/6, 2/3, ν/2+1/3, ν/2+5/6) = Γ(1/2) Γ(1/6) Γ(2/3) Γ(
ν

2
+1/3) Γ(

ν

2
+5/6) .
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It follows from the asymptotic expansion that cosν(2x) has infinitely many real
zeros. Since cosν(z) is entire and cosν(0) = 1, it follows that there is a smallest
positive value x0 such that cosν(2x0) = 0.

Finally, we present a nontrivial application of the ν-cosine function. Consider
the sixth order diffusion equation given by

ϑ2
ν u(x, t) =

∂

∂t
u(x, t) . (5.52)

Using (5.48) and (5.49), it follows that the function

u(x, t) = e−t cosν(x)− e−64t cosν(2x)

is a solution of the previous equations such that u(x, 0) = cosν(x) − cosν(2x) and
ut(x, 0) = − cosν(x) + 64 cosν(2x), both being entire functions.

Let x0 be the first positive root of cosν(2x), then for −x0 < x < x0, we have
that u(x, t) = 0 on the curve

t =
1
63

log
cosν(2x)
cosν(x)

Thus the uniqueness of solutions for the diffusion equation (5.52) fails.

6. ν-Complex Functions

The trigonometric identities of Section 5 involving the cosν(x ⊕ν ω0 y) and
sinν(x ⊕ν ω0 y) suggest the possibility of an analytic function theory associated
with the ϑν operator. The rudiments of such a theory is obtained in this section.

The operator limit
Gν(h ϑ1/3)− 1

h3

α3(ν)

→ ϑx (6.1)

gives a second way to compute ϑx f(x) for suitable f(x). We know that ϑxx3n =
33 n(n + ν − 1/3)(n− 2/3)x3(n−1) = d3n(ν)x3(n−1). Consider the quotient

(x⊕ν h)3n − x3n

h3

α3

=
n∑

k=1

α3

(
α3n

α3k

)
x3(n−k) h3(k−1)

→ α3

(
α3n

α3

)
x3(n−1) = d3n(ν)x3(n−1)

as h → 0. Thus

lim
h→0

(x⊕ν h)3n − x3n

h3

α3

= d3n(ν)x3(n−1) . (6.2)

Hence we define

ϑx f(x) = lim
h→0

f(x⊕ν h)− f(x)
h3

α3

(6.3)

provided the limit exists for suitable functions. It is clear that (6.3) is valid for
polynomials and entire functions of the variable x3.

Next we introduce an umbral complex variable zν ' (x⊕νω6y), where ω6 = eiπ/6.
We define

z3n
ν = (x⊕ν ω6y)3n .
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Further, we let ∆zν ' (∆x⊕ν ω6∆y), and we define the ν-derivative of a suitable
function f at a zν by

ϑx f(zν) = lim
∆z→0

f(x⊕ν ω6y)⊕ν (∆x⊕ν ω6∆y))− f(x⊕ν ω6y)
(∆x⊕νω6∆y)3

α3(ν)

= lim
∆z→0 or ∆x,∆y→0

f(zν ⊕ν ∆zν)− f(zν)
(∆zν)3

α3(ν)

(6.4)

If the function f has a ν-derivative in a neighborhood of a point (x, y) associated
with zν , we say that f is ν-analytic at zν .

Example. Consider f(zν) = z3n
ν = (x⊕ν ω6y)3n. Then

f(zν ⊕ν ∆zν)− f(zν)
(∆zν)3

α3(ν)

=
n∑

k=1

α3

(
α3n

α3k

)
z3(n−k)
ν (∆zν)3(k−1) → α3n(ν) z3(n−1)

ν ,

as ∆x.∆y → 0 . Thus
ϑz z3n

ν = d3n(ν) z3(n−1)
ν

It follows that polynomials p(zν) =
∑n

k=0 ak z3k
ν and 3-parity analytic functions

lead to ν-holomorphic functions. Moreover, if f has a ν-derivative at zν then f is
continuous at zν , i. e., lim∆zν→0 f(zν ⊕ν ∆zν) = f(zν).

The complex ν-derivative is also a linear operator. If f and g have ν-derivatives
at zν and a and b are arbitrary complex numbers then

ϑz (af(zν) + bg(zν)) = aϑz f(zν) + b ϑz g(zν)

Theorem 6.1 (ν-Cauchy-Riemann Equations). Let f(zν) = u(zν) + iv(zν) =
u(x, y) + iv(x, y) with f differentiable at zν and let u and v be real valued func-
tions, then

ϑz f(zν) = ϑx f(zν) = −iϑy f(zν), complex form, (6.5)
or

ϑx u = ϑy v and ϑx v = −ϑy u, real form

Proof. Taking ∆y = 0 in (6.4), we get

ϑz f(zν) = lim
∆x→0

f(zν ⊕ν x)− f(zν)
(∆x)3

α3

= ϑx f(zν)

Likewise, taking ∆x = 0 in (6.4), we get

ϑz f(zν) =
1
i

lim
∆y→0

f(zν ⊕ν ω6y)− f(zν)
(∆y)3

α3

=
1
i

ϑy f(zν)

Therefore, the complex Equations (6.5) hold. Clearly the ν-derivatives ϑx u, ϑx v,
ϑy u, and ϑy v exist at (x, y). Hence we find that

ϑz f(zν) = ϑx u(x, y) + iϑx v(x, y)

= −iϑy f(zν)

= −iϑy u(x, y) + ϑy v(x, y) .

Consequently, ϑx u = ϑy v and ϑx v = −ϑy u. �

Corollary 6.2. If f has a second ν-derivative at zν , then

ϑ2
x f(zν) + ϑ2

y f(zν) = 0 (6.6)
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Proof. From the ν-Cauchy-Riemann equations, it follows that ϑ2
x f(zν) = ϑ2

z f(zν)
and −ϑ2

z f(zν) = ϑ2
y f(zν). Thus

ϑ2
x f(zν) + ϑ2

y f(zν) = ϑ2
z f(zν)− ϑ2

z f(zν) = 0

�

From (6.6), it follows that ϑ2
x u(x, y)+ϑ2

y u(x, y) = 0 and ϑ2
x vu(x, y)+ϑ2

y v(x, y) =
0. The operator �ν = ϑ2

x + ϑ2
y is called the ν-Laplacian. Functions satisfying the

ν-Laplace equation �ν u(x, y) = 0 in a domain are said to be ν-harmonic in that
domain.

Example. Consider z3n
ν = (x⊕ν ω6y)3n. Then

z3n
ν =

n∑
k=0

(
α3n

α3k

)
x3(n−k) (ω6y)3k

=
n∑

k=0

(
α3n

α3k

)
ik y3kx3(n−k)

=
[ n
2 ]∑

`=0

(
α3n

α6`

)
(−1)`x3(n−2`)y6` + i

[ n−1
2 ]∑

`=0

(
α3n

α6`+3

)
(−1)`x3(n−2`−1)y6`+3

= u3n(x, y) + i v3n(x, y) .

Then u3n(x, y) and v3n(x, y are ν-harmonic functions for all x, y. In the particular
case n = 2, we have

z6
ν = x6 − y6 + i

(
α6

α3

)
x3 y3 = u6(x, y) + i v6(x, y)

and
ϑx u6 = d6x

3, ϑy u6 = −d6y
3

ϑx v6 = d6y
3, and ϑy v6 = d6x

3 since
(

α6

α3

)
=

d6

α3

Hence

ϑ2
x u6 + ϑ2

y u6 = α6(ν)− α6(ν) = 0

ϑ2
x v6 + ϑ2

y v6 = 0 + 0 = 0

Example. It is clear that the Humbert function Gν(zν) is ν-analytic for all zν .
Further, we have

Gν(zν) = Gν(x⊕ν ω6y) = Gν(x)Gν(ω6y) = Gν(x)(cosν(y) + i sinν(y))

the ν-analogue of Euler’s equation. Therefore,

Gν(zν) = Gν(x) cosν(y) + iGν(x) sinν(y) = u + iv

and

ϑxu = Gν(x) cosν(y), ϑyv = −Gν(x) cosν(y),

ϑxxu = Gν(x) cosν(y), ϑyyv = −Gν(x) cosν(y),

ϑyu = −Gν(x) sinν(y), ϑxv = Gν(x) sinν(y),

ϑyyu = −Gν(x) cosν(y), ϑxxv = Gν(x) sinν(y) .
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Thus the real form of the ν-Cauchy-Riemann equations hold and Gν(x) cosν(y) and
Gν(x) sinν(y) are ν-harmonic functions.

One can verify that the following functions (1) Eν(zν), (2) cosν(zν), (3) sinν(zν),
(4) coshν(zν), and (5) sinhν(zν) are ν-analytic functions for all zν .

The generalized diffusion equation

�ν u(x, y, t) =
∂

∂t
u(x, y, t)

has a solution u(x, y, t) = exp(−2κ6t) cosν(κx) cosν(κy)+ an arbitrary ν-harmonic
function. With suitable coefficients {an,m} for uniform convergence, the generalized
wave equation

�ν u(x, y, t) = ϑ2
t u(x, y, t)

has solutions

u(x, y, t) =
∞∑

n,m=0

an,m sinν(nx) sinν(my) cos(λn,mt) + hν(x, y)

where λn,m = (n2 +m6)1/2 and hν(x, y) is a ν-harmonic function. Also for suitable
coefficients {an,m}, the generalized wave equation

�ν u(x, y, t) =
∂2

∂t2
u(x, y, t) (6.7)

has solutions

u(x, y, t) =
∞∑

n,m=0

an,m sinν(nx) sinν(my) cos(λn,mt) + hν(x, y)

where λn,m = (n2 +m6)1/2 and hν(x, y) is a ν-harmonic function. Two other forms
for real solutions of (6.7) are given by

u(x, y, t) =
∞∑

n,m=0

an,m cosν(nx) cosν(my) cos(λn,mt) + hν(x, y)

u(x, y, t) =
∞∑

n,m=0

an,m sinν(nx) cosν(my) cos(λn,mt) + hν(x, y) .

Certainly the solution forms are valid for compact support sequences {an,m}. Fi-
nally, we note that ϑ2

x is the sixth order operator given by

ϑ2
x = D6+

6ν

x
D5+

3ν(3ν − 5)
x2

D4+
36ν(1− ν)

x3
D3+

72ν(ν − 1)
x4

D2− 72ν(ν − 1)
x5

D

where D = ∂
∂x . Thus the techniques introduced in this paper can solve some

exceedingly difficult partial differential equations.

7. ν-Diffusion Polynomials

The simple set of polynomial solutions in Hν are associated with the initial con-
dition u(x, 0) = x3n. In a certain sense they are generalized Hermite polynomials.
The function etz3

Gν(xz) is a ν-diffusion. Multiplying and rearranging the infinite
series, we get a sequence of polynomials given by

etz3
Gν(xz) =

∞∑
n=0

pν
n(x, t) z3n

α3n(ν)
. (7.1)
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Thus

pν
n(x, t) =

n∑
k=0

α3n(ν)
α3(n−k)(ν)

x3(n−k)tk

k!

= (1/3)n(ν + 2/3)n 33ntn
∞∑

k=0

(−1)k(−n)k

(1/3)(ν + 2/3)k

x3kt−k

k! 33k

(7.2)

Therefore, the 3rd order polynomials pν
n(x, t) can be written as hypergeometric

functions given by

pν
n(x, t) = (1/3)n(ν + 2/3)n 33ntn 1F2

[
−n

1/3, ν + 2/3

∣∣∣∣− x3

27t

]
=

α3n(ν)
n!

tn 1F2

[
−n

1/3, ν + 2/3

∣∣∣∣− x3

27t

] (7.3)

It is easy to show that etϑν x3n = pν
n(x, t). Thus the pν

n(x, t) are inHν and pν
n(x, 0) =

x3n

For the ordinary diffusion equation uxx = ut, Widder [34] has established a series
expansion of solutions in terms of heat polynomials which are essentially modified
Hermite polynomials. Cholewinski and Haimo [11] have presented a similar devel-
opment associated with Bessel functions and the Euler operator ∆x = D2

x + 2ν
x Dx.

Expansions in terms of the ν-diffusion polynomials pν
n(x, t) does not yield as rich a

theory as that of Widder.

Theorem 7.1. Let ν ≥ 0 and let s and t be arbitrary complex numbers, then

ϑx pν
n(x, t) = 33n(n + ν − 1/3)(n− 2/3)pν

n−1(x, t) = d3n(ν) pν
n−1(x, t) , (7.4)

pν
n(x⊕ν y, t) =

n∑
k=0

(
α3n

α3k

)
pν

k(x, t) y3(n−k) , (7.5)

pν
n(x⊕ν y, t + s) =

n∑
k=0

(
α3n

α3k

)
pν

k(x, t) pν
n−k(x, s) , (7.6)

(x⊕ν y)3n =
n∑

k=0

(
α3n

α3k

)
pν

k(x, t) pν
n−k(y,−t) , (7.7)

x3n =
n∑

k=0

α3n

α3k

(−1)n−k

(n− k)!
tn−k pν

k(x, t) , (7.8)

pν
n(pν

u/3(x, s), t) = pν
n(x, s + t), Huygens’ property (7.9)

Proof. Since ϑν commutes with etϑν , we get

ϑν pν
n(x, t) = ϑν etϑν x3n

= etϑν ϑνx3n

= d3n(ν) etϑν x3(n−1)

= d3n(ν) pν
n(x, t) .
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Thus the {pν
n(x, t)}∞0 is a basic sequence for the delta operator ϑν . From (7.1), we

obtain by Cauchy multiplication

Gν(xz) =
∞∑

n=0

pν
n(x, t)

α3n(ν)
z3n

∞∑
n=0

(−1)ntnz3n

n!

=
∞∑

n=0

z3n

α3n(ν)

n∑
k=0

α3n(ν)
α3k(ν)

(−1)n−k

(n− k)!
tn−kpν

k(x, t)

=
∞∑

n=0

x3nz3n

α3n(ν)

Therefore, comparing coefficients, it follows that

x3n =
n∑

k=0

α3n(ν)
α3k(ν)

(−1)n−k

(n− k)!
tn−kpν

k(x, t)

which is (7.8). Using (7.2), we get the equivalent composition property

x3n = pν
n(pν

u/3(x, t),−t) .

Since Gν(xz)Gν(zy) = Gν(z(x⊕ν y))) we get

etz3
Gν(z(x⊕ν y))) = etz3

Gν(xz)Gν(zy)

=
∞∑

n=0

pν
n(x⊕ν y, t)

α3n
z3n

=
∞∑

n=0

(yz)3n

α3n

∞∑
n=0

pν
n(x, t)
α3n

z3n

=
∞∑

n=0

z3n

α3n

∞∑
k=0

(
α3n

α3k

)
pν

k(x, t) y3(n−k) .

Comparing coefficients, we get the generalized binomial property

pν
n(x⊕ν y, t) =

∞∑
k=0

(
α3n

α3k

)
pν

k(x, t) y3(n−k) = (pν
u/3(x, t)⊕ν y)3n

where ν is an umbral variable, in this equation

pν
u/3(x, t)3k = pν

3k/3(x, t) = pν
k(x, t) .

In the same manner, we also obtain the Huygens type property

pν
n(x⊕ν y, t + s) =

∞∑
k=0

(
α3n

α3k

)
pν

k(x, t) pν
n−k(y, s)

= (pν
u/3(x, t)⊕ν pν

u/3(y, s))3n

Since pν
n(x, 0) = x3n, we get

(x⊕ν y)3n =
∞∑

k=0

(
α3n

α3k

)
pν

k(x, t) pν
n−k(y,−t)
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Finally,

e(s+t)z3
Gν(xz) = etz3

∞∑
n=0

pν
n(x, s)
α3n

z3n

=
∞∑

n=0

tnz3n

n!

∞∑
n=0

pν
n(x, s)
α3n

z3n

=
∞∑

n=0

z3n

α3n

n∑
k=0

α3n

α3k

tn−k

(n− k)!
pν

k(x, s)

=
∞∑

n=0

pν
n(pν

ν/3(x, s), t)

α3n
z3n

=
∞∑

n=0

pν
n(x, s + t)

α3n
z3n

and, upon comparing coefficients, we get

pν
n(pν

u/3(x, s), t) = pν
n(x, s + t)

�

Next we introduce a class of generalized Laguerre polynomials associated with
the ϑν operator. For the purposes of this paper we are interested in the ν-diffusion
counterparts. We define the nth ν-Laguerre polynomial by

Lα,ν
3n (x) = Lα

3n(x) = (−1)n(1− ϑν)α+n−1x3n, n = 0, 1, . . .

Expanding the binomial, we get the representation

Lα
3n(x) =

n∑
k=0

(
α + n− 1

n− k

)
α3n(ν)
α3k(ν)

(−1)kx3k (7.10)

Next we have

ϑx

ϑx − 1
Lα

3n(x) = (−1)n ϑν

ϑν − 1
(1− ϑν)α+n−1x3n

= (−1)n+1d3n(ν)(1− ϑν)α+(n−1)−1x3(n−1)

= d3nLα
3(n−1)(x) .

Thus the sequence {Lα
3n(x)} is the basic sequence of 3-parity polynomials associated

with the Laguerre type delta operator ϑx

ϑx−1 . The {Lα
3n(x)’s are hypergeometric

functions. From (7.10), we have

Lα
3n(x) =

n∑
k=0

(−1)kΓ(α + n)
Γ(α + k)

α3n

α3k

x3k

(n− k)!

=
(α)nα3n(ν)

n!

n∑
k=0

(−n)kx3k

33k k! (1/3)k(ν + 2/3)k (α)k

=
(α)n α3n(ν)

n! 1F3

[
−n

1/3, ν + 2/3, α

∣∣∣∣x3

27

]
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In the case that α = 0, we get

L3n(x) =
α3n(ν)

n! 1F3

[
−n

1/3, ν + 2/3, n

∣∣∣∣x3

27

]
Consider the series expansion

1
(1− z3)α

Gν(x
z

(z3 − 1)1/3
) =

∞∑
k=0

(−1)kx3k

α3k

z3k

(1− z3)k+1

=
∞∑

k=0

(−1)kx3kz3k

α3k

∞∑
m=0

(α + k)m

m!
z3m

=
∞∑

k=0

∞∑
m=0

(−1)kx3k(α + k)mz3(m+k)

α3k m!
.

Since the resulting double series is absolutely convergent for |z| < 1, we may collect
terms in z3n and we get

1
(1− z3)α

Gν(x
z

(z3 − 1)1/3
) =

∞∑
n=0

z3n

α3n

∑
k=0

n(−1)k

(
α + n− 1

n− k

)
α3n(ν)
α3k(ν)

x3k

=
∞∑

n=0

Lα
3n(x)
α3n

z3n .

(7.11)
From the generating function (7.11), it follows that

Lα+β
3n (x⊕ν y) =

n∑
k=0

(
α3n

α3k

)
Lα

3k(x)Lβ
3(n−k)(y)

It is also a consequence of the idempotent composition ϑ
(ϑ−1) ◦

ϑ
(ϑ−1) = ϑ that

Lα
3n(Lα

µ(x)) = x3n

In quantum mechanics the associated Laguerre polynomials Lk
n(x) = ∂k

∂xk Ln(x)
appear in various wave functions. We introduce ν-associated Laguerre polynomials,
given by

ϑn
x Lα

3k(x)

Theorem 7.2. We have

ϑn
x Lα

3k(x) = (−1)n α3k

α3(k−n)
Lα+n

3(k−n)(x)

Proof. Consider

ϑn
x

1
(1− z)α

Gν(x
z

(z3 − 1)1/3
) = (−1)n z3n

(1− z3)α+n
Gν(x

z

(z3 − 1)1/3
)

=
∞∑

m=0

(−1)nL
α+n
3m (x)
α3m

z3(m+n)

=
∞∑

k=n

(−1)n α3n

α3(k−n)
Lα+n

3(k−n)(x)
z3k

α3m

=
∞∑

k=n

ϑn
x Lα

3k(x)
α3k

z3k .
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This theorem follows by comparing coefficients. By commutativity and the binomial
theorem, it follows that

Lα+n
3(k−n)(x) =

n∑
`=0

(
n

`

)
α3(k−n)

α3(k−`−n)
Lα+`

3(k−`−n)(x) .

�

The polynomials etϑx Lα
3n(x) = Lα

3n(x, t) are ν-diffusion polynomial solutions
of the initial value problem ϑx u(x, t) = ∂

∂t u(x, t) with u(x, 0) = Lα
3n(x, t). A

simple calculation gives the composition equation Lα
3n(x, t) = Lα

3n(pν
u/3(x, t)). The

generating function of the sequence {Lα
3n}∞0 is given by

1
(1− z3)α

e
t z3

z3−1 Gν(x
z

(z3 − 1)1/3
) =

∞∑
n=0

Lα
3n(x, t)
α3n

z3n (7.12)

Moreover, a calculation using commutativity yields

ϑx

ϑx − 1
Lα

3n(x, t) = d3n(ν)Lα
3(n−1)(x, t)

Multiplying (7.12) by Gν(y z
(z3−1)1/3 ) yields the addition formula

Lα
3n(x⊕ν y, t) =

n∑
k=0

(
α3n

α3k

)
Lα

3k(x, t)Lα
3(n−k)(y)

Likewise, suitable multiplication of generating functions of the type (7.12) gives the
Huygens equation

Lα
3n(x⊕ν y, t + s) =

∞∑
k=0

(
α3n

α3k

)
Lα

ek(x, t)Lα
3(n−k)(y, s)

which is a ν-diffusion polynomial.
If we multiply the power series in z3, we have upon rearrangement

Gν(−z2)Gν(xz) =
∞∑

n=0

Hν
3n(x)
α3n

z3n ,

where

Hν
3n(x) =

[n/2]∑
k=0

αn (−1)k

α3kα3(n−2k)
x3(n−2k) .

The Hν
3n(x)’s are called ν-Hermite polynomials. A simple calculation shows that

ϑν Hν
3n(x) = d3n(ν)Hν

3(n−1)(x)

thus the Hν
3n(x)’s form a basic set of polynomials associated with ϑν . Further, we

have

Hν
3n(−x) = (−1)nHν

3n(x) ,

Hν
6`(0) = (−1)` α6`

α3`
, Hν

6`+3(0) = 0
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A manipulation of the Pockhammer functions yields the identity

α3(n−2k) =

α3n 3−6k

26k(−n/2)k(−n/2 + 1/2)k(1/3− n/2)k(2/3− n/2)k(1/6− ν+n
2 )k(1/6− ν+n−1

2 )k

Therefore, the ν-Hermite polynomial can be represented as a hypergeometric func-
tion, namely,

Hν
3n(x) =

x3n
6F2

[
−n/2, n/2 + 1/2, 1/3− n/2, 2/3− n/2, 1/6− ν+n

2 , 1/6− ν+n−1
2

1/3, ν + 2/3

∣∣∣∣− 123

x6

]
.

Corresponding to the initial value problem ϑν u(x, t) = ut(x, t) with u(x, 0) =
Hν

3n(x) we get the polynomial solutions with the generating functions

etz3
Gν(−z2)Gν(xz) =

∞∑
n=0

Hν
3n(x, t)
α3n

z3n

It follows that ϑν Hν
3n(x, t) = d3n(ν)Hν

3(n−1)(x, t) and

Hν
3n(x, t) =

[n/2]∑
k=0

α3n (−1)k

α3kα3(n−2k)
pν

n−2k(x, t)

The Hν
3n(x, t)’s are called the ν-Hermite diffusion polynomials.

Various forms of the ν-Hermite diffusion polynomials have appeared in the work
of Bateman [2] and Langer [24]. Bateman’s polynomials are given by

Jν,σ
n (x) =

Γ((1/2)ν + σ + n + 1)
Γ(σ + (1/2)ν + 1)n!

xν

Γ(ν + 1) 1F2

[
−n

ν + 1, (1/2)ν + σ + 1

∣∣∣∣x2

]
.

Setting ν = −2/3 and then σ := ν, we get

J−2/3,µ
n (x) =

(ν + 2/3)n

n! Γ(1/3)
x−2/3

1F2

[
−n

1/3, ν + 2/3

∣∣∣∣x2

]
.

Letting x2 := z3/(27t) and using (7.3), we obtain

J−2/3,µ
n (

z3/2

√
27t

) =
(ν + 2/3)n

n! Γ(1/3)
3t1/3

z
1F2

[
−n

1/3, ν + 2/3

∣∣∣∣ z3

27t

]
=

(−1)n

33nz

3t1/3t−n

Γ(n + 1/3) n!
pν

n(z,−t) .

Thus

pν
n(z,−t) = (−1)n 33n−1 Γ(n + 1/3) n!tn−1/3 z J−2/3,µ

n

(√ z3

27t

)
Bateman’s generating function [2, p. 574] is given by

∞∑
n=0

J (ν,σ)
n (x)tn = t−ν/2 (1− t)−σ−1 Jν

( 2x
√

t√
1− t

)
, |t| < 1 .

Substituting ,we get the generating function
∞∑

n=0

(−1)nt−npν
n(z,−t)yn

33nΓ(n + 1/3) n!
=

(y/t)1/3z

3(1− y)ν+1
J−2/3

( 2z3/2√y√
27t(1− y)

)
,
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|y| < 1 and t > 0 which is a source solution type generating function. In terms of
the source solutions this is written as

∞∑
n=0

(−1)nt−npν
n(z,−t)yn

33n(1/3)n n!
=
(3t

y

)ν+2/3Kν

(
x, t

1− y

y

)
A recurrence formula for the functions fn(x) =1 F2(−n; 1 + α, 1 + β; γ) which are
modified Bateman polynomials is given by

(α + n)(β + n)fn(z)− (3n2 − 3n + 1 + (2n− 1)(α + β) + αβ − z)fn−1(z)

+(n− 1)(3n− 3 + α + β)fn−2 − (n− 1)(n− 2)fn−3(z) = 0 ;

see Rainville [26]. Letting α = −2/3, β = ν − 1/3, and z = −x3/(27t), we obtain
the recurrence relation

pν
n(x, t)

= [3n2 − 3n + 1 + (2n− 1)(ν − 1)− (2/3)(ν − 1/3) + x3/(27t)]27tpν
n−1(x, t)

− (n− 1)(3n− 3 + ν − 1)(n− 5/3)(n + ν − 4/3)(27t)2pν
n−2(x, t)

− (n− 1)(n− 2)(n− 5/3)(n− 8/3)(ν + n− 4/3)(ν + n− 7/3)(27t)3pν
n−3(x, t)

with pν
k(x, t) = 0, whenever the subscript k is negative.

The first four ν-diffusion polynomials are

pν
0(x, t) = 1, pν

1(x, t) = x3 + 9(ν + 2/3)t ,

pν
2(x, t) = x6 + 72(ν + 5/3)x3t + 324(ν + 2/3)(ν + 5/3)t2 ,

pν
3(x, t) =x9 + 63(3ν + 8)x6t + 3756(3ν + 8)(3ν + 5)x3t2

+ 756(3ν + 2)(3ν + 5)(3ν + 8)t2

8. ν-Airy Bernoulli Polynomials and Associated Airy Diffusions

Corresponding to the classical Bernoulli polynomials we obtain ν-Airy Bernoulli
and their associated ν-diffusion polynomials. The properties of these polynomi-
als can be established using the Rota operator calculus [28]. However, the basic
properties used in this section follow by manipulation of infinite series.

We define the ν-Airy Bernoulli polynomials by the generating function

t3n

[Gν(t)− 1]n
Gν(xt) =

∞∑
k=0

Bn,ν
3k (x)

α3k(ν)
t3k (8.1)

for n = 0,±1,±2, . . . . For n = 0, we get B0,ν
3k (x) = x3k. Setting x = 0, we obtain

the ν-Airy Bernoulli numbers given by

t3n

[Gν(t)− 1]n
Gν(xt) =

∞∑
k=0

Bn,ν
3k (0)

α3k(ν)
t3k . (8.2)

Let δν = Gν(ϑ1/3
x ) − 1 be a ν-difference operator. In a suitable Rota calculus, we

have

Bn,ν
3k (x) =

[
ϑx

δν

]n

x3k . (8.3)
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This is easy to verify directly. Furthermore, from Equations 8.1 and 8.2, we get the
ν-binomial representation

Bn,ν
3k (x) =

k∑
`=0

(
α3k

α3`

)
Bn,ν

3(k−`)(x
3`) = (Bn,ν

ν ⊕ν x)3k (8.4)

using umbral notation. It also follows from (8.1) that

ϑx Bn,ν
3k (x) = 33k(k + ν − 1/3)(k − 2/3)Bn,ν

3(k−1)(x)

= d3k(ν)Bn,ν
3(k−1)(x) .

(8.5)

Using the binomial theorem, we get

δn
ν Gν(xt) = [Gν(ϑ1/3

x )− 1]n G(xt)

=
n∑

k=0

(
n

k

)
Gν(ϑ1/3

x )k(−1)n−kGnu(xt)

=
n∑

k=0

(−1)n−k

(
n

k

)
Gν(t)kGnu(xt)

= [Gν(t)− 1]n Gν(xt) .

(8.6)

Applying δν to (8.1), we get

t3n

[Gν(t)− 1]n
Gν(xt) =

∞∑
k=0

δνBn,ν
3k (x)

α3k(ν)
t3k

=
∞∑

k=0

Bn−1,ν
3k (x)
α3k(ν)

t3(k+1)

=
∞∑

k=0

d3k(ν)
Bn−1,ν

3k (x)
α3k(ν)

t3k .

(8.7)

Comparing coefficients, we get

δνBn,ν
3k (x) = Bn,ν

3k (x⊕ν 1)− Bn,ν
3k (x) = d3k(ν)Bn−1,ν

3(k−1)(x) . (8.8)

This is an analogue of the basic difference equation for the classical Bernoulli poly-
nomials.

The equation

t3(n+m)

[Gν(t)− 1]n+m
Gν(t(x⊕ν y)) =

∞∑
k=0

Bn+m,ν
3k (x⊕ν y)

α3k(ν)
t3k (8.9)

yields the identity

Bn+m,ν
3k (x⊕ν y) =

k∑
`=0

(
α3k

α3`

)
Bn,ν

3` (x)Bm,ν
3(k−`)(y)

= (Bn,ν
ν (x)⊕ν Bm,ν

ν (y))3k

(8.10)

a binomial of Rota type. Taking m = −n, we get the hypergeometric result

(x⊕ν y)3k =
k∑

`=0

(
α3k

α3`

)
Bn,ν

3` (x)Bm,ν
3(k−`)(y) (8.11)
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Next we obtain solutions of the ν-Airy heat equation corresponding to the initial
value polynomials Bn,ν

3k (x). They are given by

etϑνBn,ν
3k (x) = Bn,ν

3k (x, t)

=
k∑

`=0

t`

`!
α3k(ν)

α3(k−1)(ν)
Bn,ν

3(k−`)(x)

= pν
3k(Bn,ν

ν (x), t)

(8.12)

where the pν
ek(x, t) are the ν-diffusion polynomials of Section 7. The ν-Bernoulli

heat polynomials are also given by the generating functions

t3n

[Gν(t)− 1]n
ety3

Gν(xy) =
∞∑

k=0

Bn,ν
3k (x, t)
α3k(ν)

y3k . (8.13)

The generalized Huygens property for the ν-Bernoulli heat polynomials follows from
(8.13), adn we get

Bn+m,ν
3k (x⊕ν y, t + s) =

k∑
`=0

(
α3k

α3`

)
Bn,ν

3` (x, t)Bm,ν
3(k−`)(y, s)

= (Bn,ν
ν (x, t)⊕ν Bm,ν

ν (y, s))3k

(8.14)

Taking m = −n, we get the relation

pν
3k(x⊕ν y, t + s) =

k∑
`=0

(
α3k

α3`

)
Bn,ν

3` (x, t)B−n,ν
3(k−`)(y, s) . (8.15)

Letting s = −t, it follows that

(x⊕ν y)3k =
k∑

`=0

(
α3k

α3`

)
Bn,ν

3` (x, t)B−n,ν
3(k−`)(y,−t) . (8.16)

Since δν and etϑx commute, it follows from (8.8) that

δn
νB

n,ν
3k (x, t) = d3k(ν)Bn−1,ν

3(k−1)(x, t) . (8.17)

For k ≥ n ≥ 0, it follows that

δn
νB

n,ν
3k (x, t) =

α3k(ν)
α3(k−n)(ν)

pν
3(k−n)(x, t) . (8.18)

The ν-Bernoulli heat polynomials can be expressed in terms of ν-diffusion polyno-
mials. From (8.13) or 8.14, we get

Bn,ν
3k (x, t) =

k∑
`=0

(
α3k

α3`

)
Bn,ν

3(k−`)(x, t)pν
3`(x, t) (8.19)

which expresses Bn,ν
3k (x, t) as a sum of hypergeometric functions.

In order to calculate Bn,ν
3k (x, t), we have to be able to calculate the ν-Airy

Bernoulli numbers. The elementary relation

t3n

[Gν(t)− 1]n
t−3n

[Gν(t)− 1]−n
= 1 (8.20)

implies that
(Bn,ν

ν (x, t)⊕ν Bm,ν
ν (y, s))3k = δ0,k, k = 0, 1, . . . (8.21)
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where δ0,k is the Kronecker delta function. In multinomial form (8.21) can also be
written as ∑

`=(`0,`1,...,`n),`∈Nn+1,|`|=k

(
α3k

α3`

)
B−1,ν

3`0
B−1,ν

3`1
· · · Bn,ν

3`n−1
= δ0,k . (8.22)

Since B−1,ν
3k (0) = d3k(ν), (8.22) yields the recursion formula

Bn,ν
3k = − αn

3 (ν)α3k

α3(k+n)

∑(
α3(k+n)

α3`

)
Bn,ν

3`n
, (8.23)

where the summation is taken over |`| = k+n, 0 ≤ `n < k, `i > 0, i = 0, 1, . . . , n−1,
` = (`0, `1, . . . , `n) ∈ Nn+1

+ .

9. A Primitive Integral for ϑν

Associated with the differential operator ϑν , we introduce a formal or primitive
indefinite integral that commutes with ϑν up to constants. Recall that dα(ν) =
α(α + 3ν − 1)(α− 2) and dα+3(ν) = (α + 3)(α + 3ν + 2)(α + 1). We define∫

xα ∂ν(x) =
xα+3

dα+3(ν)
+ c1x

2 + c2x
1−3ν + c3, if α 6= −1,−3,−(3ν + 2)

=
xα+3

(α + 1)(α + 3)2
+ c1x

2 + c2 lnx + c3, for ν = 1/3
(9.1)

∫
x−3 ∂ν(x) =

lnx

2(1− 3ν)
+ c1x

2 + c2x
1−3ν + c3, ν 6= 1/3

= −1
4

(lnx)2 + c2x
2 + c2 lnx + c3, for ν = 1/3

∫
x−1 ∂ν(x) =

x2 lnx

2(3ν + 1)
+ c1x

2 + c2x
1−3ν + c3, ν 6= −1/3

= −1
4
x2 lnx + c1x + c2 lnx + c3, ν = 1/3

and ∫
x−(3(n+2) ∂ν(x) =

x1−3ν

(1 + 3ν)(3ν − 1)
+ c1x

2 + c2x
1−3ν + c3, ν 6= 1/3 .

In each of the above, we have ϑν

∫
xα ∂ν(x) = xα. The indefinite integral is ex-

tended to 3-parity polynomials and formal power series in x3. In which case we take
c1 and c2 to be zero. We are primarily interested in the case of α a nonnegative
integer divisible by three. If p(x) =

∑n
k=0 akx3k, then a simple calculation shows

that

p(x) + c =
∫

ϑx p(x) ∂ν(x) = ϑx

∫
p(x) ∂ν(x) + c

In general, as in elementary calculus, if ϑ f(x) = F (x), we take
∫

F (x) ∂ν(x) =
f(x) + c.

The functions Gν(x) and Gν(x) play the roles of ex and e−x for the primitive
indefinite integral.
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Theorem 9.1. For ν ≥ 0, we have∫
Gν(x) ∂ν(x) = Gν(x) + c ,∫
Gν(x) ∂ν(x) = −Gν(x) + c .

Proof. We have ϑν Gν(x) = Gν(x), or working with the power,

∫ ∞∑
n=0

x3n

α3n
∂ν(x) =

∞∑
n=0

x3n+3

α3nd3(n+1)
+ c =

∞∑
n=0

x3n

α3n
+ c = Gν(x) + c

since d3(n+1)α3n = α3(n+1)(ν). �

ν-Primitive Integrals: ∫
coshν(x) ∂ν(x) = sinhν(x) + c ,∫
sinhν(x) ∂ν(x) = coshν(x) + c ,∫
Eν(x) ∂ν(x) = −i Eν(x) + c ,∫

sinν(x) ∂ν(x) = − cosν(x) + c ,∫
cosν(x) ∂ν(x) = sinν(x) + c ,∫

pν
nν(x, t) ∂ν(x) =

pν
n+1(x, t)

d 3(n+1)
+ c ,∫

L(x)α+n
3(k−n) ∂ν(x) = (−1)n α3(k−n)

α3k
L(x)α

3k + c ,∫
Hν

3n(x) ∂ν(x) =
Hν

3(n+1)(x)

d3(n+1)
+ c .

Actually, the constant c can be replaced by the general solution of the differential
equation ϑν y(x) = 0. In general this is given by y(x) = c1x

2 + c2x
1−3ν + c3,

depending on the parameters as in (9.1).
A generalized ν-definite integral associated with ϑν is defined by∫ x⊕b

y⊕a

z3n ∂ν(x) =
z3(n+1)

d3(n+1)

∣∣∣x⊕b

y⊕a

=
(x⊕ b)3(n+1) − (y ⊕ a)3(n+1)

d3(n+1)(ν)
.

The definite integral is extended by linearity to P3 the polynomials is x3 and also
to the formal power series F3 in x3. The ν-definite integral

∫ x+⊕b

y⊕a
commutes with
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ϑν on P3 (or F3). We have

ϑx

∫ x⊕b

x⊕a

z3n ∂ν(z) = ϑx
(x⊕ a)3(n+1) − (x⊕ b)3(n+1)

α3(n+1)

= (x⊕ a)3n − (x⊕ b)3n

=
∫ x⊕b

x⊕a

ϑz z3n ∂ν(z) .

The result extends to P3 by linearity. It is easy to show that∫ b

a

(z ⊕ b)3n ∂ν(z) =
∫ x⊕b

a⊕b

z3n ∂ν(z) (9.2)

and therefore by linearity
∫ b

a
p(z ⊕ b) ∂ν(z) =

∫ x⊕b

a⊕b
p(z) ∂ν(z). Note that (9.2) is

the ν-analogue of the elementary change of variable formula∫ x

a

f(z + b) dz =
∫ x+b

a+b

f(z) dz .

10. An Orthogonality Relation

Since the ν-diffusion polynomials pn(x, t) are three-parity polynomials they can-
not be orthogonal in the usual sense with respect to a measure, see [14]. In this
section we obtain a multiple integral orthogonality relation.

By Erdélyi, [17, p. 218,], we have∫ ∞

0

e−pttβ−1
1F2(−n;α + 1, β|λt) dt = n!

Γ(β)
(α + 1)n

p−β Lα
n(λ/p) (10.1)

where Re p > 0 and Lα
n is a Laguerre polynomial. Since

pν
n(x, t) =

α3n(ν)
n!

tn 1F2(−n; 1/3, ν + 2/3| − x3

27t
)

a change of variables in (10.1) yields the following result.

Theorem 10.1. Let ν > 0. Then
(−1)n

33ntn+1/3Γ(n + 1/3) n!

∫ ∞

0

e−
z3

27tτ pν
n(z,−t) dz = τ1/3Lν−1/3

n (τ), n = 0, 1, . . .

By the usual orthogonality of the Laguerre polynomials, we obtain∫ ∞

0

Lν+1/3
m (τ)Lν−1/3

n (τ)e−τ τν−1/3 dτ =
Γ(ν + n + 2/3)

n!
δn,m (10.2)

where δn,m is the Kronecker delta and Re(ν − 1/3) > −1. Thus (10.2) is valid for
ν ≥ 0.

Theorem 10.2. For ν ≥ 0, we have

1
σn(t)

∫ ∞

0

∫ ∞

0

∫ ∞

0

exp(−z3 + y3

27tτ
)e−τpν

n(z,−t)pν
m(y,−t)τν−1 dτ dz dy

= α3n(ν)δn,m

(10.3)

n = 0, 1, 2, . . . , where σn(t) = 33nt2n+2/3Γ(n + 1/3)Γ(1/3)Γ(ν + 2/3).
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Proof. Using Theorem 10.1 and Fubini’s Theorem, we get∫ ∞

0

τ1/3Lν−1/3
m (τ)Lν−1/3

n (τ)e−ττν−1 dτ

=
1

(33ntn+1/3Γ(n + 1/3) n!)2

×
∫ ∞

0

eτ tν−1 dτ

∫ ∞

0

e−
z3

27tτ pν
n(z,−t) dz

∫ ∞

0

e−
y3

27tτ pν
m(y,−τ) dy

=
1

(33ntn+1/3Γ(n + 1/3) n!)2

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−
z3+y3

27tτ e−τpν
m(z,−t)pν

n(y,−t)τν−1 dτ dz dy

=
Γ(ν + n + 2/3)

n!
δn,m .

Adjusting the constants yields the theorem. �

By Erdelyi, [17, p. 149], we have the relation∫ ∞

0

e−ttν−1e−
α
4t dt = z(

α

4
)ν/2Kν(α1/2)

where Kν is a modified Bessel function. With a suitable change of variables, we
obtain ∫ ∞

0

e−
z3+y3

27tτ τν−1e−τ dτ = 2
[z3 + y3

27t

]ν/2
Kν

(
2
(z3 + y3

27t

)1/2
)

.

Substitution into (10.3), gives the equation

2
σn(t)

∫ ∞

0

∫ ∞

0

[z3 + y3

27t

]ν/2

Kν

[
2
(z3 + y3

27t

)1/2
]
pν

n(z,−t)pν
m(y,−t) dz dy

= α3n(ν)δn,m

for n = 0, 1, 2, . . . . Under suitable conditions on the sequence {a3n}∞0 , the function

u(x, t) =
∞∑

m=0

a3mpν
m(x, t)

is in Hν(0,∞) for t > 0. In the usual calculus manner the coefficients are formally
determined by

a3n =
1

α3n

∫ ∞

0

∫ ∞

0

[x3 + y3

27t

]ν/2

Kν

[
2
(z3 + y3

27t

)1/2
]
u(z,−t)pν

n(y,−t) dz dy

We will consider convergence criteria in the next section.

11. ν-Diffusion Polynomial Expansions

The diffusion polynomials pν
n(x, t) satisfy the ν-Airy diffusion equation

ϑνu(x, t) = Dtu(x, t). Since the partial differential equation is linear, finite linear
combinations of the diffusion polynomials are also solutions in Hν(0 ≤ x < ∞), for
all t. Hence we expect to obtain infinite series expansions

u(x, t) =
∞∑

m=0

a3mpν
m(x, t)
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with possible convergence in a strip |t| < σ.

Theorem 11.1. Let ν ≥ 0, then

|pν
n(x, t)| ≤ M α3ne|x|+|t| (11.1)

Proof. Since

e−tz3
Gν(xz) =

∞∑
n=0

pν
n(x, t)

α3n(ν)
z3n

is an entire function, we find by Cauchy’s Theorem that

pν
n(x, t) =

α3n

2πi

∫
Γ

e−tz3
Gν(xz)

z3n+1
dz ,

where Γ is the unit circle, |z| = 1. Since Gν(z) is an entire function of order one,
we have |Gν(xz)| ≤ Me|xz|. Therefore,

|pν
n(x, t)| ≤ M

α3n

2π

∫
Γ

e|xz|−|t||z|3 |dz| ≤ Mα3n(ν)e|x|+|t|

Since |Gν(xz)| ≤ Gν(|x||z|) = Gν(|x|) on |z| = 1, we also get the estimate

|pν
n(x, t)| ≤ α3nGν(|x|)e|t|

�

Theorem 11.2. Suppose
∑∞

n=0 |an| < ∞, then the series
∞∑

n=0

an
pν

n(x, t)
α3n

converges absolutely and locally uniformly for |x| < ∞ and |t| < ∞.

Proof. By the estimate (11.1), it follows that∣∣∣ ∞∑
n=0

an
pν

n(x, t)
α3n

∣∣∣ ≤ Me|x|+|t|
∞∑

n=0

|an| < ∞

Thus the series converges absolutely and locally uniformly by the Weierstrass M-
test. Since ϑν

α3n
pν

n(x, t) = pν
n−1(x,t)

α3(n−1)
, it also follows that the differentiated series

converges locally uniformly and therefore the series represents a function in Hν for
|x| < ∞ and |t| < ∞. �

Let

Rν(z) =
∞∑

n=0

z3n

33n(1/3)n(ν + 2/3)n
=1 F2

(
1

1/3, ν + 2/3

∣∣∣∣ z3

27t

)
.

Then using Stirling’s formula we get

lim sup
n→∞

3n log 3n

log (33n(1/3)n(ν + 2/3)n)
= 3/2

Therefore, Rν is an entire function of order 3/2. Furthermore,

lim sup
n→∞

3n
∣∣∣ 1
33n(1/3)n(ν + 2/3)n

∣∣∣ 3/2
2n

=
e√
3

.

Therefore, Rν(x) is of type 2
3
√

3
.
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Lemma 11.3. Let δ > 0. Then
pν

n(|x|, |t|)
α3n(ν)

≤ δn

n!
(1 +

|t|
δ

)nRν

( |x|
δ1/3

)
Proof. We have

pν
n(|x|, |t|)

α3n
≤ δn

n!

∞∑
n=0

(
|t|
δ

)n−k |x|3k

δk

33k(1/3)k(ν + 2/3)k

≤ Rν(
|x|
δ1/3

)
δn

n!

∞∑
n=0

(
n

k

)(
|t|
δ

)n−k

=
δn

n!
(1 +

|t|
δ

)nRν(
|x|
δ1/3

)

since
|x|3k

δk

33k(1/3)k(ν + 2/3)k
< Rν(

|x|
δ1/3

)

�

Lemma 11.4.
pν

n(x, t) ≥ α3n

n!
tn, for t, x > 0

Proof. Since the coefficients of pν
n are positive, it follows that pν

n(x, t) ≥ pν
n(0, t) =

α3n

n! tn. �

Theorem 11.5. If the series
∑∞

n=0 anpν
n(x0, t0) converges for t0 > 0 and x0 > 0,

then the series
∞∑

n=0

anpν
n(x, t) and

∞∑
n=0

and3n(ν)pν
n−1(x, t)

converge absolutely and locally uniformly in the strip |t| < t0 and
∑∞

n=0 anpν
n(x, t)

is in Hν(R+) for |t| < t0.

Proof. Since the general term of a convergent series must go to zero,

lim
n→∞

anpν
n(x0, t0) = 0 .

By Lemma 11.4, it therefore follows that

an = O
( n!
α3ntn0

)
.

Using Lemma 11.3, we get for δ > 0
∞∑

n=0

and3npν
n−1(x, t)`M

infty∑
n=1

n!
α3ntn0

α3n

n!
(δ + |t|)nRν(

|x|
δ1/3

)

≤ MRν(
|x|
δ1/3

)
∞∑

n=0

(δ + |t|
t0

)n
which converges for δ+|t| < t0. Since δ > 0 is arbitrary it converges for (δ+|t|) < t0,
and as before for |t| < t0. The Weierstrass M-test provides the local uniform
convergence.
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Let f(z) =
∑∞

n=0 anzn be an entire function of order ρ, ρ > 0, and of type
0 < σ < ∞. The type is determined by

lim sup
n→∞

3n

eρ
|an|

ρ
3n = σ

see for example Boas, [6, p. 11]. Therefore,

|an| ≤ M
(eσρ

3n

)3n/ρ

(11.2)

�

Theorem 11.6. If f(z) =
∑∞

n=0 anz3n is an entire function of order ρ with 0 <
ρ < 3/2 and of type σ, 0 < σ < ∞, then

u(x, t) =
∞∑

n=0

anpν
n(x, t) (11.3)

is in Hν(R) in the strip |t| < 1/(σρ)3/ρ and u(x, 0) = f(x).

Proof. Using (11.2) and Lemma 11.3, for δ > 0 we obtain
∞∑

n=0

anpν
n(x, t)`M

∞∑
n=0

(eσρ

3n

)3n/ρ α3n

n!
(δ + |t|)nRν(

|x|
δ1/3

(11.4)

Using Stirling’s formula, we get the estimate(eσρ

3n

)3n/ρ

33n(1/3)n(ν + 2/3)n ∼
[e1− 2

3 ρ3ρ−1

n1− 2
3 ρ− νρ

3n

]3n/ρ 2π(σρ)3n/ρ

Γ(1/3)Γ(ν + 2/3)

Now [e1− 2
3 ρ3ρ−1

n1− 2
3 ρ− νρ

3n

]3n/ρ 2π(σρ)3n/ρ

Γ(1/3)Γ(ν + 2/3)
= O(1)

for 0 < ρ < 3/2. Thus the series in (11.4) is dominated by

MtRν(
|x|
δ1/3

)
∞∑

n=0

{(σρ)3/ρ(δ + |t|)}n

which converges for (σρ)3/ρ(δ + |t|) < 1. Since δ > 0 is arbitrary we get absolute
and local uniform convergence for |t| < 1

(σρ)3/ρ , by the Weierstrass M-test. Since
the order and type of an entire functions is not changed by taking derivatives, a
similar type argument shows that the derived series

∞∑
n=1

and2npν
n−1(x, t)

also converges absolutely and locally uniformly for |t| < 1
(σρ)3/ρ . It follows that

u(x, t) given by (11.3) is in Hν in the stated strip. �

In the classical case developed by Widder [33] or in the Bessel function case
treated by Bragg [8] and Cholewinski and Haimo [11], a series expansion of the
type given by (11.3), leads to an integral representation of u(x, t). In both of those
cases the representation depends on the fact that the diffusion polynomials can be
represented by Gaussian type integrals in terms of the source function. In the Hν

case the corresponding integrals diverge.
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The theorem does not imply that the given strip is the best possible. For example
with Gν(x) =

∑∞
n=0

x3n

α3n
, an entire function of order one and type one, we get

u(x, t) = etGν(x) =
∞∑

n=0

pν
n(x, t)
α3n

which converges for all x and t. The theorem gives the strip |t| < 1.
Next we consider a sequence of complex numbers {an}∞0 for which |an|α3n(ν) =

O(1). Using Stirling’s formula, we find that

lim sup
n→∞

3n log 3n

log 1
|an|

≤ 1

Thus the function f(z) =
∑∞

n=0 anzn is an entire function of order less than or
equal to one. Likewise another calculation using Stirling’s formula yields

lim sup
n→∞

3n

e
|an|1/3n ≤ 1

Thus f(z) is of growth ≤ {1, 1}. We let fr(z) =
∑∞

n=0 anr3nz3n with 0 < r < 1 be
the “Abel means” of f .

Theorem 11.7. If |an|α3n = O(1), then

ur(x, t) =
∞∑

n=0

anr3npν
n(x, t)

is an entire function in the variables x and t and it is in Hν for all x and t.

Proof. By Theorem 11.1, we get the domination
∞∑

n=0

|an|r3n|pν
n(x, t)| ≤ Me|x|+|t|

∞∑
n=0

|an|α3nr3n

≤ Me|x|+|t|
∞∑

n=0

r3n

= Me|x|+|t|
1

1− r3
< ∞

for 0 < r < 1. Once again the Weierstrass M-test gives absolute and locally uniform
convergence for x and t in C, the complex numbers.

In the case an = 1
α3n(ν) , we get Gν(rz) =

∑∞
n=0

r3nz3n

α3n
and we recover the

generating function

ur(x, t) = etr3
Gν(rx) =

∞∑
n=0

pν
n(x, t)
α3n

r3n .

�

12. Associated Functions

A sequence of ν-associated functions is defined as

Qν
n(x, t) = (−ϑν)nKν(x, t) = (−1)n ∂n

∂tn
Kν(x, t) ,

where Kν(x, t) is the source solution of ϑν u = ut. Expansions in terms of the
Qν

n(x, t) are related to Laurent expansions for analytic functions, see Widder [34] for
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the ordinary heat equation or Cholewinski and Haimo [11] for the Bessel function
case. Since −ϑν Qν

n(x, t) = (−ϑν)n+1Kν(x, t) = Qν
n+1(x, t), and ∂

∂t Qν
n(x, t) =

−Qν
n+1(x, t), it follows that ϑν Qν

n(x, t) = ∂
∂t Qν

n(x, t) for t > 0.
By our previous integral representation,

Kν(x, t) =
∫ ∞

0

e−ty3
Gν(xy) dην(y), t > 0

Since Gν(xy) and its derivatives are entire functions of growth {1, 1}, we obtain
and integral representation for Qν

n(x, t), namely,

Qν
n(x, t) =

∫ ∞

0

y3ne−ty3
Gν(xy) dην(y) (12.1)

The growth condition yields the necessary domination integrals for the absolute and
local uniform convergence. Further, Fubini’s Theorem yields the series expansion

Qν
n(x, t) =

∞∑
m=0

(−1)mx3m

α3m

∫ ∞

0

e−ty3
y3n+3m+3ν+1 dy

cν

=
∞∑

m=0

(−1)mΓ(n + m + ν + 2/3)
α3m(ν)3ν+2/3Γ(ν + 2/3)

xm

tn+m+ν+2/3

=
(ν + 2/3)nt−n

(3t)ν+2/3 1F2

[
n + ν + 2/3
1/3, ν + 2/3

∣∣∣∣− x3

27t

]
.

(12.2)

A direct calculation employing the coefficients of Qν
n(x, t) shows that Qν

n is an entire
function of growth {3/2, 2

3
√

3|t|1/2 }, for t 6= 0, which is the growth of Kν(x, t).
Next we obtain an upper bound of |Qν

n(x, t)| that applies to the variables ν, n,
x, and t.

Lemma 12.1. Let ν ≥ 0. Then

|Qν
n(x, t)| ≤ M(ν + 2/3)n

ex2/2

tn+ν+2/3
, t > 0 (12.3)

Proof. Since Gν(x) is of growth {1, 1}, we have

|Gν(xy)| ≤ Me|x||y| ≤ Me
|x|2+|y|2

2 .

Let ε > 0. Since y2/2 ≤ εy3, we get

|Qν
n(x, t)| ≤ Me|x|

2/2

∫ ∞

0

y3ne−ty3
ey2/2 dην(y)

≤ M
e|x|

2/2

Γ(ν + 3/2)

∫ ∞

0

e−(t−ε)y3
y3n+3ν+1 dy

= Me|x|
2/2 Γ(n + ν + 2/3)

(t− ε)n+ν+2/3
, for t > ε > 0 .

Since ε > 0 is arbitrary, we obtain inequality 12.3. �

The integral (12.1) leads to a number of generating functions involving the as-
sociated functions Qν

n. We have for t > 0
∞∑

n=0

Qν
n(x, t)
n!

zn = Kν(x,−z + t) with z < t
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for
∞∑

n=0

Qν
n(x, t)
n!

zn =
∫ ∞

0

ezy3−ty3
Gν(xy) dην(y)

The integral is dominated by

M

∫ ∞

0

e(z−t)y2
e|xy| dην(y) for z − t < 0 .

Therefore, the interchange of summation and integration is valid for z − t < 0. In
a similar fashion, it follows that

∞∑
n=0

(−1)nQν
n(x, t)

α3n
z3n =

∫ ∞

0

e−ty3
Gν(xy)Gν(yz)ην(y) . = K(x⊕ν z, t)

This series is also the symbolic time series solution given by Gν(zD
1/3
t )Kν(x, t).

Let φ(z) =
∑∞

n=0 anzn be an entire function of growth {3, σ},that is for ε > 0

|φ(z)| ≤ Me(σ+ε)|z|3 .

Theorem 12.2. If φ is of growth {3, σ}, then

u(x, t) =
∫ ∞

0

e−ty3
Gν(xy)φ(y) dην(y)

is in Hν for t > σ ≥ 0.

Proof. Since Gν is of growth {1, 1}, we find that∣∣∣ ∫ ∞

0

Gν(xy)e−ty2
φ(y) dην(y)

∣∣∣ ≤ M

∫ ∞

0

exye−ty3
e(σ+ε)y3 dην(y)

< ∞, for t > σ + ε .

(12.4)

Since ε > 0 is arbitrary, the integral converges absolutely and locally uniformly.
Since derivatives of Gν are also of growth {1, 1}, similar domination integrals allow
the interchange of integration and differentiation. It readily follows that u is in Hν

for t > σ ≥ 0. �

The integral representation also leads to an infinite series for u(x, t). By (12.4),
we also have∣∣∣ ∫ ∞

0

e−ty3
Gν(xy)

∞∑
n=0

any3 dην(y)
∣∣∣ ≤ M

∫ ∞

0

exye−ty3
e(σ+ε)y3 dην(y) < ∞ .

Thus by Fubini’s Theorem and domination for the differentiate integrals we get

u(x, t) =
∞∑

n=0

an

∫ ∞

0

Gν(xy)y3ne−ty3
dην(y)

=
∞∑

n=0

(−1)nanϑn
x

∫ ∞

0

Gν(xy)e−ty3
dην(y)

=
∞∑

n=0

an(−ϑν)nKν(x, t)

=
∞∑

n=0

anQν
n(x, t)

which converges of all x and t > σ.
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Theorem 12.3. If the series
∞∑

n=0

bnQν
n(x, t)

converges absolutely for t > σ, then φ(y) =
∑∞

n=0 bny3n is of growth {3, σ}.

Proof. By the alternating series test

1− (xy)3

α3
≤ Gν(xy), x, y ≥ 0 .

Hence we get ∫ ∞

0

(1− (xy)3

3
)y3ne−ty3

dην(y) ≤ Qν
n(x, t) .

Next ∫ ∞

0

e−ty3
y3n dην(y) =

(ν + 2/3)n

3ν+2/3tn+ν+2/3
.

Therefore,

1
(3t)ν+2/3

∞∑
n=0

|bn|
tn

((ν + 2/3)n −
x3

α3

(ν + 2/3)n+1

t
) ≤

∞∑
n=0

|bn||Qν
n(x, t)|

and limn→∞
|bn|
tn (ν + 2/3)1/n

n+1 = 0. By Stirling’s formula (ν + 2/3)1/n
n and (ν +

2/3)1/n
n+1 ∼ ne−1. It follows that |bn|1/n ≤ (σ+ε)

ν+2/3)
1/n
n

≤ e
n (σ + ε) since the series

converges for t = σ + ε. Consequently

lim sup
n→∞

3n|bn|
3
3n ≤ σ + ε

and therefore ε > 0 arbitrary implies that φ(y) is of growth type {3, σ}. �

Example. Let φ(x) = eax3
, which is of growth {3, |a|}. Applying the bound (12.3),

Stirling’s formula and the root test to the series
∞∑

n=0

an

n!
Qν

n(x, t)

we get

lim sup
n→∞

{ |a|n(ν + 2/3)n

n!tn
}1/n

=
|a|
t

.

Thus the convergence follows for 0 < |a| < t.

13. Bessel Calculus Connections

The elements of the calculus associated with ϑν can be associated with the ele-
ments of the calculus associated with the Bessel calculus. Formally the associations
can be obtained through the use of a generalized Hadamard product. However, we
present most of the results as integral representations between the elements of the
respective calculi.

Let ν ≥ 0 and µ = ν +1/6, then the Bessel coefficient is b2n(µ) = b2n(ν +1/6) =
22n n! (ν+2/3)n. Thus we have the coefficient relation α3n(ν) = ( 27

4 )n(1/3)nb2n(ν).
We associated with a ν-exponential power series

f(z) =
∞∑

n=0

an

α3n(ν)
z3n
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the power series

f#(z) =
∞∑

n=0

an

b2n(µ)
z2n .

Theorem 13.1. Let ν ≥ 0 and f(z) =
∑∞

n=0
an

α3n(ν) z3n be an entire function of
order ρf with 0 ≤ ρf < 3. then f#(z) =

∑∞
n=0

an

b2n(µ) z2n is an entire function of
order ρf# = 2ρf/(3− ρf ).

Proof. By Stirling’s formula it follows that

log α3n(ν)
b2n(µ)

3n log 3n
→ 1/3 as n →∞ .

Since lim supn→∞
3n log 3n
log |α3n

an
| = ρf , we find that

3n log 3n

log |α3n

b2n

b2n

an
|

=
1

log
∣∣∣ α3n

b2n

∣∣∣
3n log 3n + 2

3

log | b2n
an
|

2n log( e
2 2n)

' 1
1/3 + 2

3
1

ρf#

= ρf .

Solving for ρf# , we get

ρf# =
2ρf

3− ρf
.

�

Example. consider the entire function f(z) = exp(z3) of order 3. We have

f(z) =
∞∑

n=0

(−1)n

n!
z3n =

∞∑
n=0

(−1)n33n(1/3)n(ν + 2/3)n

α3n(ν)
z3n

and

f#(z) =
∞∑

n=0

(−1)n33n(1/3)n(ν + 2/3)n

b2n(µ)
z2n =1 F0(1/3| − 27

4
z2) .

Since 1F0(1/3|z) converges for |z| < 1, f# is holomorphic in the disk |z| < 2/3. In
this case f# is not an entire function.

Example. The function Gν(z) =
∑∞

n=0
z3n

α3n
is an entire function of order 1. We

have

Gν #(z) =
∞∑

n=0

z2n

b2n(µ)
= Iν+1/6(z)

is also a known entire function of order 1. The functions Gν(z) and Iµ(z) are zeta
functions in their respective calculi. We also have Gν #(z) = Jµ(z).

Proposition 13.2. Let ν ≥ 0 and f(z) =
∑∞

n=0
an

α3n(ν) z3n be an entire function
of order {3, σ} with σ > 0, then the integral∫ ∞

0

e−
4zy3

27x2 f(zy) dy (13.1)

converges absolutely and locally uniformly for 0 < (xz)2 < 4
27σ with z > 0.
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Proof. For ε > 0, we have the domination∣∣∣ ∫ ∞

0

e−
4zy3

27x2 f(zy) dy
∣∣∣ ≤ M

∫ ∞

0

e−
4zy3

27x2 e(σ+ε)z3y3
dy

and the theorem follows. �

If f(z) is an entire function of order 0 ≤ ρf < 3, then it readily follows that the
integral (13.1) converges absolutely and locally uniformly for z, x > 0. Thus in this
case summations can be interchanged with the integration.

Proposition 13.3.∫ ∞

0

e−
4zy3

27x2 y3n dy =
33nx2n+2/3

22n+2/3zn+1/3
Γ(n + 1/3)

Proof. With the change of variables s = y3, the integral reverts to a gamma function
integral representation. �

Theorem 13.4. Let f(z) =
∑∞

n=0
an

α3n(ν) z3n be an entire function of order ≤ 3,
then

z1/322/3

x2/3Γ(1/3)

∫ ∞

0

e−
4zy3

27x2 f(zy) dy =
∞∑

n=0

an

b2n(µ)
(xz)2n = f#(zx) (13.2)

for x, z > 0.

Proof. Since f is of order less than three, we can invert the integration and sum-
mation in the integral 13.2. the result the follows by a term for term application of
Proposition 13.3. �

The next result shows that the source solution in the ν-calculus is related to the
Gaussian source solution of the radial heat equation

∆x(u)u(x, t) =
∂2u

∂x2
+

2µ

x

∂u

∂x
=

∂u

∂t
, µ = ν + 1/6 (13.3)

see Cholewinski and Haimo [11].

Theorem 13.5. Let ν ≥ 0. Then

3ν+2/3x−2/3

2νΓ(1/3)

∫ ∞

0

2−
4y3

27x2 Kν(y, t) dy =
1

(2t)(ν+1/6)+1/2
e−

x2
4t

for t > 0 and x 6= 0.

Proof. Since Kν(y, t) is an entire function of order 3/2, we can interchange the
summations and integrations in the following equations. Using Proposition 13.3,
we obtain∫ ∞

0

e−
4y3

27x2 Kν(y, t) dy =
1

(3t)ν+2/3

∞∑
n=0

(−1)nt−n

33n n! (1/3)n

∫ ∞

0

e−
4y3

27x2 y3n dy

=
Γ(1/3)x2/3

(3t)ν+2/322/3

∞∑
n=0

(−1)nx2nt−n

22n n!

=
Γ(1/3)x2/32ν

3ν+2/3

1
(2t)ν+2/3

e−
x2
4t

�
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Next we let Pn,m(x, t) denote the radial heat polynomials of Cholewinski and
Haimo [11] and of Bragg [8]. We have

Pn,µ(x, t) =
n∑

k=0

22k

(
n

k

)
Γ(µ + 1/2 + n)

Γ(µ + 1/2 + n− k)
x2(n−k)tk .

Theorem 13.6. Let pν
n(x, t) denote the ν- diffusion polynomials associated with

ϑν . Then
22n+2/3x−2/3

33nΓ(n + 1/3)

∫ ∞

0

e−
4y3

27x2 pν
n(y, t) dy = Pn,ν+1/6(x, t)

The proof follows by using (7.3) and Proposition 13.3, the result follows by
interchanging the finite summation and integration.

Theorems 13.5 and 13.6 show that ν-diffusion polynomials and radial heat func-
tions can in some cases be related by an integral equation.

Let Wn,ν(x, t) denote the Appell transform of Pn,µ(x, t) given by

Wn,ν(x, t) =
1

(2t)ν+1/2
e−

x2
4t Pn,µ(x/t,−1/t)

= t−2nGν(x, t)Pn,µ(x,−t)

=
(−1)n22n(ν + 1/2)n

2ν+1/2tn+ν+1/2 1F1

[
n + ν + 1/2

ν + 1/2

∣∣∣∣− x2

4t

]
;

see Cholewinski and Haimo [11]. Wn,µ(x, t) is a solution of the radial heat equation,
(13.3), and plays the role of z−(n+1) in radial heat expansions, see for example
Widder [34] for the classical heat theory.

Theorem 13.7. Let Qν
n(x, t) be the ν-associated function given by (12.2), then

(−1)n3ν+2/322n−ν

Γ(1/3)x2/3

∫ ∞

0

e−
4y3

27x2 Qν
n(y, t) dy

= Wn,ν+1/6(x, t)

= t−2n 1
(2t)ν+1/6+1/2

e−
x2
4t Pn,ν+1/6(x,−t)

Since Qν
n(y, t) is an entire function of order 3/2, the proof follows by a term for

term application of Proposition 13.3.
This result shows that in a ν-Appell transform theory the functions Qν

n(y, t)
play the role of the Wn,µ(x, t) in the radial heat equation. The generalized Hankel
translation defined by Bochner [7] or Delsarte [15] is given by

f(x�µ y) =
Γ(µ + 1/2)
Γ(µ)Γ(1/2)

∫ π

0

f({x2 + y2 − 2xycos θ}1/2) sin2µ+1 θ dθ

=
∫ ∞

0

f(z)Dµ(x, y, z) dµ(z) ,

(13.4)

where

Dµ(x, y, z) =
23µ−5/2Γ(µ + 1/2)2

Γ(µ) π1/2
(xyz)1−2µ∆(x, y, z)2µ−2

and ∆(x, y, z) is the area of a triangle with sides x, y, z is g there is such a triangle,
and otherwise D(x, y, z) = 0. The measure is given by

dµ(x) =
x2µ

2µ−1/2Γ(µ + 1/2)
dx
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In the case f(z) = z2n, we get the Bessel binomial

(x�µ y)2n =
∫ ∞

0

z2nDµ(x, y, z) dµ(z)

= y2n
2F1

[
−n,−n− µ + 1/2

µ + 1/2

∣∣∣∣x2

y2

]
.

Hirschman developed the Banach algebra for L1[0,∞, dµ] with translations given
by (13.4), see [21]. At the present time a Banach algebra associated with ϑν and
the translation (x⊕ν y)3n is unknown. In this paper the ν-translation f(x⊕ν y) is
defined for a restricted class of functions.

Theorem 13.8. Let ν ≥ 0 and let µ = ν + 1/2. Then

22n+4/3(xy)−2/3

Γ(1/3)233n(1/3)n

∫ ∞

0

∫ ∞

0

e
− 4

27 ( w3

y2 + z3

x2 (z ⊕ν w)3n dz dw = (x�µ y)2n

for x, y > 0.

The proof follows by interchanging the finite sums in the iterated integrals and
by Proposition 13.3.

The integral relation given by Theorem 13.8 can be extended by a number pf
classes of functions f(z). For example if f is defined by the Stieltjes integral

f(z) =
∫ ∞

0

Gν(zx) dβ(x) , (13.5)

where β(x) is increasing and bounded with compact support for dβ(x) in (0,∞).
Then

|f(z)| ≤ Gν(a|z|)
∫ a

0

dβ(x) ≤ Mea|z|

where a is is the least upper bound of the support of dβ(x). In this case f is an
entire function of growth {1, a} and it follows that

f(z ⊕ν w) =
∫ ∞

0

Gν(zx)Gν(wx) dβ(x)

with

|f(z ⊕ν w)| ≤ Gν(zx)Gν(wx)
∫ a

0

dβ(x) ≤ Mea|z|+a|w| .

We define

fb(x) =
∫ ∞

0

Jµ(xt) dβ(t2/3) .

Thus fb(x) is an entire function which is bounded on the real axis. We have

|fb(x)| ≤
∫ ∞

0

|Jµ(xt)| dβ(t2/3) ≤
∫ ∞

0

dβ(t2/3) < ∞

since |Jµ(xt)| ≤ 1. From the Hankel translation theory it follows that

fb(x�µ y) =
∫ ∞

0

Jµ(tx)Jµ(ty) dβ(t2/3) .

Theorem 13.9. Let f(z) be defined by (13.5). Then for x, y > 0,

24/3

(xy)2/3Γ(1/3)2

∫ ∞

0

∫ ∞

0

e
− 4

27 ( w3

y2 + z3

x2 )
f(z ⊕ν w) dz dw = fb(x�µ y) . (13.6)
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Proof. The integral in (13.6) is dominated by

M

∫ ∞

0

∫ ∞

0

e
− 4

27 ( w3

y2 + z3

x2 )
dw dz < ∞

and therefore converges absolutely and locally uniformly. Hence we can invert the
following iterated integrals. We note that by Theorem 13.4, it follows that∫ ∞

0

e−
4
27

z3

x2 Gν(tz) dz =
x2/3Γ(1/3)

22/3
Jµ(xt3/2)

We have∫ ∞

0

∫ ∞

0

e
− 4

27 ( w3

y2 + z3

x2 )
∫ ∞

0

Gν(zt)Gν(wt) dβ(t) dw dz

=
∫ ∞

0

dβ(t)
∫ ∞

0

Gν(wt)e−
4
27

w3

y2 dw

∫ ∞

0

Gν(zt)e−
4
27

z3

x2 dz

=
x2/3Γ(1/3)

22/3

∫ ∞

0

Jµ(xt3/2) dβ(t)
∫ ∞

0

Gν(wt)e−
4
27

w3

y2 dw

=
(xy)2/3Γ(1/3)2

24/3

∫ ∞

0

Jµ(xt3/2)Jµ(yt3/2) dβ(t)

=
(xy)2/3Γ(1/3)2

24/3
fb(x�ν y), with the change of variables t∗ = t3/2

Hence the theorem follows. �

The basic translation kernels (x �ν y)2n and (x ⊕ν y)3n can also be related to
each other by Beta function integrals.

Theorem 13.10. Let ν ≥ 0 and let ν∗ = ν + 1/6. Then

(x�ν∗ y)2n =
∫ 1

0

t−2/3(1− t)−2/3(x2/3t1/3⊕ν y2/3(1− t)1/3)3n dt/B(1/3, n+1/3) .

Proof. The generalized binomials are related by(
α3n(ν)
α3k(ν)

)
=
(

b2n(ν∗)
b2k(ν∗)

)
(1/3)n

(1/3)k(1/3)n−k

=
(

b2n(ν∗)
b2k(ν∗)

)
B(1/3, n + 1/3)

B(1/3 + k, n− k + 1/3)
,

where B(p, q) is the Beta function. We have∫ 1

0

t−2/3(1− t)−2/3(x2/3t1/3 ⊕ν y2/3(1− t)1/3)3n dt

=
n∑

k=0

(
α3n(ν)
α3k(ν)

)
x2ky2(n−k)

∫ 1

0

tk−2/3(1− t)n−k−2/3 dt

=
n∑

k=0

(
b2n(ν∗)
b2k(ν∗)

)
B(1/3, n + 1/3)

B(1/3 + k, n− k + 1/3)
B(1/3 + k, 1/3 + n− k)x2ky2(n−k)

= B(1/3, n + 1/3)
n∑

k=0

(
b2n(ν∗)
b2k(ν∗)

)
x2ky2(n−k)

= B(1/3, n + 1/3)(x�ν∗ y)2n
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and the theorem follows. �

The basis addition formula for Bessel functions is given by the integral

Jν∗(x�ν∗ y) =
∫ ∞

0

Jν∗(z)Dν∗(x, y, z) dµν∗(z) = Jν∗(x)Jν∗(y) .

Using the previous theorem, a calculation shows that

Jν∗(x�ν y) =
1

B(1/3, 1/3)

∫ 1

0

t−2/3(1− t)−2/3

× 1F2

[
2/3

1/3, ν + 2/3

∣∣∣∣ (x2/3t1/3 ⊕ν y2/3(1− t)1/3)3

4

]
dt

= Jν∗(x)Jν∗(y)

14. Generalized Positive Definite Kernels

Bochner [7] obtained a positive definite theory associated with Bessel functions.
Bochner’s main result was extended by Cholewinski, Haimo and Nussbaum [12].
The positive definite results depend on the Banach algebra associated with kernel
functions, see Hirschman [21]. In this section we obtain partial results concerning
positive definite functions associated with the (x⊕ν y) translations. Banach algebra
results are not available in this latter case.

Let f(x) be a function on 0 ≤ x < ∞ for which the ν-translation function
f(x⊕ν y) is well defined. The function f is said to be ν-positive definite if

n∑
i,j=1

aiājf(xi ⊕ν yj) ≥ 0 (14.1)

for all finite sets 0 < x1, x2, . . . , xn and complex a1, a2, . . . , an. We write f ∈ PDν .
Since the discrete sum 14.1 implies its continuous counterpart, see for example
Widder [34], p. 270, we have for suitable real valued continuous functions φ(x)
that

I(φ) =
∫ ∞

0

∫ ∞

0

φ(x)φ(y)f(xi ⊕ν yj) dην(y) dην(x) ≥ 0

Let φ(x) be a function on 0 ≤ x < ∞ such that the integral∫ ∞

0

|φ(x)| Gν(xz) dην(x) (14.2)

converges locally uniformly for z in R+. We define the LTν transform of φ by

LTν(φ) = φ̂(z) =
∫ ∞

0

φ(x)Gν(xz) dην(x) (14.3)

This is a generalization of the Laplace transform or of the Hankel transform in the
Bessel function case. Clearly this transform is linear on the functions for which
14.2 converges. If β(t) is any function on 0 ≤ t < ∞ for which the integral∫ ∞

0

Gν(xt) dβ(t)

converges locally uniformly for x in R+, the LTν-Stieltjes transform of β(t) is given
by

β̂S(x) =
∫ ∞

0

Gν(xt) dβ(t)
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Examples. A. Let φ(x) ∈ C∞
00 (R+), with φ(x) = 0 for x ≥ a then

|φ̂(z)| ≤
∫ ∞

0

|φ(x)||Gν(xz)| dην(x) =
∫ a

0

|φ(x)||Gν(xz)| dην(x) ≤ M ea|z| .

Thus φ is an entire function in z of order 1 and type a.
B. Let β(x) be an increasing function on 0 ≤ x < ∞, which is constant for x ≥ a,
then

|β̂S(x)| ≤
∫
|Gν(xt)| dβ(t) ≤

∫ a

0

|Gν(xt)| dβ(t) ≤ M ea|x| .

Thus β̂S has an extension to an entire function in x
C. Let φ be a continuous function on 0 ≤ x < ∞, such that |φ(x)| ≤ M exp(−xρ)
with ρ > 2. Then φ̂(z) is given by 14.3 is an entire function in z.

Let β(z) be an increasing function as in Example B and φ be an element of
C∞

00 (R+). The function

f(x⊕ν y) =
∫ ∞

0

Gν(xz)Gν(yz) dβ(z)

is well-defined and, using Fubini’s Theorem, we get

I(φ) =
∫ ∞

0

∫ ∞

0

φ(x)φ̄(y)f(x⊕ν y) dην(x)dην(y)

=
∫ ∞

0

dβ(z)
∫ ∞

0

φ(x)Gν(xz) dην(x)
∫ ∞

0

φ̄(y)Gν(yz) dην(y)

=
∫ ∞

0

|φ̂(z)|2 dβ(z) > 0

(14.4)

Theorem 14.1. Let

f(x) =
∫ ∞

0

G(xz) dβ(z)

with β given by Example B, the f is in PDν .

Proof. Let 0 < x1, x2, . . . , xn and a1, a2, . . . , an be arbitrary, then
n∑

i,j=0

aiājf(xi ⊕ν xj) =
∫ ∞

0

|
n∑

i=1

aiGν(xiz)|2 dβ(z) ≥ 0 .

�

Example. The source kernel Kν(x; t) is ν-positive definite. We have

Kν(x; t) =
∫ ∞

0

exp(−ty3)Gν(xy) dην(y)

and
n∑

i,j=0

aiājKν(xi ⊕ν xj ; t) =
∫ ∞

0

exp(−ty3)|
n∑

i=1

aiGν(xiy)|2 dηnu(y) ≥ 0

Following S. Bernstein [5] we define a function f(x) on 0 < a < x < b to
be ν-absolutely monotonic if it has non-negative ϑν-derivatives of all orders, i.e.,
ϑk

νf(x) ≥ 0, 0 < a < x < b; k = 0, 1, 2, . . . .
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Examples. The following functions are ν-absolutely monotonic:
(1) f(x) =

∑n
k=0 akx3k with ak ≥ 0 on 0 ≤ x < ∞.

(2) f(x) =
∑∞

k=0 akx3k for 0 ≤ x ≤ ρ with ak ≥ 0.
(3) f(x) =

∫∞
0
Gν(xy) dβ(y) for 0 ≤ x < ∞ with β(y) increasing and constant

for y ≥ a > 0. Functions given this way are also in PDν on 0 ≤ x < ∞.

Theorem 14.2. Let φ ∈ C∞
00 (0,∞) be a non-negative function and let

u(x⊕ν y; t) =
∫ ∞

0

exp(−tz3)φ(z)Gν(yz)Gν(xz) dην(z) .

Then u(x⊕ν y; t) is a ν-positive definite Airy diffusion.

Proof. By Theorem 4.1, u(x⊕ν y; t) is in L1((0,∞), dην(x)) for t > 0 and 0 ≤ y <
∞, and clearly u is in Hν(R+, t > 0), 0 ≤ y < ∞. Let 0 < x1, x2, . . . , xn and let
α1, α2, . . . , αn be arbitrary complex numbers, then

n∑
i,j=1

αiᾱju(xi ⊕ν xj ; t) =
∫ ∞

0

exp(−ty3)φ(y)
n∑

i,j=1

αiᾱjGν(xiy)Gν(xjy) dην(y)

=
∫ ∞

0

exp(−ty3)φ(y)|
n∑

i=1

αiGν(xiy)|2 dην(y) ≥ 0

(14.5)
since φ(y) ≥ 0. Note that Inequality (14.5) is also valid for t = 0. �

Corollary 14.3. The function u(x⊕ν ω6y; t) = u(zν ; t) is a ν-analytic function of
the umbral variable zν .

Proof. We have

u(x⊕ν ω6y; t) = u(zν ; t) =
∫ ∞

0

exp(−tw3)φ(w)Gν(xw)Gν(yw) dην(w) .

Interchanging differentiation and integration, we have

ϑx u(zν ; t) =
∫ ∞

0

exp(−tw3)φ(w)(−w)3Gν(xw)Gν(yw) dην(w) = −ϑy u(zν ; t) .

Thus the ν-Cauchy-Riemann equations hold for x, y ≥ 0 and therefore u is ν-
analytic in the “zν-umbral plane”. �

Corollary 14.4. The function

v(x⊕ν y; t) =
∫ ∞

0

exp(tw3φ(w)Gν(xw)Gν(yw) dην(w)

is a ν-positive definite Airy diffusion. Moreover, v is a ν-absolutely monotonic in
the x (or y) variable. The function v(zν ; t) is also ν-analytic.

The above results are also valid for β(t) increasing and constant for t ≥ a > 0.
In this case we have

u(x⊕ν y; t) =
∫ ∞

0

exp(−tw3Gν(xw)Gν(yw) dβ(t) ,

v(x⊕ν y; t) =
∫ ∞

0

exp(tw3Gν(xw)Gν(yw) dβ(t) .
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In general functions defined by integrals of the type

f(x) =
∫ ∞

0

Gν(xy) dβ(y)

are absolutely monotonic for suitable increasing functions β(y). However, the rep-
resentation is not necessarily unique as the following example demonstrates.

Example. Let

sn =
∫ ∞

0

u3n 3u2 exp(−1
2

u) sin
√

3
2

u du .

A calculation shows that sn = 3(3n + 2)! sin π(n + 1) = 0, for n = 0, 1, 2, . . . . Next
we have

µn = 3 · 23n+3! =
∫ ∞

0

u3n dβ(u)

where β(u) =
∫ u

0
3 exp(− 1

2 t)t2 dt. Let

α(u) =
∫ u

0

3t2 exp(−1
2
t) (1− sin

√
3

2
t) dt .

Then ∫ ∞

0

u3n dα(u) = 3 · 23(n+1) (3n + 2)! =
∫ ∞

0

u3n dβ(u)

with β(u) 6= α(u). Consider

f(x) =
∫ ∞

0

Gν(xu) dβ(u) .

We have

|f(x)| ≤ M

∫ ∞

0

u2 exp((−1
2

+ x)u) du

for 0 ≤ x < 1
2 . It easily follows that f is absolutely monotonic for 0 ≤ x < 1/2.

However

f(x) =
∞∑

n=0

3 · 23(n+1) (3n + 2)!
33n n! ( 1

3 )n (ν + 2
3 )n

x3n = 63
∞∑

n=0

23n (n + 1
3 )( 2

3 )n+1

(ν + 2
3 )n

x3n

which converges for |x| < 1/2, and

f(x) =
∫ ∞

0

Gν(xu) dβ(u) =
∫ ∞

0

Gν(xu) dα(u) .

Theorem 14.5. Let αc(t) be an increasing function on 0 ≤ t < ∞ with compact
support in [0, a], a > 0, and let

f(z) =
∫ ∞

0

Gν(zt) dαc(t)

If f(x0) = 0 for some x0 > 0, then f(x) ≡ 0.

Proof. We have

0 ≤ µn =
∫ ∞

0

t3n dαc(t) ≤ a3n

∫ a

0

dαc(t) ≤ a3nM

and

f(z) =
∫ ∞

0

Gν(zt) dαc =
∞∑

n=0

M
µn z3n

α3n(ν)
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with f an entire function. Since µn ≥ 0, f(x0) = 0 implies µn = 0 for n =
0, 1, 2, . . . . �

Corollary 14.6. Let

u(x, t) =
∫ ∞

0

exp(ty3)Gν(xy) dαc(y) . (14.6)

If u(x0, t0) = 0 for some x0 > 0 and t0 ≥ 0, then u(x, t) = 0.

Proof. Clearly u(x, t) is an absolutely monotonic ν-Airy diffusion. The theorem
implies that u(x, t0) = 0 for x ≥ 0. Hence we obtain

0 ≤
∫ ∞

0

dαc(y) ≤
∫ ∞

0

exp(t0y3)Gν(xy) dαc(y) = 0

and therefore dαc(y) is the zero measure.
Thus this ν-Airy diffusions given by the representation 14.6 are positive functions

if αc(y) is different from a constant. �

Theorem 14.7. Let αc(y) be an increasing function with compact support and let

f(x) =
∫ ∞

0

Gν(xy) dαc(y) . (14.7)

Then

f(x) ≥ 0,

∣∣∣∣ f(x) ϑf(x)
ϑf(x) ϑ′′f(x)

∣∣∣∣ ≥ 0,

∣∣∣∣∣∣
f(x) ϑf(x) ϑ2f(x)
ϑf(x) ϑ2f(x) ϑ3f(x)
ϑ2f(x) ϑ3f(x) ϑ4f(x)

∣∣∣∣∣∣ ≥ 0, . . . (14.8)

and

f ′(x) ≥ 0,

∣∣∣∣ ϑf(x) ϑ2f(x)
ϑ2f(x) ϑ3f(x)

∣∣∣∣ ≥ 0,

∣∣∣∣∣∣
ϑf(x) ϑ2f(x) ϑ3f(x)
ϑ2f(x) ϑ3f(x) ϑ4f(x)
ϑ3f(x) ϑ4f(x) ϑ5f(x)

∣∣∣∣∣∣ ≥ 0, . . .

for 0 ≤ x < ∞.

Proof. From the integral representation (14.7), it follows that

ϑnf(x) =
∫ ∞

0

y3n Gν(xy) dαc(y) ,

[
n∑

i,j=0

ϑi+j
ν f(x)aiaj =

∫ ∞

0

Gν(xy)

(
n∑

i=0

ait
3i

)2

dαc(y) ≥ 0

n∑
i,j=0

ϑi+j+m
ν f(x)aiaj =

∫ ∞

0

Gν(xy)y3m

(
n∑

i=0

ait
3i

)2

dαc(y) ≥ 0

for m ≥ 1. Since the quadratic forms are positive definite the associated determi-
nants are non-negative. Letting ϑnf(x) = µn =

∫∞
0

y3n dαc(y), we get that the
quadratic forms

n∑
i,j=0

µi+jaiaj ,
n∑

i,j=0

µi+j+1aiaj

are non-negative. The ν-generating function of the moments {µn}∞0 is

f(x) =
∞∑

n=0

µn

α3n(ν)
x3n
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an entire function.
Let

u(x, t) =
∫ ∞

0

exp(ty3)G(xy) dαc(y) (14.9)

then the determinants given by (14.8) with f(x) being replaced by u(x, t) for fixed
t ≥ 0 are non-negative. Since u(x, t) is absolutely monotonic in the usual Bernstein
sense, it follows that the determinants

u(x, t) ≥ 0,

∣∣∣∣ u Dtu
Dtu D2

t u

∣∣∣∣ ≥ 0,

∣∣∣∣∣∣
u Dtu D2

t u
Dtu D2

t u D3
t u

D2
t u D3

t uD4
t u

∣∣∣∣∣∣ ≥ 0, . . . (14.10)

and

Dtu(x, t) ≥ 0,

∣∣∣∣Dtu D2
t u

D2
t u D3

t u

∣∣∣∣ ≥ 0,

∣∣∣∣∣∣
Dtu D2

t u D3
t u

D2
t u D3

t u D4
t u

D3
t u D4

t u D5
t u

∣∣∣∣∣∣ ≥ 0, . . .

are also non-negative. We also obtain that the ν-diffusions given by equation (14.9)
is logarithmically convex for

∂2

∂t2
log u(x, t) =

u(x, t) ∂2

∂t2 u(x, t)−
(

∂
∂tu(x, t)

)2
u(x, t)2

≥ 0

by (14.10). From the extension of (14.10) to Dm
t u(x, t), etc., we also get

u(x, t)
Dtu(x, t)

≥ Dtu(x, t)
D2

t u(x, t)
≥ D2

t u(x, t)
D3

t u(x, t)
≥ . . . .

Thus Dm
t u(x, t) is also logarithmically convex. �

15. ν- Associated Nonlinear Equations

Associated with the ν-Airy diffusion equation we obtain a non-linear partial
differential equation which is linearized by the ν-Airy equation.

We let ∆(ν) = D2
x+ 2ν

x Dx = x−2ν Dx2ν D denote the Euler-radial operator with
ν ≥ 0. Further we define a non-linear differential operator by

Kν(φ) = x−3ν Dxx3ν Dxφ− 3ν

x2
φ− ν

x
φ2 +

1
9

φ3 − φφx

=
∂2φ

∂x2
+

3ν

x

∂φ

∂x
− 3ν

x2
φ− ν

x
φ2 +

1
9

φ3 − φ
∂φ

∂x

(15.1)

Theorem 15.1. Let ν ≥ 0, if u(x, t) is a solution of the ν-Airy equation

ϑνu(x, t) =
∂u(x, t)

∂t

then φ(x, t) = −3 ∂
∂x u(x, t)/u(x, t) is a solution of the non-linear partial differential

equation

∂φ(x, t)
∂t

=
∂

∂x
Kν(φ) = ϑνφ− φ∆(ν)φ + (

1
3

φ2 − φx)(φx −
3ν

x2
) +

6ν

x3
φ (15.2)

Proof. Letting ux = − 1
3 φu, we get uxx

u = 1
9 φ2 − 1

3 φx. Hence

∂u

∂t
= Dxx−3νDxx3νux
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implies that

−3
∂u

∂t
= Dx(

3ν

x
φu + uφx + φux)

= Dx(−9ν

x
ux + uφx + φux)

= u(
9ν

x2

ux

u
− φu

x

uxx

u
+ φ

uxx

u
+ 2φx

ux

u
+ φxx)

It follows that

−3
∂ lnu

∂t
= φxx +

3ν

x
φx −

3ν

x2
φ +

1
9

φ3 − ν

x
φ2 − φφx = Kν(φ)

and therefore,
∂φ

∂t
=

∂

∂x
Kν(φ)

�

In the case that ν = 0, we have the equation

∂φ

∂t
=

∂3φ

∂x3
− φ

∂2φ

∂x2
+

1
3

φ3φx −
(

∂φ

∂x

)2

(15.3)

which linearizes to the Airy equation ∂φ
∂t = ∂3φ

∂x2 . The KdV equation

∂φ

∂t
+ 6φ

∂φ

∂x
+

∂3φ

∂x3
= 0

linearizes to the Airy equation ∂φ
∂t + ∂3φ

∂x3 = 0. Replacing t by −t gives the form of
the Airy equation of this paper.

We note that if φ(x, t) is a solution of the non-linear equation (15.2) then formally

u(x, t) = B(t) exp(−1
3

∫ x

0

φ(y, t) dy)

is a solution of the ν-Airy equation.
The differential form of (15.2) suggests a conservation of “mass” for suitable

solutions. If φ(x, t) is a solution of (15.2) such that φ and all of its derivatives
vanish at ±∞, i.e., φ ∈ C∞

0 (R), then∫ ∞

−∞

∂φ(x, t)
∂t

dx =
∂

∂t

∫ ∞

−∞
φ(x, t) dx = Kν(φ)|∞−∞ = 0

which implies the conservation form∫ ∞

−∞
φ(x, t) dx = constant,

a conservation of mass interpretation.
Associated with the ν-diffusion polynomials pν

n(x, t) we obtain an infinite se-
quence of rational function solutions of (15.2). We have

pν
n(x, t) = x3n

3F0

[
− n,

2
3
− n,

1
3
− ν − n |

(
− 3

x

)3
t
]
.



EJDE–2003/87 THE GENERALIZED AIRY DIFFUSION EQUATION 57

Therefore,

ων
n(x, t) = −3

∂

∂x
pν

n(x, t)/pν
n(x, t)

= −9n

x

3F0

[
1− n, 2/3− n, 1/3− ν − n |

(
− 3

x

)3
t
]

3F0

[
− n, 2/3− n, 1/3− ν − n |

(
− 3

x

)3
t
] (15.4)

is a solution of the non-linear partial differential equation (15.2). From this equation
it follows that

ων
n(x, t) ∼ −9n

x
as x →∞. The first four ων

n’s are given in the table:

ων
0 (x, t) = 0 ,

ων
1 (x, t) =

−9x2

x3 + 9(ν + 2/3)t

ων
2 (x, t) = − 18x5 + 648(ν + 5/3)x2t

x6 + 72(ν + 5/3)x2t + 324(ν + 2/3)t2
,

ων
3 (x, t) = −3

9x8 + 1215(ν + 8/3)x5t + 4536(ν + 5/3)2x2t2

x9 + 405
2 (ν + 9/3)x6t + 1512(ν + 5/3)2x3t2 + 120 · 36(ν + 2/3)3t3

.

The source solution of the ν-Airy equation also yields a solution of (15.2). We have

Kν(x, t) =
22/3 Γ( 4

3 )
3ν+2/3tν+1

· J−2/3

(
2x3/2

√
27t

)
and therefore

ων(x, t) = −3
∂

∂x
Kν(x, t)/Kν(x, t) = −

(
3x

t

)1/2 J1/3

(
2x3/2
√

27t

)
J−2/3

(
2x3/2√

27t

)
Let z = 2x3/2

√
27t

. The recursion formula for Bessel functions Jν−1(z) + Jν+1(z) =
2ν
z Jν(z) gives a continued fraction representation of the solution ων(x, t). We have

ων(x, t) = −
(

3x

t

)1/2


− 4

3z
− 1

−10
3z −

1
−16

3z −
1

−22
z −

J− 11
3

(z)
J− 14

3
(z)


Thus the non-linear equation (15.2) has continued fraction solutions.

The associated functions Qν
n(x, t) also yield solutions of (15.2). We have

W ν
n (x, t) = −3

∂

∂x
Qν

n(x, t)/Qν
n(x, t)

=
(n + ν + 2/3)

(ν + 2/3)
· x2

9t
·

1F2

[
n + ν + 5/3
4/3, ν + 5/3

∣∣∣∣− x3

27t

]
1F2

[
n + ν + 2/3
1/3, ν + 2/3

∣∣∣∣− x3

27t

] .
(15.5)
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Using the asymptotic estimates of Marichev [25, p. 71], we get

W ν
n (x, t) ∼ x2

27t

as x →∞ for t > 0.
Next we will show that the non-linear partial differential equation (15.2) has

time periodic solutions. Let

Cν(x, t) = exp(ity3)Gν(ω6xy) = exp(ity3)Eν(xy)

which is a complex solution of the ν-Airy equation, where ω6 = exp(iπ/6). Since

∂

∂x
Gν(x, y) =

x2y3

3(ν + 2/3) 0F2[4/3, ν + 5/3 |
(xy

3

)3

]

we find that

Cν(x, t) = −3
∂
∂x Cν(x, t)
Cν(x, t)

= −i
x2y3

(ν + 2/2)
· 0F2[4/3, ν + 5/3 | i

(
xy
3

)3]
0F2[1/3, ν + 1/3 | i

(
xy
3

)3]
a solution that is independent of t.

The function Cν(x, t) is periodic in the t variable, we have

Cν(x, t + 2πk/y3) = Cν(x, t)

for y 6= 0. The real and imaginary parts of Cν(x, t) are also ν-diffusions. We have

exp(ity3)Eν(xy) = (cos ty3 + i sin ty3)(cosν(xy) + i sinν(xy)) .

Hence

Rν(x, t) = Re exp(ity3)Eν(xy) = cos(ty3) cosν(xy)− sin(ty3) sinν(xy)

and

Iν(x, t) = dm exp(ity3)Eν(xy) = sin(ty3) cosν(xy) + sinν(xy) cos(ty3) (15.6)

are t-periodic ν-diffusions. It follows that

Rν(x, i) = −3
cos(ty3) ∂

∂x cosν(xy)− sin(ty3) ∂
∂x sinν(xy)

cos(ty3) cosν(xy)− sin(ty3) sinν(xy)

and

dν(x, t) = −3
sin(ty3) ∂

∂x cosν(xy) + cos(ty3) ∂
∂x sinν(xy)

sin(ty3) cosν(xy) + cos(ty3) sinν(xy)
are t-periodic solutions of the non-linear partial differential equation (15.2). Both
of these functions can be expressed in terms of hypergeometric functions.

Actually, there exist a hierarchy of generalized Airy equations and the associated
non-linear partial differential equations. We present a few of the equations and
results without proofs. Let ν1 and ν2 ≥ 0, then the next simplest higher order Airy
equation is given by

∂u

∂t
= (x3 ∂6

∂x6
+ 3(ν1 + ν2 + 3)x2 ∂5

∂y5
+ 9(2ν1 + 2ν2 + ν1ν2 + 2)x

∂4

∂x4

+ 3(6ν1ν2 + 3ν1 + 3ν2 + 2)
∂3

∂x3
− 9

ν1ν2

x

∂2

∂x2
+ 9

ν1ν2

x2

∂

∂x
) u

(15.7)
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Let ν = (ν1, ν2) and let

pν
n(x, t) = x3n

6F0(−n, n, 2/3− n, 2/3− n, 1/3− ν1 − n 1/3− ν2 − n | 36

x3
t)

then p
ν
n(x, t) is a polynomial solution of 15.7 for n = 0, 1, 2, . . . . Moreover, we have

the generating function

exp(tz3) 0F5(1, 1/3, 1/3, ν1 + 2/3, ν2 + 2/3 |
(xz

9
)3)

=
∞∑

n=0

p
ν
n(x, t) z3n

36n (n!)2(1/3)2n(ν1 + 2/3)n(ν2 + 2/3)n
.

Theorem 15.2. Let ν1 and ν2 ≥ 0 and let u(x, t) be a solution of the higher order
Airy diffusion (15.7). Then φ(x, ‘, t) = −3 ∂

∂x u(x, t)/u(x, t) is a solution of the
non-linear equation

∂φ

∂t
=

∂

∂x
ϑν(2)x

3Kν(1) −
1
3

∂

∂x
(x3 Kν(1)(φ)Kν(2)(φ)

− 2
3

φ
∂2

∂x2
x3Kν(1)(φ) +

2
3

∂

∂x
(
1
3

φ2 − φx)
∂

∂x
(x3Kν(1)(φ))

(15.8)

The functions

wν
n(x, t) = −3

∂

∂x
pν

n(x, t)/pν
n(x, t)

=−9n

x
· 6F0(−n, 1− n, 2/3− n, 2/3− n, 1/3− ν1 − n, 1/3− nu2 − n | 36

x3 t)

6F0(−n,−n, 2/3− n, 1/3− ν1 − n, 1/3− nu2 − n | 36

x3 t)

are rational function solutions of (15.8), n = 0, 1, 2, . . . . It can be shown that (15.8)
also has t-periodic solutions.

16. Constant Coefficient ν-Differential Equations

In this section, solutions of polynomial operators with argument ϑν are obtained
in a number of cases. First of all we consider solutions of the differential equations

(ϑν − a3)y(x) = 0 (16.1)

where a is some complex number. For a series of the form
∑∞

n=0 cnxn+λ, we obtain

∞∑
n=0

cn{(3n + λ)(3n + λ + 3ν − 1)(3n + λ− 2)x3n+λ − a3x3x3n+λ}

with indicial equations f(λ) = λ(λ + 3ν − 1)(λ − 2) and skip number three. For
ν ≥ 0 and ν different from 1

3 , we obtain three linearly independent solutions of
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(16.1). They are, corresponding to the indicial roots 0, 2, and 1− 3ν respectively

Gν(ax) =
∞∑

n=0

a3nx3n

33nn!(1/3)n(ν + 2/3)n
=0 F2[1/3, ν + 2/3 |

(ax

3

)3

] ,

G(2)
ν (ax) =

∞∑
n=0

a3nx3n+2

33nn!(5/3)n(ν + 4/3)n
= x2

0F2[5/3, ν + 4/3 |
(ax

3

)3

] ,

G(3)
ν (ax) =

∞∑
n=0

a3nx3n+1−3ν

33nn!(4/3− ν)n(2/3− ν)nn!

= x1−3ν
0F2[4/3− ν, 2/3− ν |

(ax

3

)3

]

In the latter case we must have ν such that 4/3− ν, 2/3− ν 6= 0,−1,−2, . . . . The
function Gν(ax) is the basic zeta function of this paper associated with ϑν .

If p(ϑν =
∑n

k=0 akϑk
ν is a monic polynomial operator, we find that p(ϑνGν(rx) =

p(r3)Gν(rx). We let p(r3) =
∏n

k=1(r
3 − rk). If the rk’s are distinct, we get the

general solution of the equation p(ϑν)y = 0 is given by

y(x) =
n∑

k=1

{c1kGν(r1/3
k x) + c2kG(2)

ν (r1/3
k x) + c3kG(3)

ν (r1/3
k x)}

We are interested in determining solutions in the repeated root case. Thus we need
to obtain solutions of the equation (ϑν − a3)ky = 0. Due to the failure of a nice
Leibnitz type product formula for ϑk(uv), an exponential shift type equation is not
available for our repeated root equation. In the classical case the exponential shift
formula (D − a)k(eaxv) = eaxDkv, leads to solutions in the case of repeated roots
for constant coefficient equations in D. A new method that works in a number of
cases follows.

For m a non-negative integer, we define

Gν−m(ax) =
∞∑

n=0

a3nx3n

33nn!(1/3)n(ν −m + 2/3)n
,

G
(2)
ν−m(ax) =

∞∑
n=0

a3nx3n+2

33nn!(5/3)n(ν −m + 4/3)n

with ν such that (ν−m+2/3) and (ν−m+4/3) are not zero or a negative integer.
The ν-Airy operator can be written as

ϑν = ϑν−m +
3m

x3
N (N − 2)

where N = xD is the numbers operator.

Theorem 16.1. For restricted ν and 0 ≤ k ≤ m

(ϑν − a3)kG
(2)
ν−m(ax) =

m!
(m− k)!

a3k

(ν + 2/3−m)k
G

(2)
ν−(m−k)(ax) (16.2)

Proof. We consider the case k = 1, the general case follows by iteration. By (16.2),
it follows that

(ϑν − a3)kG
(2)
ν−m(ax) =

3m

x3
N (N − 2)Gν−m(ax)
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where N = xD is the number operator. Since
3m

x3
N (N − 2)x3n = 3m(3n)(3n− 2)x3(n−1)

we get

3m

x3
N (N − 2)Gν−m(ax) =

∞∑
n=1

m(n− 2/3)x3(n−1)a3n

33(n−1)(n− 1)!(1/3)n(ν −m + 2/3)n

=
ma3

(ν −m + 2/3)
Gν−(m−1)(ax)

Since (ϑν − a3)mGν−(m−1)(ax) = m!a3m

(ν+2/3−m)m
Gν(ax), (ϑν − a3)m+1Gν−m(ax) = 0.

Hence the equation
(ϑν − a3)m+1y(x) = 0

has solutions Gν(ax), Gν−1(ax), . . . , Gν−m(ax). �

In the case of repeated roots corresponding to G
(2)
ν (ax), we have the equations

(ϑν − a3)mG
(2)
ν−m(ax) =

m!
(m− k)!

a3k

(ν + 4/3−m)k
G

(2)
ν−(m−k)(ax) .

Therefore, (ϑν − a3)m+1y(x) = 0 also has G
(2)
ν (ax), G(2)

ν−1(ax), . . . , G(2)
ν−m(ax) as

solutions.
Based on the exponential shift equation (D − a)kxneax = n!

(n−k)!x
n−keax, we

can find solutions of the eigenvalue problem for the wave operator ( ∂
∂x −

∂
∂t ). The

eigenvalue problem

(
∂

∂x
− ∂

∂t
)u(x, t) = λu(x, t) (16.3)

has polynomial type solutions un,λ(x, t) = eλx(x + t)n. We will an analogue of this
result for the corresponding ϑν problem.

The corresponding eigenvalue problem in the ν-Airy case is given by the equation

(ϑν −
∂

∂t
)u(x, t) = λ3u(x, t) (16.4)

Using (15.6), we find that solutions corresponding to u(x, 0) = Gν−n(λx) for suit-
able ν are given by

Cν
n,λ(x, t) = exp(t(ϑν − λ3))Gν−n(λx)

=
∞∑

k=0

tk

k!
(ϑν − λ3)kGν−n(λx)

=
∞∑

k=0

tk

k!
n!λ3kGν−(n−k)(λx)

(n− k)!(ν + 2/3− n)k

=
∞∑

k=0

(
n

k

)
tkλ3kGν−(n−k)(λx)

(ν + 2/3− n)k

(16.5)

Solutions of the eigenvalue equation (16.4) also lead to solutions of the previously
encountered non-linear partial differential equation

∂

∂t
φ(x, t) =

∂

∂x
Kν(φ) .
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Let uλ be a solution of the eigenvalue equation (16.4) and let

φλ(x, t) = −3
∂
∂x uλ(x, t)
uλ(x, t)

.

Then
∂u

∂t
+ λ3u = ϑu = D(x−3νDx3νux = −1

3
Dx−3νDx3νuφ .

Therefore, as before we find that

− 3
u

(
∂u

∂t
+ λ3u) = Kν(φ)

and
∂

∂t
φλ(x, t) = DKν(φ) (16.6)

Thus solutions of 16.6 for suitable ν and n a non-negative integer are given by

φν
n,λ(x, t) = −3

∂
∂x Cν

n,λ(x, t)
Cν

n,λ(x, t)

= −3

∑n
k=0

(
n
k

)
tkλ3k

(ν+2/3−n)k

∂
∂x Gν−(n−k)(λx)∑n

k=0

(
n
k

)
tkλ3k

(ν+2/3−n)k
Gν−(n−k)(λx)

which is a quotient of sums of hypergeometric functions. That is

φν
n,λ(x, t) = −x2

∑n
k=0

(
n
k

)
tkλ3k

(ν+2/3−n)k
0F2[4/3, ν + 5/3− n + k |

(
λx
3

)3
]∑n

k=0

(
n
k

)
left tkλ3k

(ν+2/3−n)k
0F2[4/3, ν + 5/3− n + k |

(
λx
3

)3
]

for n = 0, 1, 2, . . . . In the same manner, we find that

C
(2),ν
n,λ (x, t) =

∞∑
k=0

(
n

k

)
tkλ3kG

(2)
ν−(n−k)(λx)

(ν + 4/3− n)k

is a solution of the eigenvalue problem (16.3) for n = 0, 1, 2, . . . . Hence for suitable
ν we obtain solutions of the non-linear partial differential equation (16.6) given by

φν
n,λ(x, t) = −3

∂
∂x C

(2),ν
n,λ (x, t)

C
(2),ν
n,λ (x, t)

= −3

∑n
k=0

(
n
k

)
tkλ3k

(ν+4/3−n)k

∂
∂x G

(2)
ν−(n−k)(λx)∑n

k=0

(
n
k

)
tkλ3k

(ν+2/3−n)k
G

(2)
ν−(n−k)(λx)

= −3

∑n
k=0

(
n
k

)
tkλ3k

(ν+4/3−n)k
0F2[2/3, ν + 4/3− n + k |

(
λx
3

)3]∑n
k=0

(
n
k

)
tkλ3k

(ν+2/3−n)k
0F2[5/3, ν + 4/3− n + k |

(
λx
3

)3]
for n = 0, 1, 2, . . . .
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