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ON NONNEGATIVE ENTIRE SOLUTIONS OF SECOND-ORDER
SEMILINEAR ELLIPTIC SYSTEMS

TOMOMITSU TERAMOTO

Abstract. We consider the second-order semilinear elliptic system

∆ui = Pi(x)u
αi
i+1 in RN , i = 1, 2, . . . , m

with nonnegative continuous functions Pi. We establish nonexistence criteria
of nonnegative nontrivial entire solutions for this system. We also proved a

Liouville type theorem for nonnegative entire solutions.

1. Introduction

This paper concerns the second-order semilinear elliptic system

∆u1 = P1(x)uα1
2 ,

∆u2 = P2(x)uα2
3 ,

...

∆um = Pm(x)uαm
m+1, um+1 = u1,

(1.1)

where x ∈ RN , N ≥ 1, m ≥ 2, and αi > 0, i = 1, 2, . . . ,m are constants satisfying
α1α2 · · ·αm > 1, and the functions Pi(x) are nonnegative continuous functions on
RN .

We are concerned with the problem of existence and nonexistence of nonnegative
nontrivial entire solutions of (1.1). By an entire solution of (1.1) we mean a vector
function (u1, u2, . . . , um) ∈ (C2(RN ))m which satisfies (1.1) at every point of RN .

The problem of existence and nonexistence of nonnegative entire solutions for
the scalar equation

∆u = f(x, u), x ∈ RN

has been investigated by many authors, and numerous results have been obtained
(see e.g. [2, 5, 7, 9] and references therein). In particular, when f has the form
f(x, u) = P (x)uα with α > 0 and nonnegative function P , critical decay rate of P
to admit nonnegative entire solutions has been characterized. On the other hand,
very little is known about this problem for elliptic system (1.1) except for the case
m = 2. For m = 2 we refer to [3, 5, 6, 8, 12, 13, 14].
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In [3, 12, 14], the system (1.1) with m = 2 has been considered under the
conditions αi ≥ 1, i = 1, 2, and nonexistence criteria of nonnegative nontrivial
entire solutions have been obtained. The result is described roughly as follows:

Theorem 1.1. Let N ≥ 3, m = 2 and αi ≥ 1, i = 1, 2. Suppose that Pi, i = 1, 2,
satisfy

Pi(x) ≥ Ci

|x|λi
, |x| ≥ r0 > 0, i = 1, 2, (1.2)

where Ci > 0 and λi, i = 1, 2, are constants. If (λ1, λ2) satisfies

λ1 − 2 + α1(λ2 − 2) ≤ 0 or λ2 − 2 + α2(λ1 − 2) ≤ 0, (1.3)

then the system (1.1) does not possess any nonnegative nontrivial entire solutions.

However, if α1 or α2 is less than 1, Theorem 1.1 cannot derive any information
about the nonnegative nontrivial entire solutions. Recently, Teramoto and Usami
[13] have proved a Liouville type theorem for nonnegative entire solutions of (1.1)
with m = 2 under the condition α1α2 > 1. The result is described as follows:

Theorem 1.2. Let N ≥ 3,m = 2, α1α2 > 1, 0 < α1 < 1. Suppose that Pi, i = 1, 2,
satisfy (1.2) for some constants λi, i = 1, 2. If (λ1, λ2) satisfies

λ1 − 2 + α1(λ2 − 2) ≤ 0,

then the system (1.1) does not possess nonnegative nontrivial entire solutions sat-
isfying

u1(x) = O(exp |x|ρ) as |x| → ∞ for some ρ > 0.

The aim of this paper is to extend Theorems 1.1 and 1.2 to the system (1.1) with
m ≥ 3.

Let us introduce some notation used throughout this paper. For any sequence
{s1, s2, . . . , sm}, we assume that sm+j = sj , j = 1, 2, . . . ; that is, the suffixes should
be taken in the sense of Z/mZ. Denote

A = α1α2 · · ·αm.

For real constants λ1, λ2, . . . , λm, we put
Λi = λi − 2 + (λi+1 − 2)αi + (λi+2 − 2)αiαi+1 + . . .

+ (λi+m−1 − 2)αiαi+1αi+2 . . . αi+m−2

= λi − 2 +
m−1∑
j=1

{
(λi+j − 2)

j−1∏
k=0

αi+k

}
, i = 1, 2, . . . ,m,

(1.4)

and
βi =

Λi

A− 1
, i = 1, 2, . . . ,m. (1.5)

Since our assumptions imposed on Pi, 1 ≤ i ≤ m, essentially take the forms

lim inf
|x|→∞

|x|λiPi(x) > 0 or lim sup
|x|→∞

|x|λiPi(x) < ∞,

all our results are formulated by means of the numbers λi, Λi, βi, 1 ≤ i ≤ m.
This paper is organized as follows. In Section 2, we give nonexistence criteria of

nonnegative nontrivial entire solutions of (1.1). In Section 3, to show the sharpness
of our nonexistence criteria we give existence theorems of positive entire solutions
for (1.1) under the assumption that Pi have radial symmetry. In the final section
(Section 4), we prove a Liouville type theorem for nonnegative entire solutions.



EJDE–2003/94 ENTIRE SOLUTIONS OF SECOND-ORDER 3

2. A priori estimate and nonexistence results

2.1. Growth estimate of nonnegative entire solutions. In this subsection,
we study the estimate for nonnegative entire solutions of (1.1) which will play an
important role to prove nonexistence theorems for nonnegative nontrivial entire
solutions.

For a nonnegative function v defined on RN , we denote its spherical mean over
the sphere |x| = r, r > 0, v̄(r) by

v̄(r) =
1

ωNrN−1

∫
|x|=r

v(x) dS,

where dS denotes the volume element in the surface integral, ωN is the surface area
of the unit sphere in RN . Moreover we introduce the function P̂ (r), r ≥ 0, by

P̂ (r) =


(

1
ωN rN−1

∫
|x|=r

P (x)−
α′
α dS

)−α/α′

, α > 1,

min|x|=r P (x), α = 1,
(2.1)

where 1/α + 1/α′ = 1. We set P̂ (r) = 0 if
∫
|x|=r

P (x)−α′/αdS = ∞. We note that

P̂ = P when P has radial symmetry. We have the following well-known result (see
[2, p.654], [9, p.508] and [10, p.70]).

Lemma 2.1. Let αi ≥ 1, i = 1, 2, . . . ,m, and (u1, u2, . . . , um) be a nonnegative
entire solution of (1.1). Then its spherical mean (ū1, ū2, . . . , ūm) satisfies system
of ordinary differential inequalities

(rN−1ū′i(r))
′ ≥ rN−1P̂i(r)ūi+1(r)αi , r > 0,

ū′i(0) = 0,
(2.2)

where i = 1, 2, . . . ,m.

Our main result is as follows.

Theorem 2.2. Let N ≥ 3, αi ≥ 1, i = 1, 2, . . . ,m, and A > 1. Suppose that Pi,
i = 1, 2, . . . ,m, satisfy

lim inf
|x|→∞

|x|λiPi(x) > 0, (2.3)

where λi, i = 1, 2, . . . ,m, are constants. Let (u1, u2, . . . , um) be a nonnegative entire
solution of (1.1). Then ui, i = 1, 2, . . . ,m, satisfy

ui(x) ≤ Ci|x|βi at ∞ ,

where Ci > 0 are constants and βi are defined by (1.5).

Assume that (2.3) holds. Then there are constants Ci > 0, i = 1, 2, . . . ,m, and
R0 > 0 such that

Pi(x) ≥ Ci

|x|λi
, |x| ≥ R0, i = 1, 2, . . . ,m.

So we can see that P̂i, i = 1, 2, . . . ,m, defined by (2.1) satisfy

P̂i(r) ≥
Ci

rλi
, r ≥ R0. (2.4)



4 TOMOMITSU TERAMOTO EJDE–2003/94

Proof of Theorem 2.2. Let (u1, u2, . . . , um) be a nonnegative entire solution of (1.1).
We may assume that (u1, u2, . . . , um) 6≡ (0, 0, . . . , 0). Then, by Lemma 2.1, its
spherical mean (ū1, ū2, . . . , ūm) satisfies the system of ordinary differential inequal-
ities (2.2).

Integrating (2.2) over [0, r], we have

ū′i(r) ≥ r1−N

∫ r

0

sN−1P̂i(s)ūi+1(s)αids, i = 1, 2, . . . ,m.

Hence, we see that ū′i(r) ≥ 0 for r ≥ 0. Integrating (2.2) twice over [R, r], R ≥ 0
and i = 1, 2, . . . ,m, we have

ūi(r) ≥ ūi(R) +
1

N − 2

∫ r

R

s
[
1− (

s

r
)N−2

]
P̂i(s)ūi+1(s)αids. (2.5)

Since (u1, u2, . . . , um) is nonnegative and nontrivial, there exists a point x∗ ∈ RN

such that ui0(x∗) > 0 for some i0 ∈ {1, 2, . . . ,m}; that is, ūi0(r∗) > 0, r∗ = |x∗|.
We may assume that r∗ ≥ R0. Therefore, we see from (2.5) with R = r∗ that
ūi(r) > 0 for r > r∗, i = 1, 2, . . . ,m.

First, we will show that

ūi(r) = O(rβi) as r →∞, i = 1, 2, . . . ,m. (2.6)

Let us fix R > r∗ arbitrarily. Using (2.4) and the inequality

s
[
1− (

s

r
)N−2

]
≥ N − 2

3N−2
(r − s) for R ≤ r ≤ 3R,

in (2.5), we have

ūi(r) ≥ ūi(R) +
Ci

3N−2

∫ r

R

s−λi(r − s)ūi+1(s)αids

≥ ĈiR
−λi

∫ r

R

(r − s)ūi+1(s)αids,

where R ≤ r ≤ 3R and Ĉi are some positive constants independent of r and R. We
put

fi(r;R) = ĈiR
−λi

∫ r

R

(r − s)ūi+1(s)αids, R ≤ r ≤ 3R. (2.7)

For simplicity of notation we write fi(r) = fi(r;R) if there is no ambiguity. Clearly,
fi(r), i = 1, 2, . . . ,m, satisfy

ūi(r) ≥ fi(r), fi(R) = 0,

f ′i(r) ≥ 0, f ′i(R) = 0,

and
f ′′i (r) = ĈiR

−λi ūi+1(r)αi ≥ ĈiR
−λifi+1(r)αi , R ≤ r ≤ 3R. (2.8)

From (2.7) and the monotonicity of ūi, we see that

fi(r;R) ≥ Ĉi

2
R−λi ūi+1(R)αi(r −R)2, R ≤ r ≤ 3R. (2.9)

Let us fix i ∈ {1, 2, . . . ,m}. Multiplying (2.8) by f ′i+1(r) ≥ 0 and integrating by
parts of the resulting inequality on [R, r], we have

f ′i+1(r)f
′
i(r) ≥ CR−λifi+1(r)αi+1, R ≤ r ≤ 3R,
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where C = C̃i/(αi + 1). For the rest of this article, C denotes various positive
constants independent of r and R. Multiplying this inequality by f ′i+1(r) ≥ 0 and
integrating by parts, we obtain

f ′i+1(r)
2fi(r) ≥ CR−λifi+1(r)αi+2, R ≤ r ≤ 3R.

From (2.8), we see that

f ′i+1(r)
2αi−1f ′′i−1(r) ≥ CR−λiαi−1−λi−1fi+1(r)(αi+2)αi−1 , R ≤ r ≤ 3R.

Again multiplying this relation by f ′i+1(r) ≥ 0 and integrating by parts on [R, r]
twice, we have

f ′i+1(r)
2αi−1+2fi−1(r) ≥ CR−λiαi−1−λi−1fi+1(r)(αi+2)αi−1+2, R ≤ r ≤ 3R.

From (2.8), we see that for R ≤ r ≤ 3R,

f ′i+1(r)
2αi−1αi−2+2αi−2f ′′i−2(r)

≥ CR−λiαi−1αi−2−λi−1αi−2−λi−2fi+1(r)αiαi−1αi−2+2αi−1αi−2+2αi−2 .

By repeating this procedure, we obtain

f ′i+1(r)
Kif ′′i−(m−1)(r) = f ′i+1(r)

Kif ′′i+1(r) ≥ CR−Lifi+1(r)Mi , (2.10)

where

Ki = 2
m−1∑
j=1

m−1∏
k=j

αi−k,

Li =
m−1∑
j=1

{
λi−(j−1)

m−1∏
k=j

αi−k

}
+ λi+1,

Mi =
m−1∏
k=0

αi−k + 2
m−1∑
j=1

m−1∏
k=j

αi−k = A + Ki.

Multiplying the inequality (2.10) by f ′i+1(r) ≥ 0 and integrating on [R, r], we obtain

f ′i+1(r)fi+1(r)
−Mi+1

Ki+2 ≥ CR
− Li

Ki+2 , R < r ≤ 3R.

Since (Mi + 1)/(Ki + 2) > 1, we may set (Mi + 1)/(Ki + 2) = δi + 1,
δi = (A− 1)/(Ki + 2). Integrating this inequality on [2R, 3R] we get

fi+1(2R)−δi ≥ CR
− Li

Ki+2+1
.

From (2.9) with r = 2R and this inequality, we have ūi+2(R) ≤ CRτi , where

τi =
1

αi+1δi

{ Li

Ki + 2
− 1 + (λi+1 − 2)δi

}
.
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From the definitions of Ki, Li, and δi, we see that

τi =
1

αi+1δi(Ki + 2)

[ m−1∑
j=1

{
λi−j+1

m−1∏
k=j

αi−k

}
− 2

m−1∑
j=1

m−1∏
k=j

αi−k

+ (λi+1 − 2)
m−1∏
k=0

αi−k

]
=

1
αi+1(A− 1)

[ m−2∑
j=1

{
(λi−j+1 − 2)

m−1∏
k=j

αi−k

}
+ (λi−m+2 − 2)αi−m+1

+ (λi+1 − 2)
m−1∏
k=0

αi−k

]
=

1
αi+1(A− 1)

[ m−2∑
j=0

{
(λi−j+1 − 2)

m−1∏
k=j

αi−k

}
+ (λi+2 − 2)αi+1

]

=
1

A− 1

[ m−2∑
j=0

{
(λi−j+1 − 2)

m−2∏
k=j

αi−k

}
+ λi+2 − 2

]
=

1
A− 1

[
(λi+1 − 2)αiαi−1 . . . αi−(m−2) + (λi − 2)αi−1αi−2 . . . αi−m+2 + . . .

+ (λi−m+3 − 2)αi−m+2 + λi+2 − 2
]

=
1

A− 1

[
λi+2 − 2 +

m−1∑
j=1

{
(λi+2+j − 2)

j−1∏
k=0

αi+2+k

}]
=

Λi+2

A− 1
.

Therefore, we obtain (2.6) by the definition of βi.
Put Bρ(x) = {y ∈ RN : |y − x| ≤ ρ}. Since ui, i = 1, 2, . . . ,m, are subharmonic

functions in RN , we have

ui(x) ≤ 1
|B|x|/2(x)|

∫
B|x|/2(x)

ui(y)dy

≤ C

|x|N

∫
B3|x|/2(0)\B|x|/2(0)

ui(y)dy

=
C

|x|N

∫ 3|x|/2

|x|/2

∫
|y|=r

ui(y)dSdr

=
C

|x|N

∫ 3|x|/2

|x|/2

rN−1ūi(r)dr

≤ C

|x|N

∫ 3|x|/2

|x|/2

rN−1+βidr

=
C

|x|N
[(3|x|

2
)N+βi −

( |x|
2

)N+βi
]

= C|x|βi at ∞,

where C > 0 is a constant. Thus the proof is complete. �
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Remark 2.3. In [1], M-F. Bidaut-Veron and P. Grillot have obtained important
estimates of solutions on singularities for the case m = 2. In the case m = 2, by
using Kelvin transformation, the estimates which they obtained become the same
as those which we got in Theorem 2.2. Furthermore, it is important that these
estimates hold without assumptions α1 ≥ 1 and α2 ≥ 1.

2.2. Radially symmetric system. In this subsection we study the nonexistence
of nonnegative nontrivial radial entire solutions of (1.1). Through this subsection
we always assume that Pi, i = 1, 2, . . . ,m, have radial symmetry.

Theorem 2.4. Let N ≥ 3. Suppose that Pi, i = 1, 2, . . . ,m, satisfy

Pi(r) ≥
Ci

rλi
, r ≥ R0 > 0, (2.11)

where Ci > 0 and λi are constants. Moreover, Λi defined by (1.4) satisfy

Λi ≤ 0 for some i ∈ {1, 2, . . . ,m}. (2.12)

If (u1, u2, . . . , um) is a nonnegative radial entire solution of (1.1), then

(u1, u2, . . . , um) ≡ (0, 0, . . . , 0) .

Theorem 2.5. Let N = 2. Suppose that Pi, i = 1, 2, . . . ,m, satisfy

Pi(r) ≥
Ci

r2(log r)λi
, r ≥ R0 > 1, (2.13)

where Ci > 0 and λi, i = 1, 2, . . . ,m, are constants. Moreover

Λi ≤ A− 1 for some i ∈ {1, 2, . . . ,m} . (2.14)

If (u1, u2, . . . , um) is a nonnegative radial entire solution of (1.1), then

(u1, u2, . . . , um) ≡ (0, 0, . . . , 0).

Theorem 2.6. Let N = 1. Suppose that Pi, i = 1, 2, . . . ,m, satisfy (2.11) with
some constants Ci > 0 and λi, i = 1, 2, . . . ,m. Moreover

Λi ≤ A− 1 for some i ∈ {1, 2, . . . ,m}.
If (u1, u2, . . . , um) is a nonnegative radial entire solution of (1.1), then

(u1, u2, . . . , um) ≡ (0, 0, . . . , 0).

Proof of Theorem 2.4. Let (u1, u2, . . . , um) be a nonnegative nontrivial radial entire
solution of (1.1). Then (u1, u2, . . . , um) satisfies the system of ordinary differential
equations

(rN−1u′i(r))
′ = rN−1Pi(r)ui+1(r)αi , r > 0,

u′i(0) = 0,
i = 1, 2, . . . ,m. (2.15)

Integrating (2.15) over [0, r], we have

u′i(r) = r1−N

∫ r

0

sN−1Pi(s)ui+1(s)αids, i = 1, 2, . . . ,m.

Hence, we see that ui, i = 1, 2, . . . ,m, are nondecreasing on r ≥ 0. Integrating
(2.15) twice over [R, r], for R ≥ 0 and i = 1, 2, . . . ,m, we have

ui(r) ≥ ui(R) +
1

N − 2

∫ r

R

s
[
1− (

s

r
)N−2

]
Pi(s)ui+1(s)αids, (2.16)
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Since ui, i = 1, 2, . . . ,m, are nonnegative, nontrivial and nondecreasing functions,
there exists an r∗ > 0 such that ui0(r∗) > 0 for some i0 ∈ {1, 2, . . . ,m}. We
may assume that r∗ ≥ R0. We see from (2.16) with R = r∗ that ui(r) > 0 for
r > r∗, i = 1, 2, . . . ,m.

Using similar arguments as in the proof of Theorem 2.2, we obtain

ui(r) ≤ Cir
βi at ∞, i = 1, 2, . . . ,m, (2.17)

where Ci > 0 are constants and βi are defined by (1.5). Note that our assumption
(2.12) shows βi ≤ 0 for some i ∈ {1, 2, . . . ,m}.

If there exists an i0 ∈ {1, 2, . . . ,m} such that Λi0 < 0, then we see that βi0 < 0
in (2.17). This shows that ui0 tends to 0 as r →∞. On the other hand, from (2.16)
with R = r∗ we see that

ui0(r) > ui0(r∗) > 0, r > r∗ + 1.

This is a contradiction. It remains only to discuss the case that Λi ≥ 0, i =
1, 2, . . . ,m. From the assumption of Λi, there exists an i0 ∈ {1, 2, . . . ,m} such that
Λi0 = 0. Without loss of generality we may assume that i0 = m, that is,

Λi ≥ 0, i = 1, 2, . . . ,m− 1 and Λm = 0 .

From the definition of βi it follows that βi ≥ 0 and βm = 0.
We first observe that

λm−1 ≤ 2 (2.18)

and

λi ≤ −
m−i−1∑

j=1

{
(λi+j − 2)

j−1∏
k=0

αi+k

}
+ 2, i = 1, 2, . . . ,m− 2. (2.19)

In fact, from the definition of Λi, we obtain

λi ≥ −
m−1∑
j=1

{
(λi+j − 2)

j−1∏
k=0

αi+k

}
+ 2

= −
( m−i−1∑

j=1

+
m−1∑

j=m−i+1

){
(λi+j − 2)

j−1∏
k=0

αi+k

}
− (λm − 2)

m−i−1∏
k=0

αi+k + 2

≡ −S1 − S2 − S3 + 2 .

From the assumption on Λm, we have

λm − 2 = −
m−1∑
j=1

{
(λm+j − 2)

j−1∏
k=1

αm+k

}
.
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Substituting this relation to S3 we have

S3 = −
m−1∑
j=1

{
(λm+j − 2)

j−1∏
k=0

αm+k

} m−i−1∏
k=0

αi+k

= −
m−1∑
j=1

{
(λm+j − 2)

j+m−i−1∏
k=0

αi+k

}

= −
( m−1∑

j=m−i+1

+
2m−i−1∑

j=m

){
(λi+j − 2)

j−1∏
k=0

αi+k

}

= −S2 −
m−i−1∑

j=0

{
(λi+m+j − 2)

j+m−1∏
k=0

αi+k

}
= −S2 − S1A− (λi − 2)A.

Thus we obtain λi ≥ S1(A− 1) + (λi − 2)A + 2, namely

0 ≥ (A− 1)(λi − 2 + S1)

= (A− 1)
[
λi − 2 +

m−i−1∑
j=1

{
(λi+j − 2)

j−1∏
k=0

αi+k

}]
.

Since A > 1, we see that (2.19) holds. Similarly we can get (2.18). From the above
computation we see that

λi < −
m−i−1∑

j=1

{
(λi+j − 2)

j−1∏
k=0

αi+k

}
+ 2 if Λi > 0

and

λi = −
m−i−1∑

j=1

{
(λi+j − 2)

j−1∏
k=0

αi+k

}
+ 2 if Λi = 0 .

For the rest of this article C denotes various positive constants. Integrating (2.15)
twice over [r∗, r], from (2.11), we have

ui(r) ≥ ui(r∗) +
1

N − 2

∫ r

r∗

s
[
1− (

s

r
)N−2

]
Pi(s)ui+1(s)αi ds,

≥ ui(r∗) +
Ci

N − 2
[
1− (

1
2
)N−2

] ∫ r/2

r∗

sPi(s)ui+1(s)αi ds

≥ C

∫ r/2

r∗

s1−λiui+1(s)αids,

(2.20)

where r ≥ 2r∗, i = 1, 2, . . . ,m. We first consider the case that Λm−1 = 0. From
(2.18) we see that λm−1 = 2. From (2.20) with i = m− 1, we have

um−1(r) ≥ Cum(r∗)αm−1

∫ r/2

r∗

s−1ds ≥ C log r, r ≥ r1 > 2r∗.

On the other hand, we can see that βm−1 = 0 in (2.17); that is, um−1 is bounded
near infinity. This is a contradiction.
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Next we consider the case that Λm−2 = 0. Then we see from (2.18) and (2.19)
with i = m− 2 that

λm−1 < 2 and λm−2 = −(λm−1 − 2)αm−2 + 2.

From (2.20) with i = m− 1 we have

um−1(r) ≥ Cum(r∗)αm−1

∫ r/2

r∗

s1−λm−1ds ≥ Cr2−λm−1 , r ≥ r1 > 2r∗.

From this estimate and (2.20) with i = m− 2 we obtain

um−2(r) ≥ C

∫ r/2

r1

s1−λm−2+(2−λm−1)αm−2ds

= C

∫ r/2

r1

s−1ds

≥ C log r, r ≥ r2 > 2r1 .

On the other hand, we can see that βm−2 = 0 in (2.17); that is, um−2 is bounded
near infinity. This is a contradiction.

Similarly, suppose that there exists an i0 ∈ {1, 2, . . . ,m} such that Λi0 = 0 and
Λi > 0, i = i0 + 1, . . . ,m− 1. Then we see from (2.18) and (2.20) with i = m− 1
that

um−1(r) ≥ Cr2−λm−1 , r ≥ r1 > 2r∗.

From this estimate, (2.19) with i = m− 2, (2.20) with i = m− 2, we have

um−2(r) ≥ C

∫ r

r∗

s1−λm−2+αm−2(2−λm−1)ds

≥ Cr2−λm−2+αm−2(2−λm−1), r ≥ r2 > 2r1.

By repeating the above procedure, we get a sequence {rj}m−i0−1
j=2 such that

ui(r) ≥ Crτi , r ≥ rj > 2rj−1, i = m− 2,m− 3, . . . , i0 + 1,

where

τi = 2− λi + αiτi+1

= 2− λi +
m−i−1∑

j=1

{
(2− λi+j)

j−1∏
k=0

αi+k

}
> 0.

From (2.19) with i = i0 and (2.20) with i = i0, we have

ui0(r) ≥ C

∫ r/2

rm−i0−1

s1−λi0+αi0τi0+1ds

= C

∫ r/2

rm−i0−1

s−1ds

≥ C log r, r ≥ rm−i0 > 2rm−i0−1.

On the other hand, since Λi0 = 0, we have βi0 = 0 in (2.17). This yields a
contradiction. Thus the proof of Theorem 2.4 is complete. �
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Proof of Theorem 2.5. Suppose to the contrary that (1.1) has a nonnegative non-
trivial radial entire solution (u1, u2, . . . , um). Then (u1, u2, . . . , um) satisfies (2.15).
Integrating (2.15) twice over [0, r], we have

ui(r) = ui(0) +
∫ r

0

s log(
r

s
)Pi(s)ui+1(s)αids, i = 1, 2, . . . ,m. (2.21)

Let r ≥ e. Then from (2.21), we have

ui(r) = ui(0) +
∫ 1

0

s log(
r

s
)Pi(s)ui+1(s)αids

+
∫ e

1

s log(
r

s
)Pi(s)ui+1(s)αids +

∫ r

e

s log(
r

s
)Pi(s)ui+1(s)αids

≥ ui(0) + ui+1(0)αi

∫ 1

0

sPi(s)ds log r +
∫ r

e

s log(
r

s
)Pi(s)ui+1(s)αids

≥ C̃i log r +
∫ r

e

s log(
r

s
)Pi(s)ui+1(s)αids, r ≥ e,

(2.22)

where i = 1, 2, . . . ,m and C̃i ≥ 0 are constants.
Let ui(r) = vi(r) log r. Then from (2.22), we have

vi(r) ≥ C̃i +
∫ r

e

s

(
1− log s

log r

)
Pi(s)(log s)αivi+1(s)αids. (2.23)

Let t = log s, η = log r, and vi(r) = vi(eη) = ṽi(η). Then (2.23) becomes

ṽi(η) ≥ C̃i +
∫ η

1

t
(
1− t

η

)
P̃i(t)ṽi(t)αidt, i = 1, 2, . . . ,m,

where P̃i, i = 1, 2, . . . ,m, are given by P̃i(t) = e2tPi(et)tαi−1. From (2.13), we have

P̃i(t) ≥ e2t Ci

e2t(log et)λi
tαi−1 =

Ci

tλi−αi+1
, t ≥ log R0, i = 1, 2, . . . ,m.

From (2.14) and the definition of Λi,

λi − αi + 1 = Λi + 2−
m−1∑
j=1

{
(λi+j − 2)

j−1∏
k=0

αi+k

}
− αi + 1

≤ 2−
m−1∑
j=1

{(
(λi+j − αi+j + 1)− 2

) j−1∏
k=0

αi+k

}

+ A− αi −
m−1∑
j=1

{
(αi+j − 1)

j−1∏
k=0

αi+k

}

= 2−
m−1∑
j=1

{(
(λi+j − αi+j + 1)− 2

) j−1∏
k=0

αi+k

}
,

namely, for some i ∈ {1, 2, . . . ,m},

(λi − αi + 1)− 2 +
m−1∑
j=1

{
((λi+j − αi+j + 1)− 2)

j−1∏
k=0

αi+k

}
≤ 0 .

Using similar arguments as in the proof of Theorem 2.4, we obtain a contradiction.
Thus the proof is complete. �
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Proof of Theorem 2.6. Let (u1, u2, . . . , um) be a nonnegative nontrivial radial entire
solution of (1.1). Then by integrating (1.1) over [0, r], we have

ui(r) = ui(0) +
∫ 1

0

(r − s)Pi(s)ui+1(s)αids +
∫ r

1

(r − s)Pi(s)ui+1(s)αids

≥ ui(0) + ui+1(0)αi

∫ 1

0

r
(
1− s

r

)
Pi(s)ds +

∫ r

1

(r − s)Pi(s)ui+1(s)αids

≥ C̃ir +
∫ r

1

(r − s)Pi(s)ui+1(s)αids,

where i = 1, 2, . . . ,m, r ≥ 2, and C̃i ≥ 0 are constants.
Setting ui(r) = rvi(r) for r ≥ 2 and i = 1, 2, . . . ,m, we obtain

vi(r) ≥ C̃i +
∫ r

1

s
(
1− s

r

)
P̃i(s)vi+1(s)αids,

where P̃i(s) = Pi(s)sαi−1. From (2.11), we have

P̃i(s) ≥
Ci

sλi−αi+1
, s ≥ R0, i = 1, 2, . . . ,m.

Using the same computation as in the proof of Theorem 2.5, we can see that for
some i ∈ {1, 2, . . . ,m},

(λi − αi + 1)− 2 +
m−1∑
j=1

{(
(λi+j − αi+j + 1)− 2

) j−1∏
k=0

αi+k

}
≤ 0 .

From the proof of Theorem 2.4, we get a contradiction. Thus the proof is complete.
�

2.3. System (1.1) without radial symmetry. In this subsection we consider
the nonexistence of nonnegative nontrivial entire solutions of (1.1) without radial
symmetry. Through this subsection we always assume that αi ≥ 1, i = 1, 2, . . . ,m,
and A > 1.

Theorem 2.7. Let N ≥ 3. Suppose that Pi, i = 1, 2, . . . ,m, satisfy

lim inf
|x|→∞

|x|λiPi(x) > 0, (2.24)

where λi, i = 1, 2, . . . ,m, are constants. Also Λi ≤ 0 for some i ∈ {1, 2, . . . ,m}. If
(u1, u2, . . . , um) is nonnegative entire solution of (1.1), then

(u1, u2, . . . , um) ≡ (0, 0, . . . , 0).

Theorem 2.8. Let N = 2. Suppose that Pi, i = 1, 2, . . . ,m, satisfy

lim inf
|x|→∞

|x|2(log |x|)λiPi(x) > 0, (2.25)

where λi are constants. Moreover Λi ≤ A − 1 for some i ∈ {1, 2, . . . ,m}. If
(u1, u2, . . . , um) is nonnegative entire solution of (1.1), then

(u1, u2, . . . , um) ≡ (0, 0, . . . , 0).

Theorem 2.9. Let N = 1. Suppose that Pi, satisfy (2.24) with some constants λi,
i = 1, 2, . . . ,m. Moreover Λi ≤ A−1 for some i ∈ {1, 2, . . . ,m}. If (u1, u2, . . . , um)
is nonnegative entire solution of (1.1), then

(u1, u2, . . . , um) ≡ (0, 0, . . . , 0).
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Suppose that (2.24) holds. Then there exist some constants Ci > 0 and R0 > 0
such that

Pi(x) ≥ Ci

|x|λi
, |x| ≥ R0, i = 1, 2, . . . ,m .

So we can see that P̂i defined by (2.1) satisfy

P̂i(r) ≥
Ci

rλi
, r ≥ R0 .

Similarly, suppose that (2.25) holds. Then P̂i satisfy

P̂i(r) ≥
Ci

r2(log r)λi
, r ≥ R0 > 1,

where i = 1, 2, . . . ,m, and Ci > 0 are some constants.
The proof of Theorem 2.7 follows from Lemma 2.1, Theorem 2.2 and the proof

of Theorem 2.4. Similarly, the proofs of Theorems 2.8 and 2.9 follow from Lemma
2.1 and the proofs of Theorems 2.5 and 2.6, respectively.

Remark 2.10. When m = 2, our nonexistence results (Theorems 2.7–2.9) reduce
to those obtained in [12]. However, the proofs presented here are simpler than in
[12].

3. Existence results

In this section we consider existence of positive radial entire solutions of the
semilinear elliptic system

∆u1 = P1(|x|)uα1
2 ,

∆u2 = P2(|x|)uα2
3 ,

...

∆um = Pm(|x|)uαm
m+1, um+1 = u1 .

(3.1)

Through this section, we assume that Pi(r), r = |x|, i = 1, 2, . . . ,m, are nonnegative
continuous functions and αi > 0 are constants satisfying A > 1.

Theorem 3.1. Let N ≥ 3. Suppose that Pi satisfy

Pi(r) ≤
Ci

rλi ,
r ≥ R0 > 0, (3.2)

where i = 1, 2, . . . ,m, and Ci > 0, λi are constants. Moreover Λi > 0, i =
1, 2, . . . ,m. Then (3.1) has infinitely many positive radial entire solutions.

Theorem 3.2. Let N = 2. Suppose that Pi satisfy

Pi(r) ≤
Ci

r2(log r)λi
, r ≥ R0 > 1, (3.3)

where i = 1, 2, . . . ,m, and Ci > 0 and λi are constants. Moreover

Λi > A− 1, i = 1, 2, . . . ,m . (3.4)

Then (3.1) has infinitely many positive radial entire solutions.

Theorem 3.3. Let N = 1. Suppose that Pi satisfy (3.2) with some constants
Ci > 0 and λi, i = 1, 2, . . . ,m. Moreover Λi > A − 1, i = 1, 2, . . . ,m. Then (3.1)
has infinitely many positive entire solutions.

We give an example that shows the sharpness of our results.
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Example. Let us consider the elliptic system

∆u1 =
1

(1 + |x|)λ1
uα1

2 ,

∆u2 =
1

(1 + |x|)λ2
uα2

3 ,

...

∆um =
1

(1 + |x|)λm
uαm

1 ,

(3.5)

where x ∈ RN , N ≥ 3, and αi > 0, i = 1, 2, . . . ,m, are constants satisfying
α1α2 · · ·αm > 1. We can completely characterize the existence of positive ra-
dial entire solutions of this system in terms of αi and λi, i = 1, 2, . . . ,m. In fact,
we can see that the inequalities

Ci

|x|λi
≤ 1

(1 + |x|)λi
≤ C̃i

|x|λi
, |x| ≥ 1, i = 1, 2, . . . ,m

hold for some constants Ci > 0 and C̃i > 0, i = 1, 2, . . . ,m. Then, from Theorem
2.4 and Theorem 3.1, a necessary and sufficient condition for (3.5) to have positive
radial entire solution is

Λi > 0, i = 1, 2, . . . ,m.

Proof of Theorem 3.1. Without loss of generality, we assume that R0 = 1 in (3.2).
We first observe that (u1, u2, . . . , um) is a positive radial entire solution of (3.1) if
and only if the function (v1(r), v2(r), . . . , vm(r)) = (u1(x), u2(x), . . . , um(x)), r =
|x|, satisfies the system of second order ordinary differential equations

r1−N (rN−1v′i)
′ = Pi(r)vαi

i+1, r > 0,

v′i(0) = 0,
(3.6)

where i = 1, 2, . . . ,m, and ′ = d/dr. Integrating (3.6) twice, we obtain the following
system of integral equations equivalent to (3.6):

vi(r) = ai +
1

N − 2

∫ r

0

s
[
1− (

s

r
)N−2

]
Pi(s)vi+1(s)αids , (3.7)

where r ≥ 0, i = 1, 2, . . . ,m, and ai = vi(0). Therefore, it suffices to solve (3.7).
Choose constants ai > 0, i = 1, 2, . . . ,m, so that

(2ai+1)αi

N − 2

∫ 1

0

sPi(s)ds ≤ ai

2
,

Ci(2ai+1)αi

(N − 2)(2− λi + αiβi+1)
≤ ai

2
,

(3.8)

where βi, i = 1, 2, . . . ,m, are defined by (1.5). It is possible to choose such ai’s by
the assumption A > 1. We note that 2− λi + αiβi+1 = βi by the definitions of Λi

and βi. Define the functions Fi, i = 1, 2, . . . ,m, by

Fi(r) =

{
2ai for 0 ≤ r ≤ 1,

2air
βi for r ≥ 1.
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We regard the space (C[0,∞))m as a Fréchet space equipped with the topology
of uniform convergence of functions on each compact subinterval of [0,∞). Let
X ⊂ (C[0,∞))m denotes the subset defined by

X = {(v1, v2, . . . , vm) ∈ (C[0,∞))m : ai ≤ vi(r) ≤ Fi(r), r ≥ 0, 1 ≤ i ≤ m}.

Clearly, X is a non-empty closed convex subset of (C[0,∞))m. Define the mapping
F : X → (C[0,∞))m by F(v1, v2, . . . , vm) = (ṽ1, ṽ2, . . . , ṽm), where

ṽi(r) = ai +
1

N − 2

∫ r

0

s
[
1− (

s

r
)N−2

]
Pi(s)vi+1(s)αids, r ≥ 0 .

To apply the Schauder-Tychonoff fixed point theorem, we show that F is a contin-
uous mapping from X into itself such that F(X) is relatively compact.
(I) F maps X into itself. Let (v1, v2, . . . , vm) ∈ X. Clearly, ṽi ≥ ai, i = 1, 2, . . . ,m.
For 0 ≤ r ≤ 1, we have

ṽi(r) ≤ ai +
1

N − 2

∫ r

0

sPi(s)vi+1(s)αids

≤ ai +
(2ai+1)αi

N − 2

∫ 1

0

sPi(s)ds

≤ ai +
ai

2
< 2ai, i = 1, 2, . . . ,m.

For r ≥ 1, from (3.2), we have

ṽi(r) ≤ ai +
1

N − 2

∫ 1

0

sPi(s)vi+1(s)αids +
1

N − 2

∫ r

1

sPi(s)vi+1(s)αids

≤ 3ai

2
+

(2ai+1)αiCi

N − 2

∫ r

1

s1−λi+αiβi+1ds

≤ 3ai

2
+

(2ai+1)αiCi

(N − 2)(2− λi + αiβi+1)
r2−λi+αiβi+1

≤ 3ai

2
+

ai

2
rβi ≤ 2air

βi , i = 1, 2, . . . ,m.

Therefore, F(X) ⊂ X.
(II) F is continuous. Let {(v1,l, v2,l, . . . , vm,l)}∞l=1 be a sequence in X which con-
verges to (v1, v2, . . . , vm) ∈ X uniformly on each compact subinterval of [0,∞).
Then

|ṽi,l(r)− ṽi(r)| ≤
1

N − 2

∫ r

0

s
[
1− (

s

r
)N−2

]
Pi(s)|vi+1,l(s)αi − vi+1(s)αi |ds

≤ 1
N − 2

∫ r

0

sPi(s)|vi+1,l(s)αi − vi+1(s)αi |ds, i = 1, 2, . . . ,m .

Since the functions hi,l(s) = sPi(s)|vi+1,l(s)αi − vi+1(s)αi |, l ∈ N, 1 ≤ i ≤ m,
satisfy hi,l(s) ≤ 2sPi(s)Fi+1(s)αi , s ≥ 0, and {hi,l(s)}∞l=1, i = 1, 2, . . . ,m, converge
to 0 at every point s, the Lebesgue dominated convergence theorem implies that
{ṽi,l}∞l=1, i = 1, 2, . . . ,m, converge to ṽi uniformly on each compact subinterval of
[0,∞). These imply the continuity of F .
(III) F(X) is relatively compact. It suffices to show the local equicontinuity of
F(X), since F(X) is locally uniformly bounded by the fact that F(X) ⊂ X. Let
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(v1, v2, . . . , vm) ∈ X and R > 0. Then we have

ṽ′i(r) =
∫ r

0

(
s

r
)N−1Pi(s)vi+1(s)αids ≤

∫ R

0

Pi(s)Fi+1(s)αids .

These imply the local boundedness of the set {(ṽ′1, ṽ′2, . . . , ṽ′m); (v1, v2, . . . , vm) ∈
X}. Hence the relative compactness of F(X) is shown by the Ascoli-Arzelà theorem.

Therefore, applying the Schauder-Tychonoff fixed point theorem, there exists
an element (v1, v2, . . . , vm) ∈ X such that (v1, v2, . . . , vm) = F(v1, v2, . . . , vm),
that is, (v1, v2, . . . , vm) satisfies the system of integral equations (3.7). The func-
tion (u1(x), u2(x), . . . , um(x)) = (v1(|x|), . . . , vm(|x|)) then gives a solution of (3.6).
Since infinitely many (a1, a2, . . . , am) satisfy (3.8), we can construct an infinitude
of positive radial entire solutions of (3.1). This completes the proof. �

Proof of Theorem 3.2. Without loss of generality, we may assume that R0 = e in
(3.3). As before, it suffices to solve the following system of integral equations:

vi(r) = ai +
∫ r

0

s log(
r

s
)Pi(s)vi+1(s)αids, r ≥ 0, i = 1, 2, . . . ,m,

where ai = vi(0). Choose constants ai > 0 so that

(2ai+1)αie

∫ e

0

Pi(s)ds ≤ ai

2
,

(2ai+1)αiCi

1− λi + αiβi+1
≤ ai

2
,

where βi, i = 1, 2, . . . ,m, are defined by (1.5). It is possible to choose such ai’s by
the assumption A > 1. We notice that βi > 1 by the assumption (3.4). Define the
functions Fi, i = 1, 2, . . . ,m, by

Fi(r) =

{
2ai for 0 ≤ r ≤ e,

2ai(log r)βi for r ≥ e.

Consider the set

Y = {(v1, v2, . . . , vm) ∈ (C[0,∞))m : a ≤ vi(r) ≤ Fi(r), r ≥ 0, 1 ≤ i ≤ m},
which is a closed convex subset of (C[0,∞))m. Define the mapping F : Y →
(C[0,∞))m by F(v1, v2, . . . , vm) = (ṽ1, ṽ2, . . . , ṽm), where

ṽi(r) = ai +
∫ r

0

s log(
r

s
)Pi(s)vi+1(s)αids, r ≥ 0, i = 1, 2, . . . ,m .

We will verify that F is a continuous mapping from Y into itself such that F(Y ) is
relatively compact.

We first show that F maps Y into itself. Let (v1, v2, . . . , vm) ∈ Y . It is clear that
ṽi ≥ ai, i = 1, 2, . . . ,m. Let 0 ≤ r ≤ e. Then, using the inequality 0 ≤ s log(r/s) ≤
r/e for 0 ≤ s ≤ r, we have

ṽi(r) ≤ ai +
r

e

∫ r

0

Pi(s)vi(s)αids

≤ ai + (2ai+1)αi

∫ e

0

Pi(s)ds

≤ ai +
ai

2
< 2ai, i = 1, 2, . . . ,m.
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Let r ≥ e. Then we write

ṽi(r) = ai +
( ∫ 1

0

+
∫ e

1

+
∫ r

e

)
s log(

r

s
)Pi(s)vi+1(s)αids ≡ ai + I1 + I2 + I3.

The inequality 0 ≤ s log(r/s) ≤ log r for 0 ≤ s ≤ 1 implies that

I1 ≤
∫ 1

0

Pi(s)vi+1(s)αids log r ≤ (2ai+1)αie

∫ 1

0

Pi(s)ds log r. (3.9)

The integrals I2 and I3 are estimated as follows:

I2 ≤
∫ e

1

sPi(s)vi+1(s)αids log r

≤ (2ai+1)αi

∫ e

1

sPi(s)ds log r

≤ (2ai+1)αie

∫ e

1

Pi(s)ds log r ;

(3.10)

I3 ≤
∫ r

e

sPi(s)vi+1(s)αids log r

≤ (2ai+1)αiCi

∫ r

e

s−1(log s)−λi+αiβi+1ds log r

= (2ai+1)αiCi

∫ log r

1

t−λi+αiβi+1dt log r

≤ (2ai+1)αiCi

1− λi + αiβi+1
(log r)2−λi+αiβi+1

≤ ai

2
(log r)βi .

(3.11)

From (3.9) and (3.10), we have

I1 + I2 ≤ (2ai+1)αie

∫ e

0

Pi(s)ds log r ≤ ai

2
(log r)βi . (3.12)

Thus by (3.11) and (3.12) we obtain ṽi(r) ≤ 2ai(log r)βi , i = 1, 2, . . . ,m. Therefore,
F(v1, v2, . . . , vm) ∈ Y .

The continuity of F and the relative compactness of F(Y ) can be verified in
a routine manner. Thus there exists an element (v1, v2, . . . , vm) ∈ Y such that
(v1, v2, . . . , vm) = F(v1, v2, . . . , vm) by the Schauder-Tychonoff fixed point theorem.
It is clear that this (v1, v2, . . . , vm) gives rise to a positive radial entire solution
(u1(x), u2(x), . . . , um(x)) = (v1(|x|), v2(|x|), . . . , vm(|x|)) of (3.1). �

The proof of Theorem 3.3 is the same as that of Theorem 3.1. So we leave the
proof to the reader.

4. Liouville type theorem

Consider the semilinear elliptic system
∆u1 = P1(x)uα1

2 ,

∆u2 = P2(x)uα2
3 ,

...

∆um = Pm(x)uαm
m+1, um+1 = u1,

(4.1)
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where x ∈ RN , N ≥ 3 and m ≥ 2 are integers and αi > 0, i = 1, 2, . . . ,m, are
constants satisfying α1α2 · · ·αm > 1. Suppose that

Pi(x) ≥ Ci

|x|λi
, |x| ≥ x0 > 0, i = 1, 2, . . . ,m,

hold for some constants Ci > 0 and λi ∈ R, satisfying Λi ≤ 0 for some i ∈
{1, 2, . . . ,m}. If, in addition, αi ≥ 1, i = 1, 2, . . . ,m, then as studied in Sections 2.2
and 2.3 one can conclude from Theorems 2.4 and 2.7 that system (4.1) has no non-
negative nontrivial entire solutions. However, if at least one of αi, i ∈ {1, 2, . . . ,m},
is less than 1, then one cannot derive any information about the nonnegative non-
trivial entire solutions without radial symmetry. When α1α2 · · ·αm > 1 and the
same hypothesis of Theorem 2.7 hold, does not (4.1) possess a nonnegative non-
trivial entire solutions? To give a partial answer this question we prove a Liouville
type theorem for nonnegative entire solutions of (4.1). Our result is as follows:

Theorem 4.1. Let N ≥ 3. Suppose that

lim inf
|x|→∞

|x|λiPi(x) > 0, i = 1, 2, . . . ,m, (4.2)

hold for some constants λi, i = 1, 2, . . . ,m, and there exists an i0 ∈ {1, 2, . . . ,m}
such that Λi0 ≤ 0. If (u1, u2, . . . , um) is a nonnegative entire solution of (4.1)
satisfying

ui0(x) = O(exp |x|ρ) as |x| → ∞ for some ρ > 0, (4.3)

then (u1, u2, . . . , um) ≡ (0, 0, . . . , 0).

The next lemma is needed in proving Theorem 4.1.

Lemma 4.2. Let (u1, u2, . . . , um) be a nonnegative entire solution of (4.1), and
b ∈ (0, 1) be a constant. Then its spherical mean (ū1, ū2, . . . , ūm) satisfies the
ordinary differential inequalities

ū′i(r) ≥ C̃irPi∗(r)ūi+1(br)αi , r > 0,

ū′i(0) = 0,
i = 1, 2, . . . ,m, (4.4)

where C̃i = C̃i(N,αi, b) > 0, i = 1, 2, . . . ,m, are constants and

Pi∗(r) = min
|x|≤r

Pi(x), r ≥ 0, i = 1, 2, . . . ,m.

To prove this lemma, we present the following lemma; see [4, p.244] or [11, p.225].

Lemma 4.3. Let D be a domain in RN . Suppose that σ > 0 is a constant, and
x0 ∈ D and r > 0 satisfy B2r(x0) ≡ {x ∈ RN ; |x − x0| ≤ 2r} ⊂ D. Then, we can
find a constant C = C(N,σ) > 0 satisfying(

max
Br(x0)

u
)σ

≤ C

rN

∫
B2r(x0)

uσdx,

for any function u ∈ C2(D) satisfying u ≥ 0, ∆u ≥ 0 in D.

Proof of Lemma 4.2. Let (u1, u2, . . . , um) be a nonnegative entire solution of (4.1).
By taking the mean value of (4.1), we have

(rN−1ū′i(r))
′ =

1
ωN

∫
|x|=r

Pi(x)ui+1(x)αidS, r ≥ 0, i = 1, 2, . . . ,m. (4.5)
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Since an integration of (4.5) shows that ūi(r), i = 1, 2, . . . ,m, are nondecreasing
on [0,∞), we may assume that b > 1/2 in (4.4). Put b = 1 − a, a ∈ (0, 1/2).
Integrating (4.5) over [0, r], we have

ū′i(r) =
1

ωNrN−1

∫
|x|≤r

Pi(x)ui+1(x)αidx ≥ Pi∗(r)
ωNrN−1

∫
|x|≤r

ui+1(x)αidx . (4.6)

Let r > 0 be fixed. We take yi+1 ∈ RN , i = 1, 2, . . . ,m, such that

ui+1(yi+1) = max
|x|=(1−a)r

ui+1(x)
(

= max
|x|≤(1−a)r

ui+1(x)
)
,

and take zi+1 ∈ RN , i = 1, 2, . . . ,m, such that zi+1 = Myi+1, 0 < M < 1, and
|yi+1 − zi+1| = ar. Then we can see that∫

|x|≤r

ui+1(x)αidx ≥
∫
|x−zi+1|≤2ar

ui+1(x)αidx, i = 1, 2, . . . ,m,

and using Lemma 4.3, we obtain∫
|x−zi+1|≤2ar

ui+1(x)αidx ≥ Cir
N

(
max

|x−zi+1|≤ar
ui+1(x)

)αi

= Cir
N{ui+1(yi+1)}αi

= Cir
N

(
max

|x|=(1−a)r
ui+1(x)

)αi

≥ Cir
N ūi+1((1− a)r)αi ,

where i = 1, 2, . . . ,m and Ci = Ci(N,αi, a) > 0 are constants. ¿From this estimate
and (4.6) we obtain (4.4). Thus the proof is complete. �

Proof of Theorem 4.1. Assume that (4.2) holds. Then there exist positive constants
Ci > 0, i = 1, 2, . . . ,m, and R0 > 0 such that

Pi(x) ≥ Ci

|x|λi
for |x| ≥ R0.

So that

Pi∗(r) ≥
Ci

rλi
for r ≥ R0. (4.7)

Without loss of generality we may assume that i0 = 1. Suppose to the contrary
that (4.1) has a nonnegative nontrivial entire solution (u1, u2, . . . , um) satisfying
(4.3) with i0 = 1. Then, by Lemma 4.2, its spherical mean (ū1, ū2, . . . , ūm) satisfies
(4.4).

We choose the constant b < 1 in (4.4) such that 1 < b−2m < A1/ρ, where ρ is
the number appearing in (4.3). We first show that

lim
r→∞

ū1(r) = ∞, (4.8)

and
ū1(lr) ≥ Lū1(r)A near +∞ (4.9)

where L > 0 is some constant and l = b−2m.
Integrating (4.4) on [0, r], we have

ūi(r) ≥ ūi(0) + C̃i

∫ r

0

sPi∗(s)ūi+1(bs)αids, r ≥ 0, i = 1, 2, . . . ,m. (4.10)
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Since (u1, u2, . . . , um) is nonnegative and nontrivial, for some point x∗ ∈ RN we
have ui(x∗) > 0 for some i ∈ {1, 2, . . . ,m}; that is ūi(r∗) > 0, r∗ = |x∗|. We may
assume that r∗ ≥ R0. Therefore, we see from (4.10) that ūi(r) > 0 for r > r∗.

Let r ≥ r∗/b be large enough. Integrating (4.4) over [br, r], from (4.7) and the
monotonicity of ui we have

ūi(r)− ūi(br) ≥ C̃i

∫ r

br

sPi∗(s)ūi+1(bs)αids

≥ C̃iūi+1(b2r)αi

∫ r

br

s1−λids

= C̃i
1− b2−λi

2− λi
ūi+1(b2r)αir2−λi ,

namely,

ūi(r) ≥ Cr2−λi ūi+1(b2r)αi , i = 1, 2, . . . ,m, (4.11)

where C is some positive constant. Notice that (4.11) is still valid even though
λi = 2 (with C = C̃i log b−1).

From (4.11), by iteration, it follows that

ū1(r) ≥ Cr−Λ1 ū1(b2mr)A, r >
r∗

b2m
,

where C > 0 is some constant. From the assumption Λ1 ≤ 0, we obtain (4.9).
The inequality (4.4) with i = 1 and (4.11) imply

ū′1(r) ≥ CrτP1∗(r)ū1(b2(m−1)+1r)A, (4.12)

where

τ = 1 +
m−1∑
j=1

{
(2− λ1+j)

j−1∏
k=0

α1+k

}
= λ1 − 1− Λ1.

Integrating (4.12) over [r1, r], b2(m−1)+1r1 > r∗, we have

ū1(r) ≥ ū1(r1) + C

∫ r

r1

sτP1∗(s)ū1(b2(m−1)+1s)Ads

≥ ū1(r1) + Cū1(b2(m−1)+1r1)A

∫ r

r1

sτ−λ1ds.

From the assumption Λ1 ≤ 0, we can see that τ−λ1 ≥ −1, which implies that (4.8)
holds. Let r̃ be large so that

L
1

A−1 ū1(r̃) ≥ e, (4.13)

and

ū1(lr) ≥ Lū1(r)A, r ≥ r̃ , (4.14)
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where L > 0 is the constant appearing in (4.9). It is possible to choose such an r̃
by (4.8) and (4.9). For k ∈ N, from (4.14) we obtain

ū1(lkr̃) ≥ Lū1(lk−1r̃)A

≥ L1+Aū1(lk−2r̃)A2

≥ . . .

≥ L1+A+···+Ak−1
ū1(r̃)Ak

= L−
1

A−1

[
L

1
A−1 ū1(r̃)

]Ak

.

Hence we see from (4.13) that

ū1(lkr̃) ≥ L−
1

A−1 expAk. (4.15)

Let r ≥ lr̃. Then we can find that there exists a unique positive integer k = k(r)
such that lkr̃ ≤ r < lk+1r̃. Thus k satisfies

k >
log r − log r̃

log l
− 1.

It follows therefore from (4.15) that

ū1(r) ≥ ū1(lkr̃) ≥ L−
1

A−1 expAk

≥ L−
1

A−1 exp
{

A− log r̃
log l −1 ·A

log r
log l

}
= L−

1
A−1 exp

{
A− log r̃

log l −1r
log A
log l

}
.

(4.16)

On the other hand, because u1(x) = O(exp |x|ρ) as |x| → ∞, we obviously have

ū1(r) = O(exp rρ) as r →∞.

Since log A/ log l = log A/ log b−2m > ρ from our choice of b, (4.16) gives a contra-
diction. The proof is complete. �

Remark 4.4. (i) When m = 2, Theorem 4.1 reduces to [13, Theorem 1]. However,
the proof given here is simpler than in [13].
(ii) As described in Remark 2.3, in the case m = 2, the nonnegative entire solution
(u1, u2) of (4.1) satisfies

u1(x) ≤ C|x|β1 and u2(x) ≤ C|x|β2 at ∞

without the assumptions α1 ≥ 1 and α2 ≥ 1 under the condition (4.2). From this
fact and (4.8), we can see that if (λ1, λ2) satisfies Λ1 ≤ 0, then the system (4.1) does
not have nonnegative nontrivial entire solutions. Therefore, we find that Theorem
2.7 holds without the assumptions α1 ≥ 1 and α2 ≥ 1. So we conjecture that the
conclusion of Theorem 2.7 holds without the assumptions αi ≥ 1, i = 1, 2, . . . ,m.
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