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AVERAGING FOR NON-PERIODIC FULLY NONLINEAR
EQUATIONS

CLAUDIO MARCHI

Abstract. This paper studies the averaging problem for some fully nonlinear

equations of degenerate parabolic type with a Hamiltonian not necessarily
periodic in the fast variable. Our aim is to point out a sufficient condition

on the Hamiltonian to pass to the limit in the starting equation. Also, we
investigate when this condition is not completely fulfilled and discuss some

examples concerning deterministic and stochastic optimal control problems.

1. Introduction

In this paper we consider the family of Cauchy problems

∂tuε + H
(
x, t, t/ε, uε, Duε, D

2uε

)
= 0, in (0, T )× Rn (1.1)

uε(0, x) = h(x) on Rn, (1.2)

where ∂t ≡ ∂/∂t, the function uε is scalar, Duε and D2uε stand respectively for
the gradient and the Hessian matrix of uε with respect to the variable x. It is clear
that, as ε → 0, the nonlinearity in (1.1) oscillates more and more rapidly; the theory
of averaging (homogenization if the Hamiltonian H depends on x/ε) investigates
whether the solutions uε of (1.1)-(1.2) converge “in some sense” as ε → 0 to the
solution u of

∂tu + H̄(x, t, u,Du, D2u) = 0 (1.3)

for an effective Hamiltonian H̄ to be founded somehow (see the books [24, p. 323-ff]
and [10, p. 233-ff and 516-ff] for solutions in Sobolev spaces).

In this paper for a solution we shall mean a viscosity solution (this notion was
introduced by Crandall and Lions [18] for first-order equations and extended to
second-order equations by Lions [25, 26]; see the paper [17] for an overview). The
pioneering results in homogenization for viscosity solution are due to Lions, Papan-
icolaou and Varadhan [27], who faced the problem

∂tvε + H(x/ε,Dvε) = 0 in (0, T )× Rn,

vε(0, x) = v0(x) on Rn,
(1.4)
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where the Hamiltonian H = H(x, p) is periodic in x and coercive in p. They showed
that vε converges uniformly to the solution v of the problem

∂tv + H̄(Dv) = 0 in (0, T )× Rn,

v(0, x) = v0(x) on Rn,

where the effective Hamiltonian H̄ is obtained as follows. Plugging in (1.4) the
(early known and formal) expansion

vε(t, x) = v0(t, x) + εv1(t, x/ε) + ε2v2 . . . , (1.5)

with vi(t, y) a periodic functions in y, they deduced the cell problem: for each
p ∈ Rn, find λ ∈ R such that there exists a solution v = v(y) to

H(y, p + Dv) = λ in Rn, v periodic in y .

They proved that, for each p ∈ Rn, there exists exactly one λ(p) which solves the
cell problem; moreover, the effective Hamiltonian H̄ can be conveniently defined
by H̄(p) := λ(p) (see also [13, 14] for a variational approach to H̄). The result of
[27] was generalized by Evans [19, 20] to first-order equations of the form

H(x, x/ε, vε, Dvε) = 0,

and to second-order equations of the form

F (x, x/ε, vε, Dvε, D
2vε) = 0,

under the principal assumptions that H(x, y, r, p) is periodic in y and coercive in
p, that

r → H(x, y, r, p)− µr is nondecreasing for some µ > 0,∀(x, y, p), (1.6)

and, respectively, that F (x, y, r, p, X) is uniformly elliptic, periodic in y and satisfies
a condition similar to (1.6). In these works, Evans introduced the perturbed test-
function method, where the expansion (1.5) was replaced by the same expansion
for the (smooth) test-function: φ(t, x) = φ0(t, x)+εφ1(t, x/ε)+ε2φ2 . . . . Lions and
Souganidis [28] investigated the existence or non-existence of a solution to the cell
problem when the periodicity assumption is not accomplished.

Barron [8] faced the averaging problem for the equation

∂tvε + H(x, t, t/ε,Dvε) = 0,

for Hamiltonian H(x, t, τ, p) periodic in τ (among other conditions). Using some
properties of an underlying deterministic optimal control problem (however, an ar-
gument analogous to Evans’ one could be used as well), he proved that the effective
Hamiltonian H̄ is given by

H̄(x, t, p) :=
∫ 1

0

H(x, t, ξ, p) dξ.

Actually, a few years before, Chaplais [12] faced a similar problem with a non-
periodic H(x, t, τ, p): he showed that also the effective problem can be written as
a deterministic optimal control with the Hamiltonian given by

H̄(x, t, p) := lim
τ→+∞

1
τ

∫ τ

0

H(x, t, ξ, p) dξ, (1.7)
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provided that the above limit exists for every (x, t, p). He proved also that the
solutions of

∂tvε + H(x, t, t/ε,Dvε) = 0 in (0, T )× Rn,

vε(0, x) = v0(x) on Rn,

converge uniformly on each compact subset of [0, T ]× Rn to the solution of

∂tv + H̄(x, t,Dv) = 0 in (0, T )× Rn,

v(0, x) = v0(x) on Rn,

if the following condition is fulfilled: for each (x, t, p) there exists a value H̄(x, t, p)
such that

lim
τ→+∞

sup
τ1≥0

∣∣∣1
τ

∫ τ1+τ

τ1

H(x, t, ξ, p) dξ − H̄(x, t, p)
∣∣∣ = 0.

Let us mention that Alvarez and Bardi [1, 2] faced the homogenization of

∂tvε + H(x, y,Dxvε, Dyvε/ε, Dxxvε, Dyyvε/ε, Dxyvε/
√

ε) = 0, (1.8)

where the state variable (x, y) splits into the slow variable x and in the fast variable
y. As a particular case of (1.8), they considered the equation

∂tvε + H(x, t/ε, Dvε, D
2vε) = 0,

with H(x, τ, p, X) periodic in τ , and obtained an effective Hamiltonian as in (1.7).
We recall that the case of linear uniformly parabolic equations was solved in the
book [10, p. 516-ff] using different techniques. It is the purpose of this paper
to extend the result by [10] to fully nonlinear degenerate equations, fulfilling the
“averaging property” stated in assumption (A2) below. To this end we shall use
the perturbed test-function method by Evans, the weak semi-limits and some ideas
of [8].

Let us emphasize that, besides [12], the principal result known for a non-periodic
Hamiltonian, is due to Ishii [22], who considered the equation

vε(x) + H(x, x/ε,Dvε) = 0 in Rn,

under the primary assumption that H(x, y, p) is almost periodic in y and coercive
in p. See also [5] for certain cases of second-order quasi-periodic Hamiltonians.

Finally, it is of some interest to recall that the homogenization simultaneous in
x and in t was addressed in [3] and in [23], still under a periodicity assumption.

This paper is organized as follows: In Section 2 we give some notations and we
state our main results (proved in Section 3). Section 4 gives some examples and
compares our results with previously known results.

2. Mathematical framework and main results

We denote by Mn,m and Sn respectively the set of n×m real matrices and the
space of n×n symmetric matrices. The latter is endowed with the usual order: for
X, Y ∈ Sn we shall write “X ≥ Y ”, if X − Y is a semi-definite positive matrix. I
will stand for the identity matrix in Sn.

We denote the strip (0, T )×Rn and the semi-space (0,+∞)×Rn respectively by
ST and S∞. Given any point x ∈ Rn and any value r ∈ R+, Br(x) is the open ball
centered in x of radius r. Given any point (t, x) ∈ S∞ and any constant r ∈ R+,
Qr(t, x) will stand for the parabolic neighborhood around (t, x), i.e. Qr(t, x) :=
(t− r, t + r)×Br(x).
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Let the Hamiltonian H : Rn × [0, T ] × R+ × R × Rn × Sn → R (eventually,
T = +∞) satisfy the following assumptions:

(A0) H is continuous and proper (i.e., for all x, p ∈ Rn, t ∈ [0, T ], τ ∈ R+,
r, s ∈ R and X, Y ∈ Sn, it satisfies: H(x, t, τ, r, p,X) ≤ H(x, t, τ, s, p, Y )
whenever r ≤ s and X ≥ Y ). H satisfies the usual condition for the
Comparison Principle in bounded domains (see: [17, pag 48] and [16, pag
38]): there exists a function ω : [0, +∞] → [0, +∞] with lims→0+ ω(s) = 0
such that, for all x, y ∈ Rn, t ∈ [0, T ], α, τ ∈ R+ and X, Y ∈ Sn, there holds

H (y, t, τ, r, α(x− y), Y )−H (x, t, τ, r, α(x− y), X)

≤ ω
(
α|x− y|2 + |x− y|

) (2.1)

whenever

−3α

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
.

(A1) Fix (x, t, r, p, X) ∈ Rn × [0, T ]× R× Rn × Sn. For each ε > 0, there exists
δ > 0 such that, for max {|x− x′|, |t− t′|, |r − r′|, |p− p′|, |X −X ′|} < δ,
there holds

|H(x, t, τ, r, p,X)−H(x′, t′, τ, r′, p′, X ′)| < ε ∀τ ∈ R+.

(A2) The Hamiltonian H satisfies the averaging property: for each (x, t, r, p, X) ∈
Rn × [0, T ]× R× Rn × Sn there exists the following limit:

lim
τ→+∞

1
τ

∫ τ

0

H(x, t, ξ, r, p, X) dξ =: H̄(x, t, r, p, X).

Remark 2.1. Let us observe that hypothesis (A2) is equivalent to requiring that,
for each (x, t, r, p, X) ∈ Rn × [0, T ]×R×Rn × Sn, there exists exactly one value λ
such that the ordinary differential equation

λ +
dχ

dτ
+ H(x, t, τ, r, p,X) = 0 in (0,+∞) (2.2)

admits a solution sublinear at infinity, i.e. such that limτ→+∞ χ(τ)/τ = 0. The
parameter λ shall depend on (x, t, r, p, X) and it can be easily checked that λ =
−H̄(x, t, r, p, X). It is of some interest to note that, plugging in (1.1) the formal
expansion (analogous to (1.5)), uε(t, x) = u0(t, x) + εu1(t/ε, x), we obtain exactly
relation (2.2) as cell problem.

Remark 2.2. Of course, any Hamiltonian H(x, t, τ, r, p,X), continuous and peri-
odic in τ with period l, satisfies assumptions (A1)–(A2) and

H̄(x, t, r, p, X) ≡ 1
l

∫ l

0

H(x, t, ξ, r, p, X) dξ

(see Subsection 4.2 below for other generalizations of periodicity).

Let us first state some useful properties of the effective Hamiltonian H̄ and then
state our main result.

Proposition 2.3. Assume that the Hamiltonian H satisfies conditions (A0)–(A2);
then H̄ satisfies assumption (A0). In particular, the Comparison Principle is valid
for the solutions of (1.3).
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Theorem 2.4. Assume that the Hamiltonian H satisfies conditions (A0)–(A2)
and that {uε}0<ε≤1 is a locally equi-bounded family of solutions to problem (1.1)–
(1.2). Then {uε} converges uniformly on each compact subsets of [0, T ]×Rn to the
(unique) solution u to the effective Cauchy problem

∂tu + H̄
(
x, t, u,Du, D2u

)
= 0 in (0, T )× Rn,

u(0, x) = h(x) on Rn.
(2.3)

For investigating Hamiltonians which do not satisfy assumption (A2), let us
introduce the following conditions:

(A3) For each (x, t, r, p, X) ∈ Rn × [0, T ]× R× Rn × Sn there exists

HS(x, t, r, p, X) := lim sup
τ→+∞

1
τ

∫ τ

0

H(x, t, ξ, r, p, X) dξ < +∞;

(A4) For each (x, t, r, p, X) ∈ Rn × [0, T ]× R× Rn × Sn there exists

Hi(x, t, r, p, X) := lim inf
τ→+∞

1
τ

∫ τ

0

H(x, t, ξ, r, p, X) dξ > −∞.

It is clear that assumption (A2) entails (A3) and (A4) with H̄ ≡ HS ≡ Hi.

Theorem 2.5. Assume that the Hamiltonian H fulfills conditions (A0)–(A1) and
that the family {uε}0<ε≤1 of solutions to problem (1.1)–(1.2) converges to a function
u locally uniformly in ST . We have also the following:

(a) If the Hamiltonian H satisfies assumption (A3), then the function u is a
subsolution to the Cauchy problem

∂tu + HS

(
x, t, u,Du, D2u

)
= 0 in (0, T )× Rn,

u(0, x) = h(x) on Rn.
(2.4)

(b) If the Hamiltonian H satisfies assumption (A4), then the function u is a
supersolution of the Cauchy problem

∂tu + Hi

(
x, t, u,Du, D2u

)
= 0 in (0, T )× Rn,

u(0, x) = h(x) on Rn.
(2.5)

Remark 2.6. It is worth noting that in the proofs of Theorems 2.4 and 2.5, the
Comparison Principle is needed but not the regularity property (2.1). Henceforth,
for a first-order Hamiltonian H(x, t, τ, r, p), assumption (A0) can be replaced by

(A5) H is continuous and satisfies the usual condition for the Comparison Prin-
ciple in bounded domains ([7]): for each compact G in Rn× [0, T ]×R+×R,
there exist a constant µ ∈ R+ and a function ω1 : [0,+∞) → [0,+∞),
with lims→0+ ω1(s) = 0, such that, for each (x, t, τ, r) ∈ G and p ∈ Rn,
r → H(x, t, τ, r, p) + µr is non decreasing and there holds

|H(x, t, τ, r, p)−H(x′, t, τ, r, p)| ≤ ω1 (|x− x′|(1 + |p|)) .

3. Proofs of main results

Proof of Proposition 2.3. Fix (x, t, r, p, X) ∈ Rn× [0, T ]×R×Rn×Sn. By assump-
tions (A1)–(A2), there holds∣∣H̄(x, t, r, p, X)− H̄(x′, t′, r′, p′, X ′)

∣∣
≤ lim

τ→+∞

1
τ

∫ τ

0

|H(x, t, ξ, r, p, X)−H(x′, t′, ξ, r′, p′, X ′)| dξ ≤ ε,
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if max {|x− x′|, |t− t′|, |r − r′|, |p− p′|, |X −X ′|} is sufficiently small; hence the
effective Hamiltonian H̄ is continuous. The proofs of the properness and of the
condition for the Comparison Principle are similar so we omit them. �

Proof of Theorem 2.4. Let us introduce the weak semi-limits

ū(t, x) := lim sup
(ε,t′,x′)→(0+,t,x)

uε(t′, x′)

u(t, x) := lim inf
(ε,t′,x′)→(0+,t,x)

uε(t′, x′).

We shall prove that ū and u are respectively a sub- and a supersolution of (2.3);
the two proofs are similar so we will omit the latter. Fix (t̄, x̄) ∈ ST and let φ be
a test-function such that ū− φ admits a local maximum in (t̄, x̄); without any loss
of generality, we can assume that the maximum is strict and that there holds

ū(t̄, x̄) = φ(t̄, x̄). (3.1)

We proceed by contradiction, assuming that for some η > 0 there holds

∂tφ(t̄, x̄) + h̄ ≡ ∂tφ(t̄, x̄) + H̄
(
x̄, t̄, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

)
> η. (3.2)

By assumption (A1), there exists a constant δ0 ∈ R+ such that∣∣H (
x̄, t̄, τ, φ(t̄, x̄)− δ0, Dφ(t̄, x̄), D2φ(t̄, x̄)

)
−H

(
x̄, t̄, τ, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

) ∣∣ ≤ η

12
∀τ ∈ R+.

(3.3)

Let us fix 0 < r ≤ t̄/2, sufficiently small to have:∣∣H (
x, t, τ, φ(t, x)− δ0, Dφ(t, x), D2φ(t, x)

)
−H

(
x̄, t̄, τ, φ(t̄, x̄)− δ0, Dφ(t̄, x̄), D2φ(t̄, x̄)

) ∣∣ ≤ η/3, ∀τ ∈ R+, (t, x) ∈ Qr,

(3.4)∣∣∂tφ(t̄, x̄)− ∂tφ(t, x)
∣∣ ≤ η/3, ∀(t, x) ∈ Qr, (3.5)

u(t, x)− φ(t, x) ≤ −µ, for some µ ∈ R+, ∀(t, x) ∈ ∂Qr (3.6)

(Qr is the abridged notation of Qr(t̄, x̄)). We consider the perturbed test-function

φε(t, x) := φ(t, x) + εχ(t/ε)

where χ = χ(τ) is a classical solution (not necessarily unique) of the following
ordinary differential equation:

−h̄ +
dχ

dτ
+ H

(
x̄, t̄, τ, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

)
= 0 (3.7)

such that limτ→+∞ χ(τ)/τ = 0. It is easily checked that the last relation implies

lim
ε→+∞

εχ(t/ε) = 0 uniformly in [t̄/2, 2t̄ ],

and therefore,
lim

ε→+∞
φε(t, x) = φ(t, x) uniformly in Qr. (3.8)

Now we claim that φε is a supersolution to (1.1). Let us first observe that, by
assumption (A0), the function χ exists and is C1; hence, φε can solve (1.1) in the
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classical sense. Testing φε in (1.1), for each (t, x) ∈ Qr we obtain (for ε sufficiently
small):

∂tφε(t, x) + H
(
x, t, t/ε, φε(t, x), Dφε(t, x), D2φε(t, x)

)
≥ ∂tφ(t, x) +

dχ

dτ
(t/ε) + H

(
x, t, t/ε, φ(t, x)− δ0, Dφ(t, x), D2φ(t, x)

)
= ∂tφ(t, x) +

dχ

dτ
(t/ε) + H

(
x̄, t̄, t/ε, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

)
−

[
H

(
x̄, t̄, t/ε, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

)
−H

(
x̄, t̄, t/ε, φ(t̄, x̄)− δ0, Dφ(t̄, x̄), D2φ(t̄, x̄)

) ]
+

[
H

(
x, t, t/ε, φ(t, x)− δ0, Dφ(t, x), D2φ(t, x)

)
−H

(
x̄, t̄, t/ε, φ(t̄, x̄)− δ0, Dφ(t̄, x̄), D2φ(t̄, x̄)

) ]
≥ ∂tφ(t, x) +

dχ

dτ
(t/ε) + H

(
x̄, t̄, t/ε, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

)
− 5

12
η,

where the latter inequality is due to relations (3.3)–(3.4) while the former one to
the properness of H and to relation (3.8). By relations (3.5) and (3.7), we deduce

∂tφε(t, x) + H
(
x, t, t/ε, φε(t, x), Dφε(t, x), D2φε(t, x)

)
≥ ∂tφ(t̄, x̄) + h̄− 3

4
η.

By assumption (3.2), for each (t, x) ∈ Qr there holds

∂tφε(t, x) + H
(
x, t, t/ε, φε(t, x), Dφε(t, x), D2φε(t, x)

)
≥ 0 (3.9)

hence, the function φε is a classical supersolution of (1.1).
Let us prove that for some ε0 ∈ (0, 1] there holds

uε(t, x)− φε(t, x) < −µ/2 ∀(t, x) ∈ ∂Qr, ε < ε0. (3.10)

In fact, if the previous relation fails, then there exist sequences εn and (tn, xn) ∈
∂Qr, such that

εn → 0 as n → +∞ and uεn
(tn, xn)− φεn

(tn, xn) ≥ −µ/2. (3.11)

Being ∂Qr compact, it is possible to extract a subsequence (which we still denote
by (tn, xn)) converging to a point (t̃, x̃) ∈ ∂Qr. By equality (3.8) and by definition
of ū, we have the relation

ū(t̃, x̃)− φ(t̃, x̃) ≥ lim
n→+∞

[uεn
(tn, xn)− φεn

(tn, xn)] ≥ −µ/2,

which contradicts (3.6); hence claim (3.10) is proved.
Now we claim that, for 0 < α < min{δ0,−µ/2}, the function φε−α is a classical

supersolution to the initial-boundary value problem

∂tv + H
(
x, t, t/ε, v,Dv,D2v

)
= 0 ∀(t, x) ∈ Qr,

v(t̄− r, x) = uε(t̄− r, x) ∀x ∈ Br(x̄),

v(t, x) = uε(t, x) ∀(t, x) ∈ (t̄− r, t̄ + r)× ∂Br(x̄),

(3.12)

for ε ≤ ε1, with ε1 sufficiently small. To this end, it suffices to replace φε by φε−α
in the calculations above and to require that for ε < ε1 there holds:

|εχ(t/ε)| < δ0 − α uniformly in [t̄/2, 2t̄ ].
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On the other hand, it is straightforward to recognize that uε is a subsolution to the
problem (3.12). By the Comparison Principle, we have

uε(t, x) ≤ φε(t, x)− α ∀(t, x) ∈ Qr, ε < min{ε0, ε1}.

Passing to the lim sup in the previous relation, we obtain:

ū(t̄, x̄) = lim sup
(ε,t,x)→(0+,t̄,x̄)

uε(t, x) ≤ lim sup
(ε,t,x)→(0+,t̄,x̄)

φε(t, x)− α = φ(t̄, x̄)− α,

which contradicts assumption (3.1).
Finally by Proposition 2.3, the Comparison Principle is valid for sub- and super-

solutions to problem (2.3) and it yields: ū ≤ u. By the definition of weak semi-limit,
the opposite inequality is obvious so ū ≡ u =: u. It is well known (for instance,
see: [7, p. 290]) that the above relation is equivalent to the following statement:
the sequence {uε} converges uniformly to u on each compact subset of ST . �

Remark 3.1. By the same argument as in the proof above, one can prove that ū
and u are respectively a sub- and a super solution to (1.3) also if [0, T ] is replaced
by (0, T ) in (A0)–(A2).

Proof of Theorem 2.5. We prove only part (a); the proof of part (b) is similar and
we shall omit it. We fix (t̄, x̄) ∈ S∞ and a test-function φ as in the proof of Theorem
2.4. We proceed by contradiction, assuming that for some η > 0 there holds

∂tφ(t̄, x̄) + hS ≡ ∂tφ(t̄, x̄) + HS

(
x̄, t̄, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

)
> η. (3.13)

Let us choose 0 < r ≤ t̄/2 sufficiently small to accomplish relations (3.4)–(3.6) and
consider the perturbed test-function φε(t, x) := φ(t, x) + εχ(t/ε), where χ = χ(τ)
is a classical solution of the following ordinary differential equation

−hS +
dχ

dτ
+ H

(
x̄, t̄, τ, φ(t̄, x̄), Dφ(t̄, x̄), D2φ(t̄, x̄)

)
= 0 (3.14)

such that lim infτ→+∞ χ(τ)/τ = 0. Consequently, we have

lim inf
ε→+∞

φε(t, x) = φ(t, x) uniformly in Qr. (3.15)

As in the proof of Theorem 2.4, it can be showed that, for α ∈ R sufficiently small,
the functions φε − α and uε are respectively a super- an a subsolution of

∂tv + H
(
x, t, t/ε, v,Dv,D2v

)
= 0 ∀(t, x) ∈ Qr,

v(t̄− r, x) = uε(t̄− r, x) ∀x ∈ Br(x̄),

v(t, x) = uε(t, x) ∀(t, x) ∈ (t̄− r, t̄ + r)×Br(x̄),

for ε ≤ ε0 (let us recall that the constant ε0 was introduced in (3.10)). Taking into
account the Comparison Principle, we have

uε(t, x) ≤ φε(t, x)− α ∀(t, x) ∈ Qr, ε < ε0.

Taking the lim inf in the previous relation, by relation (3.15) we obtain

u(t̄, x̄) = lim inf
(ε,t,x)→(0+,t̄,x̄)

uε(t, x) ≤ lim inf
(ε,t,x)→(0+,t̄,x̄)

φε(t, x)− α = φ(t̄, x̄)− α

which contradicts assumption (3.1). �
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4. Examples

4.1. Convergence of functions uε. Here we show two cases where the hypothesis
on the convergence of uε stated respectively in Theorems 2.4 and 2.5 are fulfilled.

Proposition 4.1. Let the Hamiltonian H fulfills (A0) and the following condition

|H(x, t, τ, 0, 0, 0)| ≤ M ∀(x, t, τ) ∈ Rn × [0, T ]× R+, (4.1)

for some M > 0. For each h ∈ BUC(Rn) (i.e., it is bounded and uniformly
continuous), there exists a unique solution uε to problem (1.1)–(1.2). Moreover,
the functions uε (ε > 0) are uniformly bounded.

Using the Perron method [17] and the Comparison Principle, one can easily
obtain the proof of Proposition 4.1 so we omit it. Taking into account Theorem 2.4
and the previous Proposition, we have the following statement.

Corollary 4.2. Let the Hamiltonian H satisfy (A0)–(A2) and (4.1). Then the
solutions uε to (1.1)–(1.2) converge locally uniformly to the solution of (2.3).

Remark 4.3. This result applies to the Hamilton-Jacobi-Bellman-Isaacs operators

H(x, t, τ, r, p,X) := sup
α

inf
β

Lα,β(x, t, τ, r, p,X),

Lα,β(x, t, τ, r, p,X)

:= − tr
(
aα,β(x, t, τ)X

)
− gα,β(x, t, τ) · p− lα,β(x, t, τ)r − fα,β(x, t, τ)

where “tr” denotes the trace, and aα,β = σα,βσT
α,β. It is well known [2] that, if σα,β,

gα,β and lα,β are Lipschitz continuous functions of Rn × [0, T ]×R+ respectively in
Mn,n, Rn, and R+ and if fα,β ∈ C(Rn × [0, T ] × R+), then the Hamiltonian H
satisfies assumption (A0) and (4.1), provided that all local bounds and all moduli
of continuity of σα,β, gα,β, lα,β and fα,β are uniform in α and in β. In this case,
for each ε > 0, there exists a solution uε to (1.1)–(1.2), bounded independently of
ε.

Now, let us consider a free endpoint problem of Lagrange in optimal control.
The dynamics are given by

dξ

dη
= f (ξ(η), η, η/ε, ζ(η)) , t ≤ η ≤ T,

ξ(t) = x ∈ Rn,

for a control function ζ in the class Z[t, T ] := {ζ : [t, T ] → Z; ζ is measurable},
with Z compact in Rm, m ∈ N. The player’s objective is to minimize the pay-off

Pε(t, x, ζ) := e
∫ T

t
g(ξ(s),s,s/ε,ζ(s)) dsu0(ξ(T )) +

∫ T

t

h (ξ(s), s, s/ε, ζ(s)) ds.

Assume that the functions f , g, u0, and h satisfy the following assumptions:
(B1) If φ is any of the functions f , g or h, then φ is defined in Rn×[0, T ]×R+×Z,

is continuous and, for some K > 0, satisfies

|φ(x, t, τ, z)− φ(x′, t′, τ ′, z)| ≤ K (|t− t′|+ |τ − τ ′|+ |x− x′|) , (4.2)

for every (x, t, τ, z), (x′, t′, τ ′, z) ∈ Rn × [0, T ]× R+ × Z; f satisfies also

|f(x, t, τ, z)| ≤ K(1 + |x|) ∀(x, t, τ, z) ∈ Rn × [0, T ]× R+ × Z. (4.3)

The functions h and u0 are bounded and the latter is Lipschitz continuous.
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It is well known that, under assumption (B1), the value-function

Vε(t, x) := inf
ζ∈Z[t,T ]

Pε(t, x, ζ)

is the unique solution to the problem

∂tVε + H (x, t, t/ε, Vε, DVε) = 0 in (0, T )× Rn,

Vε(T, x) = u0(x) on Rn,
(4.4)

where the Hamiltonian H is defined by

H (x, t, t/ε, r, p) := inf
z∈Z

{f(x, t, t/ε, z) · p + g(x, t, t/ε, z) r + h(x, t, t/ε, z)}

and satisfies assumptions (A0)–(A1) and (A5) (see: [8, 9, 29]). By small changes
of the argument in [8], one can show the following statement.

Proposition 4.4. Under assumption (B1), there exists a subsequence of {Vε} lo-
cally uniformly convergent to a continuous function V .

Taking into account Theorem 2.5 and the previous Proposition, we have the
following corollary which generalizes the results stated in [8, 12].

Corollary 4.5. Let the optimal control problem satisfy assumption (B1). If as-
sumption (A3) (respectively, (A4)) holds, then the functions Vε converge locally
uniformly to a subsolution of (2.4) (respectively, a supersolution to (2.5)).

Remark 4.6. The results of Proposition 4.4 and of Corollary 4.5 can be extended
to a two-person zero-sum differential game. In this case, the dynamics are given by

dξ

dη
= f (ξ(η), η, η/ε, ζ(η), γ(η)) t ≤ η ≤ T,

ξ(t) = x ∈ Rn;

where the controls ζ, γ are chosen respectively in Z[t, T ] := {ζ : [t, T ] → Z; ζ is
measurable} and in J [t, T ] := {γ : [t, T ] → J ; γ is measurable}, where Z and J
are compacts respectively in Rm1 and in Rm2 (m1, m2 ∈ N). The aim of ζ-player
and of γ-player is respectively to minimize and to maximize the pay-off

Pε(t, x, ζ, γ) := e
∫ T

t
g(ξ(s),s,s/ε,ζ(s),γ(s)) dsu0(ξ(T ))+

∫ T

t

h (ξ(s), s, s/ε, ζ(s), γ(s)) ds.

Assume that the so-called minimax (or Isaacs’) condition

inf
z∈Z

sup
j∈J

{f(x, t, t/ε, z, j) · p + g(x, t, t/ε, z, j) r + h(x, t, t/ε, z, j)}

= sup
j∈J

inf
z∈Z

{f(x, t, t/ε, z, j) · p + g(x, t, t/ε, z, j) r + h(x, t, t/ε, z, j)} .

is fulfilled with H1(x, t, t/ε, r, p) denoting the common value. Let us recall that,
under conditions similar to (B1), H1 satisfies assumptions (A0)–(A1), (A5) and the
value Wε of the game solves (4.4) with H replaced by H1 (see: [21]).



EJDE–2003/95 AVERAGING FOR NON-PERIODIC . . . 11

4.2. Almost periodic Hamiltonians and the averaging property. We re-
call that, for each almost periodic (a. p. in the sequel) function f , the limit
limτ→+∞

1
τ

∫ a+τ

a
f(ξ)dξ exists uniformly with respect to a and it is independent

of a (see: [11, 15, 4]); hence, any Hamiltonian H(x, t, τ, r, p,X), a. p. in τ , satis-
fies assumption (A2). In particular, the Hamilton-Jacobi-Bellman-Isaacs operator
introduced in Remark 4.3 fulfills (A2) provided that the functions σα,β , gα,β , lα,β ,
fα,β are a. p. in τ uniformly with respect to α and β. Actually, assumption (A2)
still holds for asymptotically a. p. Hamiltonians, i. e. of the form

H(x, t, τ, r, p,X) = H1(x, t, τ, r, p,X) + H2(x, t, τ, r, p,X),

where H1 is a. p. in τ and limτ→+∞H2(x, t, τ, r, p,X) = 0 uniformly in (x, t, r, p, X).
Finally, regarding the generalizations of the notion of periodic functions, it is of

some interest to observe that H(x, t, τ, r, p,X) satisfies assumption (A2) provided
that, for each (x, t, r, p, X) ∈ Rn × [0, T ]× R× Rn × Sn, the function

f(τ) :=

{
H(x, t, τ, r, p,X) τ ≥ 0
H(x, t,−τ, r, p, X) τ < 0,

belongs to the Besicovitch space B1
ap(R) (see [6, 30] for the precise definition).
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[8] E. N. Barron, Lagrange and minimax problem of optimal control, SIAM J. Control. Optim.,

Vol. 31 (1993), No. 6, 1630–1652.
[9] E. N. Barron, L. C. Evans and R. Jensen, Viscosity solutions of Isaacs’ Equations and

Differential Games with Lipschitz control, J. Differential Equations, Vol. 53 (1984), 213–233.

[10] A. Bensoussan, J.-L. Lions and G. Papanicolaou Asymptotic analysis for periodic structures
Studies in Mathematics and its applications, Vol. 5, North-Holland, Amsterdam, 1978.

[11] H. Bohr Almost periodic functions, Chelsea Publishing, New York, 1947.
[12] F. Chaplais, Averaging and deterministic optimal control, SIAM J. Control. Optim., Vol. 25

(1987) No. 3, 767–780.

[13] M. C. Concordel, Periodic Homogenization of Hamilton-Jacobi Equations: Additive Eigen-
values and Variational Formula, Indiana Univ. Math. J., Vol. 45 (1996), No. 4, 1095–1117.

[14] M. C. Concordel, Periodic Homogenisation of periodic Hamilton-Jacobi equations, II. Eikonal

equations, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 127 (1997), No. 4, 665–686
[15] C. Corduneau Almost periodic functions, Interscience tracts in Pure and Applied Mathemat-

ics, Vol. 22, Interscience, New York, 1961.

[16] M. G. Crandall, Viscosity solutions: a primer, Viscosity solutions and applications (Mon-
tecatini 1995), Editors: I. Capuzzo Dolcetta and P. L. Lions, pages 1–43. Lecture Notes in

Mathematics, Vol. 1660, Springer, Berlin, 1997.



12 CLAUDIO MARCHI EJDE–2003/95

[17] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order

partial differential equations, Bull. Amer. Math. Soc. (N. S.), Vol. 27 (1992), 1–67.

[18] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc., Vol. 277 (1983), No. 1, 1–42.

[19] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,

Proc. Roy. Soc. Edinburgh, Sect. A, Vol. 111 (1989), Nos. 3–4, 359–375.
[20] L. C. Evans, Periodic homogenization of certain fully nonlinear partial differential equations,

Proc. Roy. Soc. Edinburgh Sect. A, Vol. 120 (1992), Nos. 3–4, 245–265.
[21] L. C. Evans and P. E. Souganidis, Differential Games and Representation Formulas for

solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., Vol. 33 (1984), No.

5, 773–797.
[22] H. Ishii, Almost periodic homogeneization of Hamilton-Jacobi equations International Con-

ference on Differential Equations, Vols. 1,2 (Berlin, 1999), World Sci. Publishing, River Edge,

NJ, 2000.
[23] H. Ishii, Homogenization of the Cauchy problem for Hamilton-Jacobi equations Stochas-

tic analysis, control optimization and applications, pages 305–324. Systems Control Found.
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