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THE HEAT EQUATION AND THE SHRINKING

MASAKI KAWAGISHI & TAKESI YAMANAKA

Abstract. This article concerns the Cauchy problem for the partial differen-

tial equation

∂1u(t, x)− a∂2
2u(t, x) = f(t, x, ∂p

2u(µ(t)t, x), ∂q
2u(t, ν(t)x)) .

Here t and x are real variables, p and q are positive integers greater than 1, and

the shrinking factors µ(t), ν(t) are positive-valued functions such that their
suprema are less than 1.

1. Introduction

The effect of shrinkings placed on the independent variables has been investigated
in [1, 2, 3, 4]. All of the results obtained so far can be said to be on the same line
as the Cauchy-Kovalevskaja theorem. This means that the results obtained are
independent of the type of differential equations, such as parabolic or hyperbolic.
Therefore, there are possibilities for obtaining some new results in the study of the
effect of the shrinking by taking into account the type of differential equation. The
present note is our first attempt to pursue such possibilities. To be a bit more
exact, we consider here the problem of introducing shrinking factors into the one
dimensional heat equation

∂1u(t, x)− a∂2
2u(t, x) = f(t, x). (1.1)

In this equation u(t, x) is the unknown real-valued function with (t, x) ∈ R2, ∂i

denotes partial differentiation with respect to the ith variable, f(t, x) is a given
function of (t, x), and a a positive constant.

Next, we recall a well-known result about the solution of (1.1) satisfying the
initial condition

u(0, x) = ϕ(x). (1.2)

When ϕ(x) and f(t, x) are continuous and bounded, if f(t, x) satisfies the Hölder
condition with respect to x, then a solution to (1.1)-(1.2), (on the domain t ≥
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0,−∞ < x <∞) is given by the formula

u(t, x)

=

{
ϕ(x) if t = 0,∫∞
−∞G(t, x− ξ)ϕ(ξ)dξ +

∫ t

0
dτ

∫∞
−∞G(t− τ, x− ξ)f(τ, ξ)dξ if t > 0,

(1.3)

where
G(t, x) =

1
2
√
πat

e−x2/(4at) (t > 0, −∞ < x <∞)

which is called the heat kernel. It is also well-known that u(t, x) given by (1.3) is
the only solution of the Cauchy problem (1.1)-(1.2) among the functions bounded
with respect to x.

In particular, when the initial value is

u(0, x) = ϕ(x) = 0, (1.4)

the formula (1.3) becomes

u(t, x) =
∫ t

0

dτ

∫ ∞

−∞
G(t− τ, x− ξ)f(τ, ξ)dξ. (1.5)

Note that there is no loss of generality if we consider only the homogeneous problem
(ϕ(x) = 0). In fact, for a non-zero initial condition (1.2), a homogeneous problem
is obtained by replacing the unknown function u(t, x) by u(t, x)− ϕ(x).

Now we can state clearly the purpose of the present paper. In this note, we
consider the differential equation

∂1u(t, x)− a∂2
2u(t, x) = f(t, x, ∂p

2u(µ(t)t, x), ∂q
2u(t, ν(t)x)) (1.6)

instead of the simple heat equation (1.1). In (1.6) t and x are real variables. u is a
real-valued unknown function. We assume that the positive-valued function µ and
ν satisfy supt µ(t) < 1 and supt ν(t) < 1; µ is called the time shrinking factor and
ν is called the space shrinking factor. p and q denote integers greater than 1. As
for the function f(t, x, v, w) we assume, for the sake of our convenience, that it is
a continuous function of (t, x, v, w) and is a Gevrey function of (x, v, w). For the
definition of a Gevrey function see §3.

We want to solve the Cauchy problem for the equation (1.6) with the homoge-
neous condition (1.4) only, for the same reason as in the case of the simple heat
equation (1.1). Since the unique bounded solution of the Cauchy problem (1.1)-
(1.4) is given by (1.5), it is necessary and sufficient for a bounded function u(t, x) to
be a solution of the Cauchy problem (1.6)-(1.4) that it satisfies the integral equation

u(t, x) =
∫ t

0

dτ

∫ ∞

−∞
G(t− τ, x− s)f(τ, s, ∂p

2u(µ(τ)τ, s), ∂q
2u(τ, ν(τ)s))ds. (1.7)

To solve this integral equation, however, we need some preparations to be made
in the following two sections. Our final result in this note will be stated and proved
in §4. It can be generalized without any essential change to the n-dimensional case.
But, for the sake of simplicity of the notation, we refrain from doing so in this note.

Finally in this introduction we make a brief mention on the case where the
differential equation (1.6) is linear. As will be seen in the theorem in §4, the
domain of t of existence of the solution u(t, x) to the general non-linear Cauchy
problem (1.6)-(1.4) may be smaller than the domain of t for definition of the function
f(t, x, v, w). If f(t, x, v, w) is linear in v and w, however, it can be shown that the
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domain of existence of u(t, x) coincides with the domain of definition of f(t, x, v, w).
We omit the details.

2. The properties of integrals with the heat kernel

As a preparation for solving the integral equation (1.7) let us recall some funda-
mental properties of an integral∫ ∞

−∞
G(t− τ, x− ξ)g(τ, ξ)dξ. (2.1)

Proposition 2.1. Let M,T be positive constants. Let g(t, x) be a real valued con-
tinuous function for (t, x) ∈ R2 with 0 ≤ t < T . Assume that the inequality
|g(t, x)| ≤M holds. Then

v(t, τ, x) =

{∫∞
−∞G(t− τ, x− ξ)g(τ, ξ)dξ if t > τ,

g(τ, x) if t = τ
(2.2)

is continuous for (t, τ, x) ∈ R3 with 0 ≤ τ ≤ t < T and satisfies the inequality
|v(t, τ, x)| ≤M .

When the function g(t, x) in the integral (2.1) is m times differentiable in x, then
the function v(t, τ, x) is also m times differentiable in x. To be exact we have the
following proposition; however, we omit its proof.

Proposition 2.2. Let g(t, x) be a real-valued bounded continuous function for
(t, x) ∈ R2 with 0 ≤ t < T . Assume that g(t, x) is m times differentiable in x
and the partial derivatives ∂k

2 g(t, x) (1 ≤ k ≤ m) are bounded continuous functions
for (t, x) ∈ R2 with 0 ≤ t < T . Then the function v(t, τ, x) defined by (2.2) is m
times differentiable in x and the partial derivatives ∂k

3 v(t, τ, x), 1 ≤ k ≤ m, are

∂k
3 v(t, τ, x) =

{∫∞
−∞G(t− τ, x− ξ)∂k

2 g(τ, ξ)dξ if t > τ,

∂k
2 g(τ, x) if t = τ.

(2.3)

3. Gevrey functions

As stated in §1, our purpose in the present note is to solve the Cauchy problem
(1.6)-(1.4). To be more exact, we assume that the function f(t, x, v, w) in (1.6) is a
Gevrey function of (x, v, w) and seek a solution u(t, x) that is a Gevrey function of
x. In this section, we shall recall the definition of Gevrey function and state some
fundamental properties of Gevrey functions.

Gevrey functions of one variable. We denote by Z+ the set of all non-negative
integers. Let I be a real interval and λ a constant greater than 1. Let λ be a fix
constant greater than 1.

If for a C∞ function w : I → R there are positive constants C,M such that

|w(k)(x)| ≤ CMk(k!)λ

holds for all x ∈ I and all k ∈ Z+, then w is called a Gevrey function on I of order
λ.

It is easy to see that a C∞ function w : I → R is a Gevrey function of order λ
if and only if there are positive constants C ′, L such that

|w(k)(x)| ≤ 2−5C ′Lk(k!)λ(1 + k)−2
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holds for all x ∈ I and all k ∈ Z+. So we write, according to Yamanaka [5],

Γλ(k) = 2−5(k!)λ(1 + k)−2

for k = 0, 1, 2, . . . and define

|w|L = sup
{ |w(k)(x)|
LkΓλ(k)

: x ∈ I, k ∈ Z+

}
for each C∞ function w : I → R. We denote by γL(I) the family of all C∞ functions
w : I → R such that |w|L <∞.

Besides this family, we need another type of Gevrey family. For a C∞ function
w : I → R, we write

w = sup
x∈I

|w(x)|, ‖w‖L = max{26 w , 23L−1|w′|L} (3.1)

and define
GL(I) = {w ∈ C∞(I,R) : ‖w‖L <∞}.

Between the two types of Gevrey families γL(I) and GL(I) there is the following
relation which proof can be found in [4, Proposition 2.1] and in [6, Lemma 5.2].

Proposition 3.1. If 0 < L < M , then γL(I) ⊂ GM (I) ⊂ γM (I) and the inclusion
maps are linear and bounded.

The norm ‖ · ‖L has the following useful property which proof can be found in
[4, Proposition 2.2] and in [6, Theorem 5.4].

Proposition 3.2. If v and w are in GL(I), then the product vw is again in GL(I)
and the inequality ‖vw‖L ≤ ‖v‖L‖w‖L holds.

As for the result of differentiation of a function belonging to the family γL(I)
there is the following fact which proof can be found in [4, Proposition 2.3].

Proposition 3.3. Let L be a positive constant, α be a constant greater than 1, and
q be a positive integer. Assume that w ∈ γL(I). Then the qth derivative w(q) of w
is in the family γαL(I) and

|w(q)|αL ≤ (αL)q
( λq

logα
)λq|w|L .

For us the following modification of the above proposition is useful. Its proof
can be found in [4, Proposition 2.4].

Proposition 3.4. Let L and M be positive constants such that L < M . Assume
that w is in γL(I) and q is a positive integer. Then w(q) is in γM (I) and

|w(q)|M ≤M (1+λ)q
( λq

M − L

)λq

|w|L .

As for composition of two Gevrey type functions there is the following fact. For
its proof see [4, Proposition 2.5] and [5, Theorem 3.1].

Proposition 3.5. Let I, J be open intervals and L,M be positive constants. As-
sume that w : J → R is a C∞ function such that w′ ∈ γL(J) and v : I → J is a
C∞ function such that v′ ∈ γM (I). Assume further that the inequality

|v′|M ≤ L−1M (3.2)
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holds. Then the derivative (w ◦ v)′ of the composite function w ◦ v : I → R belongs
to the family γM (I) and

|(w ◦ v)′|M ≤ L−1M |w′|L .
In terms of the norms ‖ · ‖L and ‖ · ‖M the above proposition is modified as

follows. For its proof see [4, Proposition 2.6] and [6, Theorem 5.3].

Proposition 3.6. Let I, J be open intervals and L,M be positive constants. As-
sume that w : J → R is in the family GL(J) and v : I → J is in the family
GM (I). Assume further that the inequality (3.2) holds. Then the composite func-
tion w ◦ v : I → R belongs to the family GM (I) and

‖w ◦ v‖M ≤ ‖w‖L .

Gevrey functions of several variables. For a function of m variables we denote
by ∂j the partial differentiation with respect to the jth variable and write ∂ =
(∂1, . . . , ∂m). Further, if k = (k1, . . . , km) is an element of Zm

+ , then we write
∂k = ∂k1

1 · · · ∂km
m .

Let U be an open set of Rm. If f : U → R is a C∞ function and there are
positive constants C, M such that the inequality

|∂kf(x)| ≤ CM |k|(k!)λ,

where |k| = k1 + · · · + km and k! = k1! · · · km!, holds everywhere in U for any m
dimensional index k = (k1 . . . , km), then f is called a Gevrey function on U of order
λ.

A C∞ function f : U → R is a Gevrey function of order λ, if and only if there
are positive constants C ′, L such that the inequality

|∂kf(x)| ≤ C ′L|k|Γλ(|k|)
holds everywhere in U for any m dimensional index k. For this reason we write

|f |L = sup
x,k

|∂kf(x)|
L|k|Γλ(|k|)

for any C∞ function f : U → R and define

γL(U) = {f ∈ C∞(U,R) : |f |L <∞}.
Further we write, like (3.1),

w = sup
x∈U

|w(x)|, ‖w‖L = max{26 w , 23L−1 max
i
|∂iw|L}

and define
GL(U) = {w ∈ C∞(U,R) : ‖w‖L <∞}.

It is necessary for us to know what comes out when m Gevrey functions g1(x),
. . ., gm(x) of one variable x are substituted for the last m variables y1, . . . , ym in a
Gevrey function f(x, y1, . . . , ym) of m+ 1 variables x, y1, . . . , ym.

Proposition 3.7. Let J1, . . . , Jm and I be open intervals and L, M be positive
constants. Write U = I × J1 × · · · × Jm. Let f be an element of the family GL(U)
and gi : I → Ji, i = 1, . . . ,m, be in the family GM (I). Assume that

M ≥ L(1 + max
i
|g′i|M ). (3.3)

Put ϕ(x) = f(x, g1(x), . . . , gm(x)) for x ∈ I. Then ϕ is in GM (I) and ‖ϕ‖M ≤
‖f‖L.
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The proof of this proposition can be found in [4, Proposition 2.7] and [5, Lemma
8.1].

Partial Gevrey functions. It is necessary for us to consider functions of m + 1
variables which are in a Gevrey class with respect to the last m variables only. We
call them partial Gevrey functions. For a function f(t, y1, . . . , ym) of m+1 variables
t, y1, . . . , ym we write ∂̃ = (∂2, . . . , ∂m+1). For a non-negative integer j0 we write
Z+(j0) = {j ∈ Z+ : j ≤ j0}. Let U be an open set of Rm, I a real interval and
j0 a non-negative integer. Then we denote by C(j0,∞)(I, U) the set of all functions
f : I × U → R such that the partial derivative ∂j

1∂̃
kf : I × U → R exists and

is continuous for each (j, k) ∈ Z+(j0) × Zm
+ . Further, if h(t) is a positive valued

function of t ∈ I, we write

G̃(j0)
h (I, U)

= {f ∈ C(j0,∞)(I, U) : if t ∈ I and 0 ≤ j ≤ j0, then ∂j
1f(t, ·, . . . , ·) ∈ Gh(t)(U)}.

We shall need, however, the case where j0 = 0 only. We simply write G̃h(I, U)
instead of G̃(0)

h (I, U). We shall need the following proposition.

Proposition 3.8. Let T be a positive constant and h(t) a positive valued function
of t ∈ [0, T ). Let g be an element of G̃h([0, T ),R) such that

‖g(t, ·)‖h(t) ≤ C,

where C is a positive constant. Then a function ψ(t, x) of (t, x) ∈ [0, T ) × R is
defined by

ψ(t, x) =
∫ t

0

dτ

∫ ∞

−∞
G(t− τ, x− ξ)g(τ, ξ) dξ, (3.4)

where G denotes the heat kernel. ψ belongs to the family G̃h([0, T ),R) and satisfies
the inequality

‖ψ(t, ·)‖h(t) ≤ Ct. (3.5)

Proof. Write ∆ = {(t, τ, x) ∈ R3 : 0 ≤ τ ≤ t < T} and define v(t, τ, x) for (t, τ, x) ∈
∆ by (2.2). Since g is a bounded continuous function, we can use Proposition 2.1
and see that v(t, τ, x) is a continuous function for (t, τ, x) ∈ ∆ and

|v(t, τ, x)| ≤ sup
ξ∈R

|g(τ, ξ)| = g(τ, ·) ≤ 2−6‖g(τ, ·)‖h(τ) ≤ 2−6C . (3.6)

Using the notation v(t, τ, x), the definition (3.4) of ψ(t, x) is rewritten as

ψ(t, x) =
∫ t

0

v(t, τ, x)dτ. (3.7)

By (3.6) and (3.7) we have

ψ(t, ·) ≤ 2−6Ct. (3.8)

Further, since g(t, x) has bounded continuous partial derivatives ∂k
2 g(t, x), k =

1, 2, · · · , we can use Proposition 2.2 and see that v(t, τ, x) is infinitely differentiable
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in x and the partial derivatives ∂k
3 v(t, τ, x), k = 1, 2, · · · , are given by (2.3). By

Proposition 2.1, 2.2 and (2.3) we see that

|∂k
3 v(t, τ, x)| ≤ sup

ξ∈R
|∂k

2 g(τ, ξ)|

≤ |∂2g(τ, ·)|h(τ)h(τ)k−1Γλ(k − 1)

≤ 2−3‖g(τ, ·)‖h(τ)h(τ)kΓλ(k − 1)

≤ 2−3Ch(t)kΓλ(k − 1) .

(3.9)

By (3.9) and (3.7) we see that

|∂k
2ψ(t, x)| ≤ 2−3Ch(t)kΓλ(k − 1)t

for k = 1, 2, . . ., and that

|∂2ψ(t, ·)|h(t) ≤ 2−3Ch(t)t . (3.10)

By (3.8) and (3.10) we see that the inequality (3.5) holds. �

4. Main result and its proof

In this secion, as in §3, λ denotes a fixed constant greater than 1. Using the
notation introduced in the preceding section, we can state our result on the Cauchy
problem (1.6)-(1.4). It is stated as the following theorem.

Theorem 4.1. Let L, R and T0 be positive constants. In the differential equation
(1.6) suppose that µ(t) and ν(t) are positive valued continuous functions for t ∈
[0, T0). Assume that

sup
0≤t<T0

max{µ(t), ν(t)} < 1.

p and q denote positive integers greater than 1. Put M = max{1, 2L}, s = (2λp)−1

and h(t) = M(1 + ts) for t ≥ 0. Write

U = {(x, v, w) ∈ R3 : max{|v|, |w|} < R}.
Assume that the function f in (1.6) as well as its partial derivatives ∂3f and ∂4f

belong to the family G̃L([0, T0), U) and that

Cf := sup
0≤t<T0

max{‖f(t, ·, ·, ·)‖L, ‖∂3f(t, ·, ·, ·)‖L, ‖∂4f(t, ·, ·, ·)‖L} <∞.

Then there exists a positive number T ∗ ≤ T0 such that the initial-value problem
(1.6)-(1.4) has a unique solution u ∈ G̃h([0, T ∗),R)

⋂
C(1,∞)([0, T ∗),R) such that

‖u(t, ·)‖h(t) ≤ Cf t, 0 ≤ t < T ∗. (4.1)

Proof. As in §1 it is sufficient for our purpose of solving the Cauchy problem (1.6)-
(1.4) to solve the integral equation (1.7). To this end, for any given T > 0, we
write

H(T ) = {v ∈ G̃h([0, T ),R) : sup
0<t<T

‖v(t, ·)‖h(t)

t
<∞},

which is a Banach space with the norm

NH(T )[v] = sup
0<t<T

‖v(t, ·)‖h(t)

t
, v ∈ H(T ).

Further, for an arbitrary K > 0, we set

F(T,K) = {v ∈ H(T ) : NH(T )[v] ≤ K},
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which is a closed convex subset of the Banach space H(T ).
We now want to show that there is a T ≤ T0 such that, if v ∈ F(T,Cf ), then

the integral

w(t, x) :=
∫ t

0

dτ

∫ ∞

−∞
G(t− τ, x− ξ)f(τ, ξ, ∂p

2v(µ(τ)τ, ξ), ∂q
2v(τ, ν(τ)ξ))dξ (4.2)

is well-defined for all (t, x) ∈ [0, T )×R and the function w : [0, T )×R → R defined
by (4.2) is again in F(T,Cf ).

In order for the integral on the right-hand side of (4.2) to be well-defined it is
necessary that the values ∂p

2v(µ(τ)τ, ξ) and ∂q
2v(τ, ν(τ)ξ) can be substituted for y

and z in f(τ, ξ, y, z), respectively. It is enough for this that the inequality

max{|∂p
2v(µ(τ)τ, ξ)|, |∂q

2v(τ, ν(τ)ξ)|} < R (4.3)

holds. Now suppose that v is in F(T,Cf ). Then we have

|∂2v(t, ·)|h(t) ≤ 2−3h(t)‖v(t, ·)‖h(t) ≤ 2−3h(t)Cf t, 0 ≤ t < T. (4.4)

Therefore, for (t, x) ∈ [0, T )× R,

|∂p
2v(µ(t)t, x)| = |∂p−1

2 (∂2v)(µ(t)t, x)|
≤ |∂2v(µ(t)t, ·)|h(µ(t)t) · h(µ(t)t)p−1 · Γλ(p− 1)

≤ 2−3‖∂2v(µ(t)t, ·)‖h(µ(t)t) · h(µ(t)t)p · Γλ(p− 1)

≤ 2−3NH(T )[v]µ(t)t · h(µ(t)t)p · Γλ(p− 1)

≤ 2−3Cf · µ(t)t · h(µ(t)t)p · Γλ(p− 1)

< 2−3CfT · h(T )p · Γλ(p− 1)

(4.5)

and

|∂q
2v(t, ν(t)x)| ≤ sup

ξ∈R
|∂q

2v(t, ξ)| = sup
ξ∈R

|∂q−1
2 (∂2v)(t, ξ)|

≤ |∂2v(t, ·)|h(t) · h(t)q−1 · Γλ(q − 1)

≤ 2−3Cf · t · h(t)q · Γλ(q − 1)

< 2−3Cf · T · h(T )q · Γλ(q − 1).

Therefore, if T ≤ T0 satisfies the inequality

2−3Cf · T ·max {h(T )pΓλ(p− 1), h(T )qΓλ(q − 1)} ≤ R (4.6)

and v is in F(T,Cf ), then the inequality (4.3) holds for (t, x) ∈ [0, T ) × R and
the expression f(t, x, ∂p

2v(µ(t)t, x), ∂q
2v(t, ν(t)x)) makes sense. For this reason we

define

T1 = max{T : T ≤ T0 and (4.6) holds}.

Now suppose 0 < T ≤ T1 and take an element v of F(T,Cf ). Then we can put

ϕ(t, x) = f(t, x, ∂p
2v(µ(t)t, x), ∂q

2v(t, ν(t)x)). (4.7)

Let us seek a condition under which this function ϕ enters the family G̃h([0, T ), R).
For this purpose set m = sup0≤t<T0

max{µ(t), ν(t)}. Then, since v is in F(T,Cf ),
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we have (4.4) and, in virtue of Proposition 3.4,

|∂p+1
2 v(µ(t)t, ·)|h(t)

≤ h(t)(1+λ)p
( λp

h(t)− h(µ(t)t)

)λp

|∂2v(µ(t)t, ·)|h(µ(t)t)

≤ h(t)2λpM−λp
( λp

(1−ms)ts
)λp

2−3h(µ(t)t)‖v(µ(t)t, ·)‖h(µ(t)t)

≤
( h(t)2λp
M(1−ms)ts

)λp

2−3h(µ(t)t)Cfµ(t)t

≤
( h(T )2λp
M(1−ms)

)λp

2−3h(t)Cf t
1−λps

≤ 2−3Cf ·
( h(T )2λp
M(1−ms)

)λp

T 1/2h(t).

(4.8)

Therefore, if T satisfies the inequality

2−3Cf ·
( h(T )2λp
M(1−ms)

)λp

T 1/2 ≤ 1
L
− 1
M
, (4.9)

then

|∂2(∂
p
2v)(µ(t)t, ·)|h(t) = |∂p+1

2 v(µ(t)t, ·)|h(t) ≤
( 1
L
− 1
M

)
h(t) ≤ h(t)

L
− 1. (4.10)

Next we have to estimate the Gevrey norm of the function x 7→ ∂q
2v(t, ν(t)x). For

this purpose define ψ(t, x) = ∂q
2v(t, ν(t)x). Then we have

∂k+1
2 ψ(t, x) = ν(t)k+1∂q+k+1

2 v(t, ν(t)x), k = 0, 1, 2, . . . ,

and

|∂2ψ(t, ·)|h(t) = sup
k,x

|∂k+1
2 ψ(t, x)|
h(t)kΓλ(k)

= sup
k,x

|∂q+k+1
2 v(t, ν(t)x)|
h(t)kΓλ(k)

ν(t)k+1

= ν(t) sup
k,ξ

|∂q+k+1
2 v(t, ξ)|

(h(t)/ν(t))kΓλ(k)
= ν(t)|∂q+1

2 v(t, ·)|h(t)/ν(t)

≤ m|∂q+1
2 v(t, ·)|h(t)/m.

(4.11)

On the other hand, by Proposition 3.3,

|∂q+1
2 v(t, ·)|h(t)/m ≤ (h(t)/m)q

( λq

logm−1

)λq

|∂2v(t, ·)|h(t)

≤ (h(t)/m)q
( λq

logm−1

)λq

2−3h(t)‖v(t, ·)‖h(t)

≤ 2−3m−q
( λq

logm−1

)λq

Cf · h(t)1+qt

≤ 2−3Cfm
−q

( λq

logm−1

)λq

h(T )qTh(t).

(4.12)

From (4.11) and (4.12) we obtain the inequality

|∂2ψ(t, ·)|h(t) ≤ 2−3Cfm
1−q

( λq

logm−1

)λq

h(T )qTh(t), 0 ≤ t < T. (4.13)
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By (4.13) that, if T satisfies the condition

2−3Cfm
1−q

( λq

logm−1

)λq

h(T )qT ≤ 1
L
− 1
M
, (4.14)

then

|∂2ψ(t, ·)|h(t) ≤
( 1
L
− 1
M

)
h(t) ≤ h(t)

L
− 1 . (4.15)

Since (4.9) implies (4.10) and (4.14) implies (4.15), we know that, if T ∈ (0, T1]
satisfies both (4.9) and (4.14), then

max{|∂2(∂
p
2v)(µ(t)t, ·)|h(t), |∂2ψ(t, ·)|h(t)} ≤

h(t)
L

− 1

and
L(1 + max{|∂2(∂

p
2v)(µ(t)t, ·)|h(t), |∂2ψ(t, ·)|h(t)}) ≤ h(t).

This inequality is of the same type as (3.3) in Proposition 3.7. Therefore, by
Proposition 3.7, if T ∈ (0, T1] satisfies the inequalities (4.9) and (4.14), then the
function ϕ defined by (4.7) belongs to the family G̃h([0, T ),R) and satisfies the
inequality

‖ϕ(t, ·)‖h(t) ≤ ‖f(t, ·, ·, ·)‖L ≤ Cf . (4.16)

For this reason we define

T2 = max{T ∈ (0, T1] : (4.9) and (4.14) holds}.

We now know that, if 0 < T ≤ T2 and v ∈ F(T,Cf ), then the function R 3 x 7→
ϕ(t, x) is in Gh(t)(R). Further we see that the function ϕ is in C(0,∞)([0, T ),R),
since f is in C(0,∞)([0, T0), U) and v is in C(0,∞)([0, T ),R). It follows that ϕ is in
G̃h([0, T ),R). Since ϕ is in G̃h([0, T ),R) and satisfies the inequality (4.16), we can
now use Proposition 3.8 and see that the function w defined by (4.2) belongs to
G̃h([0, T ),R) and satisfies the inequality

‖w(t, ·)‖h(t) ≤ Cf t

for 0 ≤ t < T . This means that w is in F(T,Cf ). For T with 0 < T ≤ T2 we denote
by ΦT the mapping which maps each v ∈ F(T,Cf ) to w ∈ F(T,Cf ) given by (4.2).

We need next to estimate the difference ΦT (v1) − ΦT (v0), where v1 and v0 are
arbitrary two elements of F(T,Cf ). For this purpose let us first estimate the
difference

δ(v1,v0)(τ, ξ)

:= f(τ, ξ, ∂p
2v1(µ(τ)τ, ξ), ∂q

2v1(τ, ν(τ)ξ))− f(τ, ξ, ∂p
2v0(µ(τ)τ, ξ), ∂q

2v0(τ, ν(τ)ξ)).
(4.17)

In order to do so it is convenient to write

vθ(t, x) = θv1(t, x) + (1− θ)v0(t, x) (4.18)

for 0 ≤ θ ≤ 1. Since v0 and v1 are in the convex set F(T,Cf ), so is vθ. Note that
(i) The values ∂if(t, x, ∂p

2vθ(µ(t)t, x), ∂q
2vθ(t, ν(t)x)), i = 3, 4, are well-defined

for (t, x) ∈ [0, T )× R
(ii) The functions ∂if(t, x, ∂p

2vθ(µ(t)t, x), ∂q
2vθ(t, ν(t)x)), i = 3, 4, of (t, x), be-

long to the family G̃h([0, T ),R)
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(iii) The inequalities

‖∂if(t, ·, ∂p
2vθ(µ(t)t, ·), ∂q

2vθ(t, ν(t)·))‖h(t) ≤ ‖∂if(t, ·, ·, ·)‖L ≤ Cf , (4.19)

hold for i = 3, 4.
These facts are proved by almost the same reasoning as in the proof of similar facts
about the function ϕ(t, x) = f(t, x, ∂p

2v(µ(t)t, x), ∂q
2v(t, ν(t)x)). In virtue of the

facts (i), (ii) and (iii) above we can change the expression (4.17) of δ(v1,v0)(τ, ξ) as
follows.

δ(v1,v0)(τ, ξ)

=
∫ 1

0

∂3f(τ, ξ, ∂p
2vθ(µ(τ)τ, ξ), ∂q

2vθ(τ, ν(τ)ξ))(∂
p
2v1(µ(τ)τ, ξ)− ∂p

2v0(µ(τ)τ, ξ))dθ

+
∫ 1

0

∂4f(τ, ξ, ∂p
2vθ(µ(τ)τ, ξ), ∂q

2vθ(τ, ν(τ)ξ))(∂
q
2v1(τ, ν(τ)ξ)− ∂q

2v0(τ, ν(τ)ξ))dθ.

By (4.19) and Proposition 3.2, δ(v1,v0) satisfies the inequality

‖δ(v1,v0)(τ, ·)‖h(τ) ≤
∫ 1

0

‖∂3f(τ, ·, ∂p
2vθ(µ(τ)τ, ·), ∂q

2vθ(τ, ν(τ)·))‖h(τ)

× ‖∂p
2v1(µ(τ)τ, ·)− ∂p

2v0(µ(τ)τ, ·)‖h(τ)dθ

+
∫ 1

0

‖∂4f(τ, ·, ∂p
2vθ(µ(τ)τ, ·), ∂q

2vθ(τ, ν(τ)·))‖h(τ)

× ‖∂q
2v1(τ, ν(τ)·)− ∂q

2v0(τ, ν(τ)·)‖h(τ)dθ

≤ Cf

{
‖∂p

2v1(µ(τ)τ, ·)− ∂p
2v0(µ(τ)τ, ·)‖h(τ)

+ ‖∂q
2v1(τ, ν(τ)·)− ∂q

2v0(τ, ν(τ)·)‖h(τ)

}
.

(4.20)

So we need now to estimate the Gevrey norms of the two differences

∂p
2v1(µ(τ)τ, ·)− ∂p

2v0(µ(τ)τ, ·) and ∂q
2v1(τ, ν(τ)·)− ∂q

2v0(τ, ν(τ)·). (4.21)

As for the first of these we can perform, almost in the same way as in (4.8), the
following estimation.

|∂p+1
2 v1(µ(τ)τ, ·)− ∂p+1

2 v0(µ(τ)τ, ·)|h(τ)

≤
( h(τ)2λp
M(1−ms)τ s

)λp

2−3h(µ(τ)τ)‖v1(µ(τ)τ, ·)− v0(µ(τ)τ, ·)‖h(µ(τ)τ)

≤
( h(τ)2λp
M(1−ms)τ s

)λp

2−3h(µ(τ)τ) · NH(T )[v1 − v0] · τ

≤
( h(τ)2λp
M(1−ms)

)λp

2−3h(µ(τ)τ) · NH(T )[v1 − v0] · τ1−λps

≤ 2−3
( h(T )2λp
M(1−ms)

)λp

T 1/2h(τ) · NH(T )[v1 − v0]

and

23h(τ)−1|∂2(∂
p
2 (v1 − v0))(µ(τ)τ, ·)|h(τ) ≤

( h(T )2λp
M(1−ms)

)λp

T 1/2 · NH(T )[v1 − v0].

(4.22)
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Further, as in (4.5), we see that

26 ∂p
2 (v1 − v0)(µ(τ)τ, ·)

= 26 sup
ξ
|∂p−1

2 (∂2(v1 − v0))(µ(τ)τ, ξ)|

≤ 26|∂2(v1 − v0)(µ(τ)τ, ·)|h(µ(τ)τ)h(µ(τ)τ)p−1Γλ(p− 1)

≤ 23h(µ(τ)τ)pΓλ(p− 1) · ‖(v1 − v0)(µ(τ)τ, ·)‖h(µ(τ)τ)

≤ 23h(T )pΓλ(p− 1) · NH(T )[v1 − v0] · µ(τ)τ

≤ 23h(T )pΓλ(p− 1)T · NH(T )[v1 − v0].

(4.23)

By (4.22) and (4.23) we see that the inequality

‖∂p
2 (v1 − v0)(µ(τ)τ, ·)‖h(τ) ≤ E(T )NH(T )[v1 − v0] (4.24)

holds, where

E(T ) = max
{( h(T )2λp
M(1−ms)

)λp
T 1/2, 23h(T )pΓλ(p− 1)T

}
. (4.25)

To estimate the second difference in (4.21), we define

ϕ(τ, ξ) = ∂q
2v1(τ, ν(τ)ξ)− ∂q

2v0(τ, ν(τ)ξ).

In almost the same way as in (4.11) and (4.12) the norm |∂2ϕ(τ, ·)|h(τ) is estimated
as follows.

|∂2ϕ(τ, ·)|h(τ) = ν(τ)|∂q+1
2 (v1 − v0)(τ, ·)|h(τ)/ν(τ)

≤ m|∂q+1
2 (v1 − v0)(τ, ·)|h(τ)/m

≤ m(h(τ)/m)q
( λq

logm−1

)λq|∂2(v1 − v0)(τ, ·)|h(τ)

≤ m(h(τ)/m)q
( λq

logm−1

)λq2−3h(τ)‖(v1 − v0)(τ, ·)‖h(τ)

≤ 2−3m1−q
( λq

logm−1

)λq
h(τ)1+qNH(T )[v1 − v0] · τ

≤ 2−3m1−q
( λq

logm−1

)λq
h(T )qTh(τ)NH(T )[v1 − v0].

(4.26)

Further, as (4.23), we have

ϕ(τ, ·) ≤ sup
x
|∂q

2(v1 − v0)(τ, x)|

≤ |∂2(v1 − v0)(τ, ·)|h(τ)h(τ)q−1Γλ(q − 1)

≤ 2−3h(T )qΓλ(q − 1)‖(v1 − v0)(τ, ·)‖h(τ)

≤ 2−3h(T )qΓλ(q − 1)NH(T )[v1 − v0] · τ
≤ 2−3h(T )qΓλ(q − 1)TNH(T )[v1 − v0].

(4.27)

From (4.26) and (4.27) we obtain

‖∂q
2(v1 − v0)(τ, ν(τ)·)‖h(τ) = ‖ϕ(τ, ·)‖h(τ)

= max{26 ϕ(τ, ·) , 23h(τ)−1|∂2ϕ(τ, ·)|h(τ)}
≤ F (T )NH(T )[v1 − v0],

(4.28)
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where

F (T ) = max
{

23Γλ(q − 1),m1−q
( λq

logm−1

)λq
}
h(T )q · T. (4.29)

Looking at (4.25) and (4.29), it is clear that there is a T > 0 such that T ≤ T2 and
E(T ) + F (T ) ≤ (2Cf )−1. So we can define

T ∗ = max{T : T ≤ T2 and E(T ) + F (T ) ≤ (2Cf )−1}. (4.30)

By (4.24), (4.28) and (4.30), if v0 and v1 are in F(T ∗, Cf ), then the inequality

‖∂p
2 (v1−v0)(µ(τ)τ, ·)‖h(τ)+‖∂q

2(v1−v0)(τ, ν(τ)·)‖h(τ) ≤
1

2Cf
NH(T∗)[v1−v0] (4.31)

holds for 0 ≤ τ ≤ T ∗. By (4.20) and (4.31) we obtain

‖δ(v1,v0)(τ, ·)‖h(τ) ≤
1
2

NH(T∗)[v1 − v0]. (4.32)

Now, our aim is to estimate the difference ΦT∗(v1)−ΦT∗(v0). Using the notation
δ(v1,v0), this difference is expressed as

ΦT∗(v1)(t, x)− ΦT∗(v0)(t, x) =
∫ t

0

dτ

∫ ∞

−∞
G(t− τ, x− ξ)δ(v1,v0)(τ, ξ)dξ (4.33)

By (4.33), (4.32) and Proposition 3.8, we know that

NH(T∗)[ΦT∗(v1)− ΦT∗(v0)] ≤
1
2

NH(T∗)[v1 − v0].

This implies that the mapping ΦT∗ from the closed subset F(T ∗, Cf ) of the Banach
spaceH(T ∗) into itself is a contraction. Therefore, there is one and only one element
v of F(T ∗, Cf ) such that

v = ΦT∗(v).

This element v ∈ F(T ∗, Cf ) is a solution of the integral equation (1.7) and, accord-
ingly, a solution of the Cauchy problem (1.6)-(1.4).

Since v is in F(T ∗, Cf ), it belongs to the family G̃h([0, T ∗),R) and satisfies the
inequality (4.1). Further, since v is a solution of the differential equation (1.6), it
satisfies the equality

∂1v(t, x) = a∂2
2v(t, x) + f(t, x, ∂p

2v(µ(t)t, x), ∂q
2v(t, ν(t)x)). (4.34)

From this equality we see that ∂1v(t, x) is infinitely differentiable in x, because so is
the right-hand side of (4.34). This completes the proof of the fact that the Cauchy
problem (1.6)-(1.4) has a solution u ∈ G̃h([0, T ∗),R)

⋂
C(1,∞)([0, T ∗),R) such that

the inequality (4.1) holds.
The fact that the Cauchy problem has only one such solution is easily confirmed.

In fact assume that v ∈ G̃h([0, T ∗),R)
⋂
C(1,∞)([0, T ∗),R) is a solution of the Cauchy

problem (1.6)-(1.4) and the inequality (4.1) holds. Then v is in the set F(T ∗, Cf )
and satisfies the integral equation (1.7). This means that v is the unique fixed point
of the contraction ΦT∗ : F(T ∗, Cf ) → F(T ∗, Cf ). �



14 MASAKI KAWAGISHI & TAKESI YAMANAKA EJDE–2003/97

References

[1] M. Kawagishi, Cauchy-Kovalevskaja-Nagumo type theorems for PDEs with shrinkings, Proc.

Japan Acad., 75, Ser. A (1999), 184-187.

[2] M. Kawagishi,A generalized Cauchy-Kovalevskaja-Nagumo theorem with shrinkings, Scien-
tiae Mathematicae Japonicae, 54, No. 1 (2001), 39-50

[3] M. Kawagishi, A study on the Cauchy problem for partial differential equations with shrink-

ings, Ph.D. Thesis, September, 2000, Nihon University.
[4] M. Kawagishi and T. Yamanaka, On the Cauchy problem for PDEs in the Gevrey class with

shrinkings, J. Math. Soc. Japan, 54, No.3 (2002), 649-677.

[5] T. Yamanaka, A new higher order chain rule and Gevrey class, Annals of Global Analysis
and Geometry, 7(1989), 179-203

[6] T. Yamanaka, A Cauchy-Kovalevskaja type theorem in the Gevrey class with a vector-valued

time variable, Comm. in Partial Differential Equations, 17(1992), 1457-1502

Masaki Kawagishi
College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku,

Tokyo 101-8308, Japan
E-mail address: masaki@suruga.ge.cst.nihon-u.ac.jp

Takesi Yamanaka

College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku,
Tokyo 101-8308, Japan

E-mail address: yamanaka@math.cst.nihon-u.ac.jp


