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MULTIPLE PERIODIC SOLUTIONS OF A DISCRETE TIME
PREDATOR-PREY SYSTEMS WITH TYPE IV FUNCTIONAL

RESPONSES

ZHIGANG LIU, ANPING CHEN, JINDE CAO, & FENGDE CHEN

Abstract. By using the continuation theorem of Mawhin’s coincidence de-
gree theory, some sufficient conditions are obtained ensuring the existence of

multiple positive periodic solutions of a discrete time predator-prey systems
with type IV functional responses.

1. Introduction

Recently, a Lotka-Volterra model with Holloing Type functional response has
been extensively studied by number of papers (see papers [1]-[7], [9]-[12], [15], [18],
[21]-[23] and the references cited therein). The model is described by the following
system

x′1(t) = x1(t)
[
b1(t)− a1(t)x1(t)−

c(t)x2(t)
m(t)x2(t) + x1(t)

]
,

x′2(t) = x2(t)
[
− b2(t) +

a2(t)x1(t)
m(t)x2(t) + x1(t)

]
,

(1.1)

where x1(t) and x2(t) represent the densities of the prey and the predator, re-
spectively, b1(t), c(t), b2(t) and a2(t) are the prey intrinsic growth rate, capture
rate, death rate of the predator, and the conversion rate, respectively, b1(t)/a1(t)
gives the carrying capacity of the prey, and m is the half saturation constant, the
functional response x/(m(t)y + x) is ratio-dependent.

When the prey group has defence or toxicity, the functional response in a predator-
prey model should be type IV. Kot [19] proposed the following predator-prey model
with a type IV functional response

x′1(t) = x1(t)
[
b1(t)− a1(t)x1(t− τ1(t))−

c(t)x2(t− σ(t))
x2
1(t−τ2(t))

i + x1(t− τ2(t)) + a

]
,

x′2(t) = x2(t)
[
− b2(t) +

a2(t)x1(t− τ3(t))
x2
1(t−τ4(t))

i + x1(t− τ4(t)) + a

]
,

(1.2)
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where c, σ, ai, bi (i = 1, 2) and τj (j = 1, 2, 3, 4) are continuous ω-periodic functions
with c(t) ≥ 0, σ(t) ≥ 0, ai(t) ≥ 0 and τj(t) ≥ 0,

∫ ω

0
c(t)dt > 0 and

∫ ω

0
bi(t)dt > 0, i

and a are positive constants.
Recently, many authors studied the existence of positive periodic solutions in

population models by using the powerful and effective method of coincidence degree.
Chen [8] has established the results of the existence of multiple positive periodic
solutions by applying the continuation theorem for system (1.2) in the case τ2(t) =
0.

When the populations have non-overlapping generations, discrete time model
described by difference equations is more appropriate than the continuous one. In [9]
and [28], authors studied the periodic solutions of some difference equations by using
coincidence degree theory. However, no work has been done for the multiple positive
periodic solutions of discrete time predator-prey model with type IV functional
responses.

The main purpose of this paper is to propose a discrete analogue of system (1.2)
and to obtain sufficient conditions for the existence of its multiple positive periodic
solutions by employing coincidence degree theory and some analysis technique. This
is the first time that a discrete time predator-prey model with a type IV functional
response has been studied by using this way.

The rest of this paper is organized as follows. In Section 2, we propose a dis-
crete predator-prey model with type IV functional responses described by difference
equations with the help of differential equations with piecewise constant arguments.
In section 3, we shall establish easily verifiable sufficient criteria for the existence
of multiple positive periodic solutions of the difference equations derived in Section
2.

2. Discrete analogue of system (1.2)

Let us consider the following equation with piecewise arguments, it is considered
as a semi-discretization of (1.2)

1
x1(t)

dx1(t)
dt

= b1([t])− a1([t])x1([t]− τ1([t]))−
c([t])x2([t]− σ([t]))

x2
1([t]−τ2([t]))

i + x1([t]− τ2([t])) + a
,

1
x2(t)

dx2(t)
dt

= −b2([t]) +
a2([t])x1([t]− τ3([t]))

x2
1([t]−τ4([t]))

i + x1([t]− τ4([t])) + a
, t 6= 0, 1, 2, · · · ,

(2.1)
where [t] denotes the integer part t, t ∈ (0,+∞).

By a solution of (2.1), we mean a function x = (x1, x2)T , which is defined for
t ∈ [0,+∞), and possesses the following properties:

(1) x is continuous on [0,+∞).
(2) The derivative dx1(t)

dt , dx2(t)
dt exist at each point t ∈ [0,+∞) with the possible

exception of the points t ∈ {0, 1, 2, · · · }, where left-sided derivatives exist.
(3) The equations in (2.1) are satisfied on each interval [k, k + 1) with k =

0, 1, 2, · · · .
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For k ≤ t < k + 1, k = 0, 1, 2, · · · , integrating (2.1) from k to t, we obtain,

x1(t) = x1(k) exp
{[

b1(k)− a1(k)x1(k − τ1(k))

− c(k)x2(k − σ(k))
x2
1(k−τ2(k))

i + x1(k − τ2(k)) + a

]
(t− k)

}
,

x2(t) = x2(k) exp
{[
− b2(k) +

a2(k)x1(k − τ3(k))
x2
1(k−τ4(k))

i + x1(k − τ4(k)) + a

]
(t− k)

}
.

(2.2)

Letting t → k + 1, we have

x1(k + 1) = x1(k) exp
{[

b1(k)− a1(k)x1(k − τ1(k))

− c(k)x2(k − σ(k))
x2
1(k−τ2(k))

i + x1(k − τ2(k)) + a

]}
,

x2(k + 1) = x2(k) exp
{[
− b2(k) +

a2(k)x1(k − τ3(k))
x2
1(k−τ4(k))

i + x1(k − τ4(k)) + a

]}
,

(2.3)

for k = 0, 1, 2, · · · . (2.3) is a discrete analogue of system (1.2).
Throughout this paper, we are interested only in solutions (x1(k), x2(k))T of

(2.3) with the initial conditions of the form

xi(s) ≥ 0, xi(0) > 0, s = −m,−m + 1, · · · , 0, i = 1, 2, (2.4)

where m = maxk∈Iω
{τ1(k), τ2(k), τ3(k), τ4(k), σ(k)}, τi(k) and σ(k) are integers.

For given initial conditions (2.4), we may prove that (2.3) has a unique solution
(x1(k), x2(k))T defined on {−m, · · · ,−1, 0, 1, 2, · · · } and satisfying

xi(k) > 0, i = 1, 2; k = 0, 1, 2, · · · .

3. Existence of multiple positive periodic solutions

In this section, we shall apply the continuation theorem of Mawhin’s coincidence
degree theory to establish our main results.

Let Z, Z+, R, R+, and R2 denote the sets of all integers, nonnegative integers,
real numbers, nonnegative real numbers, and two-dimensional Euclidean vector
space, respectively.

Throughout this paper, we will use the following notation:

Iω = {0, 1, · · · , ω − 1}, g =
1
ω

ω−1∑
k=0

g(k), G =
1
ω

ω−1∑
k=0

|g(k)|,

where {g(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.
In system (2.3), we always assume that bi : Z → R and c, σ, ai, τj : Z → R+ are

ω-periodic, i.e.,

ai(k + ω) = ai(k), bi(k + ω) = bi(k), c(k + ω) = c(k),

σ(k + ω) = σ(k), τj(k + ω) = τj(k),

for any k ∈ Z, i = 1, 2; j = 1, 2, 3, 4 and c > 0, bi > 0, i and a are positive
constants, where ω, a fixed positive integer, denotes the prescribed common period
of the parameters in (2.3).

For the reader’s convenience, we first summarize a few concepts from the book
by Gaines and Mawhin [14].
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Let X and Y be normed vector spaces. Let L : Dom L ⊂ X → Y be a linear
mapping and N : X → Y be a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero if dim kerL = codim Im L < ∞ and Im L is
closed in Z. If L is a Fredholm mapping of index zero, then there exist continuous
projectors P : X → X and Q : Y → Y such that Im P = kerL and ImL = kerQ =
Im(I −Q). It follows that L|Dom L∩ker P : (I −P )X → Im L is invertible and its
inverse is denoted by Kp. If Ω is a bounded open subset of X, the mapping N is
called L-compact on Ω if (QN)(Ω) is bounded and Kp(I−Q)N : Ω → X is compact.
Because Im Q is isomorphic to kerL, there exists an isomorphism J : Im Q → ker L.

In the proof our existence result, we need the following lemmas.

Lemma 3.1 (Continuation theorem [14]). Let L be a Fredholm mapping of index
zero and N be L-compact on Ω. Suppose

(a) For each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω;
(b) QNx 6= 0 for each x ∈ ∂Ω ∩ ker L and deg{JQN,Ω ∩ ker L, 0} 6= 0.

Then the operator equation Lx = Nx has at least one solution lying in Dom L∩Ω.

Lemma 3.2 ([9, Lemma 3.2]). Let g : Z → R be an ω-periodic, i.e., g(k+ω) = g(k).
Then for any fixed k1, k2 ∈ Iω, and any k ∈ Z, one has

g(k) ≤ g(k1) +
ω−1∑
s=0

|g(s + 1)− g(s)|,

g(k) ≥ g(k2)−
ω−1∑
s=0

|g(s + 1)− g(s)|.

Proof. It is only necessary to prove that the inequalities hold for any k ∈ Iω. For
the first inequality, it is easy to see the first inequality holds if k = k1. If k > k1,
then

g(k)− g(k1) =
k−1∑
s=k1

(g(s + 1)− g(s)) ≤
k−1∑
s=k1

|g(s + 1)− g(s)| ≤
ω−1∑
s=0

|g(s + 1)− g(s)|,

and hence, g(k) ≤ g(k1) +
∑ω−1

s=0 |g(s + 1)− g(s)|. If k < k1, then

g(k1)−g(k) =
k1−1∑
s=k

(g(s+1)−g(s)) ≥ −
k1−1∑
s=k

|g(s+1)−g(s)| ≥ −
ω−1∑
s=0

|g(s+1)−g(s)|,

equivalently, g(k) ≤ g(k1)+
∑ω−1

s=0 |g(s+1)−g(s)|. Now we can claim that the first
inequality is valid.

The proof of the second inequality is exactly the same as that carried out above
and the details are omitted here. The proof is complete. �

Define
l2 = {y = {y(k)} : y(k) ∈ R2, k ∈ Z}.

For a = (a1, a2)T ∈ R2, define |a| = max{|a1|, |a2|}. Let lω ⊂ l2 denote the
subspace of all ω-periodic sequences equipped with the usual supremum norm ‖ · ‖,
i.e., for y = {y(k) : k ∈ Z} ∈ lω, ‖y‖ = maxk∈Iω |y(k)|. It is difficult to show that
lω is a finite-dimensional Banach space.
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Let the linear operator S : lω → R2 be defined by

S(y) =
1
ω

ω−1∑
k=0

y(k), y = {y(k) : k ∈ Z} ∈ lω.

Then we obtain two subspaces lω0 and lωc of lω defined by

lω0 = {y = {y(k)} ∈ lω : S(y) = 0}
lωc = {y = {y(k)} ∈ lω : y(k) ≡ β, for some β ∈ R2 and for all k ∈ Z},

respectively. Denote by L : lω → lω the difference operator given by Ly = {(Ly)(k)}
with

(Ly)(k) = y(k + 1)− y(k), for y ∈ lω and k ∈ Z.

Let a linear operator K : lω → lωc be defined by Ky = {(Ky)(k)} with

(Ky)(k) ≡ S(y), for y ∈ lω and k ∈ Z.

Then we have the following lemma. [28].

Lemma 3.3 ([28]). (i) Both lω0 and lωc are closed linear subspaces of lω and
lω = lω0 ⊕ lωc , dim lωc = 2.

(ii) L is a bounded linear operator with ker L = lωc and Im L = lω0 .
(iii) K is a bounded linear operator with ker(L+K) = {0} and Im(L+K) = lω.

For convenience, we denote f : y → exp(2y)
i + exp(y) + a. From now on, we

assume that
(H1) a2 > b2

(
1 + 2

√
a
i

)
exp

[
(B1 + b1)ω

]
.

For further convenience, we introduce the following six positive numbers:

l± =
i{a2 exp[(B1 + b1)ω]− b2} ±

√
i2{a2 exp[(B1 + b1)ω]− b2}2 − 4iab

2

2

2b2

,

u± =
(
i{a2 − b2 exp[(B1 + b1)ω]}

±
√

i2{a2 − b2 exp[(B1 + b1)ω]}2 − 4iab
2

2 exp[2(B1 + b1)ω]
)

÷
(
2b2 exp[(B1 + b1)ω]

)
,

y± =
i(a2 − b2)±

√
i2(a2 − b2)2 − 4iab

2

2

2b2

.

It is not difficult to prove that

l− < y− < u− < u+ < y+ < l+. (3.1)

To state and prove the main result of this paper, we use the hypothesis
(H2) a1l+ exp[(B1 + b1)ω] < b1.

Theorem 3.4. Under the hypotheses (H1)–(H2), the system (2.3) has at least two
ω-periodic positive solutions.

Proof. we make the change of variables

xi(k) = exp(yi(k)), i = 1, 2. (3.2)
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Then (2.3) is rewritten as

y1(k + 1)− y1(k) = b1(k)− a1(k) exp{y1(k − τ1(k))} − c(k) exp{y2(k − σ(k))}
f(y1(k − τ2(k)))

,

y2(k + 1)− y2(k) = −b2(k) +
a2(k) exp{y1(k − τ3(k))}

f(y1(k − τ4(k)))
,

(3.3)
If (3.3) has an ω-periodic solution {y(k)}, then {x(k)}: xi(k) = exp(yi(k)) is a
positive ω-periodic solution of (2.3).

Now let we define X = Y = lω, (Ly)(k) = y(k + 1)− y(k), and

(Ny)(k) =

(
b1(k)− a1(k) exp{y1(k − τ1(k))} − c(k) exp{y2(k−σ(k))}

f(y1(k−τ2(k)))

−b2(k) + a2(k) exp{y1(k−τ3(k))}
f(y1(k−τ4(k)))

)

:=
(
41(y, k)
42(y, k)

)
,

for any y ∈ X and k ∈ Z. It follows from Lemma 3.3 that L is a bounded linear
operator and

ker L = lωc , Im L = lω0 , dim ker L = 2 = codim Im L,

then it follows that L is a Fredholm mapping of index zero.
Define

Py =
1
ω

ω−1∑
s=0

y(s), y ∈ X, Qz =
1
ω

ω−1∑
s=0

z(s), z ∈ Y.

It is not difficult to show that P and Q are two continuous projectors such that

Im P = kerL and Im L = kerQ = Im(I −Q).

Furthermore, the generalized inverse (of L) Kp: Im L → ker P ∩Dom L exists and
is given by

Kp(z) =
k−1∑
s=0

z(s)− 1
ω

ω−1∑
s=0

(ω − s)z(s).

Thus

QNy =
( 1

ω

ω−1∑
k=0

41(y, k),
1
ω

ω−1∑
k=0

42(y, k)
)T

,

Kp(I −Q)Ny = (Φ1(y, k),Φ2(y, k))T ,

where for i = 1, 2,

Φi(y, k) =
k−1∑
s=0

4i(y, s)− 1
ω

ω−1∑
s=0

(ω − s)4i(y, s)−
( k

ω
− ω + 1

2ω

) ω−1∑
s=0

4i(y, s).

Obviously, QN and Kp(I − Q)N are continuous. Since X is a finite-dimensional
Banach space, it is not difficult to show that Kp(I −Q)N(Ω) is compact for any
open bounded set Ω ⊂ X. Moreover, QN(Ω) is bounded. Thus, N is L-compact
on with any open bounded set Ω ⊂ X. The isomorphism J of Im Q onto ker L can
be the identity mapping, since Im Q = kerL.
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From now on, we shall search for at least two appropriate open, bounded subsets
Ω1 and Ω2 in X. Corresponding to the operator equation Ly = λNy, λ ∈ (0, 1), we
have

y1(k + 1)− y1(k) = λ
[
b1(k)− a1(k) exp{y1(k − τ1(k))}

− c(k) exp{y2(k − σ(k))}
f(y1(k − τ2(k)))

]
,

y2(k + 1)− y2(k) = λ
[
− b2(k) +

a2(k) exp{y1(k − τ3(k))}
f(y1(k − τ4(k)))

]
,

(3.4)

Assume that y = (y1(k), y2(k))T ∈ X is an solution of (3.4) for a certain λ ∈ (0, 1).
Summing on both sides of (3.4) from 0 to ω − 1 about k, we get

0 =
ω−1∑
k=0

(y1(k + 1)− y1(k))

= λ
ω−1∑
k=0

[
b1(k)− a1(k) exp{y1(k − τ1(k))} − c(k) exp{y2(k − σ(k))}

f(y1(k − τ2(k)))
]
,

0 =
ω−1∑
k=0

(y2(k + 1)− y2(k)) = λ

ω−1∑
k=0

[
− b2(k) +

a2(k) exp{y1(k − τ3(k))}
f(y1(k − τ4(k)))

]
;

that is,

b1ω =
ω−1∑
k=0

[
a1(k) exp{y1(k − τ1(k))}+

c(k) exp{y2(k − σ(k))}
f(y1(k − τ2(k)))

]
,

b2ω =
ω−1∑
k=0

a2(k) exp{y1(k − τ3(k))}
f(y1(k − τ4(k)))

.

(3.5)

From the first equation of (3.4), and (3.5), we have
ω−1∑
k=0

|y1(k + 1)− y1(k)|

<
ω−1∑
k=0

[
|b1(k)|+ a1(k) exp{y1(k − τ1(k))}+

c(k) exp{y2(k − σ(k))}
f(y1(k − τ2(k)))

]
= (B1 + b1)ω;

that is,
ω−1∑
k=0

|y1(k + 1)− y1(k)| < (B1 + b1)ω. (3.6)

Similarly, it follows from the second equation of (3.4), (3.5) that
ω−1∑
k=0

|y2(k + 1)− y2(k)| < (B2 + b2)ω. (3.7)

Because of y = {y(k)} ∈ X, there exist ξi, ηi ∈ Iω such that

yi(ξi) = min
k∈Iω

{yi(k)}, yi(ηi) = max
k∈Iω

{yi(k)}, i = 1, 2. (3.8)
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It follows from the second equation of (3.5) and (3.8) that

b2ω ≤
a2ω exp{y1(η1)}

f(y1(ξ1))
.

So

y1(η1) ≥ ln
[ b2

a2
f(y1(ξ1))

]
. (3.9)

Therefore, Lemma 3.2 and (3.6), (3.9) imply

y1(k) ≥ y1(η1)−
ω−1∑
k=0

|y1(k + 1)− y1(k)| > ln
[ b2

a2
f(y1(ξ1))

]
− (B1 + b1)ω. (3.10)

In particular, we have y1(ξ1) > ln
[

b2
a2

f(y1(ξ1))
]
− (B1 + b1)ω, or

b2

i
exp(2y1(ξ1))−

[
a2 exp(B1 + b1)ω − b2

]
exp{y1(ξ1)}+ b2a < 0.

Because of (H1), we have
ln l− < y1(ξ1) < ln l+. (3.11)

Similarly, we have
y1(η1) < lnu− or y1(η1) > lnu+. (3.12)

It follows from (3.11), (3.6) and Lemma 3.2 that

y1(k) ≤ y1(ξ1) +
ω−1∑
s=0

|y1(s + 1)− y1(s)| < ln l+ + (B1 + b1)ω := H12. (3.13)

On the other hand, it follows from (3.5) and (3.13) that

b1ω ≥
cω exp{y2(ξ2)}

f(ln l+ + (B1 + b1)ω)
(3.14)

b1ω ≤ a1ω exp
[
ln l+ + (B1 + b1)ω

]
+

cω exp{y2(η2)}
a

. (3.15)

It follows from (3.14) that y2(ξ2) ≤ ln
{

b1
c f(ln l+ + (B1 + b1)ω)

}
. This, combined

with (3.7), gives

y2(k) ≤ y2(ξ2) +
ω−1∑
s=0

|y2(s + 1)− y2(s)|

< ln
{b1

c
f(ln l+ + (B1 + b1)ω)

}
+ (B2 + b2)ω := H22.

(3.16)

Moreover, because of (H2), it follows from (3.15) that

y2(η2) ≥ ln
a{b1 − a1l+ exp[(B1 + b1)ω]}

c
.

This, combined with (3.7) again, gives

y2(k) ≥ y2(η2)−
ω−1∑
s=0

|y2(s + 1)− y2(s)|

> ln
a{b1 − a1l+ exp[(B1 + b1)ω]}

c
− (B2 + b2)ω := H21.

(3.17)
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It follows from (3.16) and (3.17) that

maxk∈Iω
|y2(k)| < max{|H21|, |H22|} := H2. (3.18)

Obviously, ln l±, lnu±, H12 and H2 are independent of λ.
Now, let’s consider QNy with y = (y1, y2)T ∈ R2. Note that

QN(y1, y2)T =
(
b1 − a1 exp(y1)−

c exp(y2)
f(y1)

,−b2 +
a2 exp(y1)

f(y1)

)T

.

Because of (H1) and (H2), we can show that QN(y1, y2)T = 0 has two distinct so-
lutions ỹ = (ln y−, ln (b1−a1y−)f(ln y−)

c ) and ŷ = (ln y+, ln (b1−a1y+)f(ln y+)
c ). Choose

C > 0 such that

C > max
{∣∣ ln (b1 − a1y−)f(ln y−)

c

∣∣, ∣∣ ln (b1 − a1y+)f(ln y+)
c

∣∣}. (3.19)

Let

Ω1 =
{

y = (y1(k), y2(k)) ∈ X : y1(k) ∈ (ln l−, lnu−), max
k∈Iω

|y2(k)| < H2 + C
}

,

Ω2 =
{

y = (y1(k), y2(k)) ∈ X : min
k∈Iω

y1(k) ∈ (ln l−, ln l+),

max
k∈Iω

y1(k) ∈ (lnu+,H12), max
k∈Iω

|y2(k)| < H2 + C
}

.

Then both Ω1 and Ω2 are bounded open subsets of X. It follows from (3.1) and
(3.19) that ỹ ∈ Ω1 and ŷ ∈ Ω2. With the help of (3.1), (3.11)-(3.13) and (3.18)-
(3.19), it is easy to that Ω1 ∩ Ω2 = φ and Ωi satisfies the requirement (a) Lemma
3.1 for i = 1, 2. Moreover, QNy 6= 0 for y ∈ ∂Ω ∩ R2. A direct computation gives

deg{JQN, Ωi ∩ ker L, 0} = (−1)i+1 6= 0.

Here, J is taken as the identity mapping since Im Q = kerL. So far we have
proved that Ωi satisfies all the assumptions in Lemma 3.1. Hence, (3.3) has at
least two ω-periodic solutions {y∗(k)} and {y†(k)} with y∗(k) ∈ Dom L ∩ Ω1 and
y†(k) ∈ Dom L ∩ Ω2. Obviously, y∗ and y† are different. Let x∗i (k) = exp(y∗i (k))
and x†i (k) = exp(y†i (k)), i = 1, 2. Then by (3.2), x∗(k) = (x∗1(k), x∗2(k))T and
x†(k) = (x†1(k), x†2(k))T are two different positive ω-periodic solutions of (2.3).
This completes the proof. �
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