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TRIPLE POSITIVE SOLUTIONS FOR A CLASS OF TWO-POINT
BOUNDARY-VALUE PROBLEMS

ZHANBING BAI, YIFU WANG, & WEIGAO GE

Abstract. We obtain sufficient conditions for the existence of at least three
positive solutions for the equation x′′(t) + q(t)f(t, x(t), x′(t)) = 0 subject to
some boundary conditions. This is an application of a new fixed-point theorem

introduced by Avery and Peterson [6].

1. Introduction

Recently, the existence and multiplicity of positive solutions for nonlinear ordi-
nary differential equations and difference equations have been studied extensively.
To identify a few, we refer the reader to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The
main tools used in above works are fixed-point theorems. Fixed-point theorems
and their applications to nonlinear problems have a long history, some of which is
documented in Zeidler’s book [14], and the recent book by Agarwal, O’Regan and
Wong [1] contains an excellent summary of the current results and applications.

An interest in triple solutions evolved from the Leggett-Williams multiple fixed-
point theorem [10]. And lately, two triple fixed-point theorems due to Avery [2]
and Avery and Peterson [6] have been applied to obtain triple solutions of certain
boundary-value problems for ordinary differential equations as well as for their
discrete analogues.

Avery and Peterson [6], generalize the fixed-point theorem of Leggett-Williams
by using theory of fixed-point index and Dugundji extension theorem. An applica-
tion of the theorem be given to prove the existence of three positive solutions to
the following second-order discrete boundary-value problem

∆2x(k − 1) + f(x(k)) = 0, for all k ∈ [a+ 1, b+ 1],

x(a) = x(b+ 2) = 0,

where f : R → R is continuous and nonnegative for x ≥ 0.
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In this paper, we concentrate in getting three positive solutions for the second-
order differential equation

x′′(t) + q(t)f(t, x(t), x′(t)) = 0, 0 < t < 1 (1.1)

subject to one of the following two pairs of boundary conditions:

x(0) = 0 = x(1), (1.2)

x(0) = 0 = x′(1). (1.3)

We are concerned with positive solutions to the above problem, i.e., x(t) ≥ 0 on
[0, 1]. In this article, it is assumed that:

(C1) f ∈ C([0, 1]× [0,∞)× R, [0,∞));
(C2) q(t) is nonnegative measurable function defined in (0, 1), and q(t) does not

identically vanish on any subinterval of (0, 1). Furthermore, q(t) satisfies
0 <

∫ 1

0
t(1− t)q(t)dt <∞.

Our main results will depend on an application of a fixed-point theorem due to
Avery and Peterson which deals with fixed points of a cone-preserving operator
defined on an ordered Banach space. The emphasis here is the nonlinear term
be involved explicitly with the first-order derivative. To the best of the authors
knowledge, there are no results for triple positive solutions by using the Leggett-
Williams fixed-point theorem or its generalizations.

2. Background materials and definitions

For the convenience of the reader, we present here the necessary definitions from
cone theory in Banach spaces; these definitions can be found in recent literature.

Definition 2.1. Let E be a real Banach space over R. A nonempty convex closed
set P ⊂ E is said to be a cone provided that

(i) au ∈ P for all u ∈ P and all a ≥ 0 and
(ii) u,−u ∈ P implies u = 0.

Note that every cone P ⊂ E induces an ordering in E given by x ≤ y if y−x ∈ P .

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 2.3. The map α is said to be a nonnegative continuous concave func-
tional on a cone P of a real Banach space E provided that α : P → [0,∞) is
continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map β is a nonnegative
continuous convex functional on a cone P of a real Banach space E provided that
β : P → [0,∞) is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ and θ be nonnegative continuous convex functionals on P , α be a non-
negative continuous concave functional on P , and ψ be a nonnegative continuous
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functional on P . Then for positive real numbers a, b, c, and d, we define the follow-
ing convex sets:

P (γ, d) = {x ∈ P | γ(x) < d},
P (γ, α, b, d) = {x ∈ P | b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},
and a closed set

R(γ, ψ, a, d) = {x ∈ P | a ≤ ψ(x), γ(x) ≤ d}.
The following fixed-point theorem due to Avery and Peterson is fundamental in

the proofs of our main results.

Theorem 2.4 ([6]). Let P be a cone in a real Banach space E. Let γ and θ be
nonnegative continuous convex functionals on P , α be a nonnegative continuous
concave functional on P , and ψ be a nonnegative continuous functional on P sat-
isfying ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such that for some positive numbers M and
d,

α(x) ≤ ψ(x) and ‖x‖ ≤Mγ(x), (2.1)

for all x ∈ P (γ, d). Suppose T : P (γ, d) → P (γ, d) is completely continuous and
there exist positive numbers a, b, and c with a < b such that

(S1) {x ∈ P (γ, θ, α, b, c, d) | α(x) > b} 6= and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);
(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;
(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d), such that

γ(xi) ≤ d for i = 1, 2, 3;

b < α(x1);

a < ψ(x2) with α(x2) < b;

ψ(x3) < a .

3. Existence of triple positive solutions

In this section, we impose growth conditions on f which allow us to apply Theo-
rem 2.4 to establish the existence of triple positive solutions of Problem (1.1)-(1.2),
and (1.1)-(1.3).

We first deal with the boundary-value problem (1.1)-(1.2). Let X = C1[0, 1] be
endowed with the ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, 1], and the maximum
norm,

‖x‖ = max
{

max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|
}
.

¿From the fact x′′(t) = −f(t, x, x′) ≤ 0, we know that x is concave on [0, 1]. So,
define the cone P ⊂ X by

P = {x ∈ X : x(t) ≥ 0, x(0) = x(1) = 0, x is concave on [0, 1]} ⊂ X.

Let the nonnegative continuous concave functional α, the nonnegative continuous
convex functional θ, γ, and the nonnegative continuous functional ψ be defined on
the cone P by

γ(x) = max
0≤t≤1

|x′(t)|, ψ(x) = θ(x) = max
0≤t≤1

|x(t)|, α(x) = min
1
4≤t≤ 3

4

|x(t)|.
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Lemma 3.1. If x ∈ P , then max0≤t≤1 |x(t)| ≤ 1
2 max0≤t≤1 |x′(t)|.

Proof. To the contrary, suppose that there exist t0 ∈ (0, 1) such that |x(t0)| >
1
2 max0≤t≤1 |x′(t)| =: A. Then by the mid-value theorem there exist t1 ∈ (0, t0),
t2 ∈ (t0, 1) such that

x′(t1) =
x(t0)− x(0)

t0
=
x(t0)
t0

, x′(t2) =
x(1)− x(t0)

1− t0
=
−x(t0)
1− t0

.

Thus, max0≤t≤1 |x′(t)| ≥ max {|x′(t1)|, |x′(t2)|} > 2A, it is a contradiction. The
proof is complete. �

By Lemma 3.1 and their definitions, and the concavity of x, the functionals
defined above satisfy:

1
4
θ(x) ≤ α(x) ≤ θ(x) = ψ(x), ‖x‖ = max{θ(x), γ(x)} = γ(x), (3.1)

for all x ∈ P (γ, d) ⊂ P . Therefore, Condition (2.1) is satisfied.
Denote by G(t, s) the Green’s function for boundary-value problem

−x′′(t) = 0, 0 < t < 1,

x(0) = x(1) = 0.

then G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1 and

G(t, s) =

{
t(1− s) if 0 ≤ t ≤ s ≤ 1,
s(1− t) if 0 ≤ s ≤ t ≤ 1.

Let

δ = min
{∫ 3/4

1/4

G(1/4, s)q(s)ds,
∫ 3/4

1/4

G(3/4, s)q(s)ds
}
,

M = max
{∫ 1

0

(1− s)q(s)ds,
∫ 1

0

sq(s)ds
}
,

N = max
0≤t≤1

∫ 1

0

G(t, s)q(s)ds.

To present our main result, we assume there exist constants 0 < a < b ≤ d/8
such that

(A1) f(t, u, v) ≤ d/M , for (t, u, v) ∈ [0, 1]× [0, d/]× [−d, d]
(A2) f(t, u, v) > b

δ , for (t, u, v) ∈ [1/4, 3/4]× [b, 4b]× [−d, d];
(A3) f(t, u, v) < a

N , for (t, u, v) ∈ [0, 1]× [0, a]× [−d, d].

Theorem 3.2. Under assumptions (A1)–(A3), the boundary-value problem (1.1)-
(1.2) has at least three positive solutions x1, x2, and x3 satisfying

max
0≤t≤1

|x′i(t)| ≤ d, for i = 1, 2, 3;

b < min
1
4≤t≤ 3

4

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, with min
1
4≤t≤ 3

4

|x2(t)| < b;

max
0≤t≤1

|x3(t)| < a.

(3.2)
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Proof. Problem (1.1)-(1.2) has a solution x = x(t) if and only if x solves the operator
equation

x(t) = Tx(t) :=
∫ 1

0

G(t, s)q(s)f(s, x(s), x′(s))ds.

It is well know that this operator, T : P → P , is completely continuous. We now
show that all the conditions of Theorem 2.4 are satisfied.

If x ∈ P (γ, d), then γ(x) = max0≤t≤1 |x′(t)| ≤ d. With Lemma 3.1 and
max0≤t≤1 |x(t)| ≤ d

2 , then assumption (A1) implies f(t, x(t), x′(t)) ≤ d
M . On

the other hand, for x ∈ P , there is Tx ∈ P , then Tx is concave on [0, 1], and
maxt∈[0,1] |(Tx)′(t)| = max{|(Tx)′(0)|, |(Tx)′(1)|}, so

γ(Tx) = max
t∈[0,1]

|(Tx)′(t)|

= max
t∈[0,1]

∣∣∣− ∫ t

0

sq(s)f(s, x(s), x′(s))ds+
∫ 1

t

(1− s)q(s)f(s, x(s), x′(s))ds
∣∣∣

= max
{∫ 1

0

(1− s)q(s)f(s, x(s), x′(s))ds,
∫ 1

0

sq(s)f(s, x(s), x′(s))ds
}

≤ d

M
·max

{∫ 1

0

(1− s)q(s)ds,
∫ 1

0

sq(s)ds
}

=
d

M
·M = d.

Hence, T : P (γ, d) → P (γ, d).
To check condition (S1) of Theorem 2.4, we choose x(t) = 4b, 0 ≤ t ≤ 1. It

is easy to see that x(t) = 4b ∈ P (γ, θ, α, b, 4b, d) and α(x) = α(4b) > b, and so
{x ∈ P (γ, θ, α, b, 4b, d) | α(x) > b} 6= ∅. Hence, if x ∈ P (γ, θ, α, b, 4b, d), then
b ≤ x(t) ≤ 4b, |x′(t)| ≤ d for 1/4 ≤ t ≤ 3/4. From assumption (A2), we have
f(t, x(t), x′(t)) ≥ b

δ for 1/4 ≤ t ≤ 3/4, and by the conditions of α and the cone P , we
have to distinguish two cases, (i) α(Tx) = (Tx)(1/4) and (ii) α(Tx) = (Tx)(3/4).

In case (i), we have

α(Tx) = (Tx)(
1
4
) =

∫ 1

0

G(
1
4
, s)q(s)f(s, x(s), x′(s))ds >

b

δ
·
∫ 3/4

1/4

G(
1
4
, s)q(s)ds ≥ b .

In case (ii), we have

α(Tx) = (Tx)(
3
4
) =

∫ 1

0

G(
3
4
, s)f(s, x(s), x′(s))q(s)ds >

b

δ
·
∫ 3/4

1/4

G(
3
4
, s)q(s)ds ≥ b;

i.e.,

α(Tx) > b, for all x ∈ P (γ, θ, α, b, 4b, d).

This show that condition (S1) of Theorem 2.4 is satisfied.
Secondly, with (3.1) and b ≤ d

8 , we have

α(Tx) ≥ 1
4
θ(Tx) >

4b
4

= b,

for all x ∈ P (γ, α, b, d) with θ(Tx) > 4b. Thus, condition (S2) of Theorem 2.4 is
satisfied.
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We finally show that (S3) of Theorem 2.4 also holds. Clearly, as ψ(0) = 0 < a,
there holds that 0 6∈ R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d) with ψ(x) = a.
Then, by the assumption (A3),

ψ(Tx) = max
0≤t≤1

|(Tx)(t)|

= max
0≤t≤1

∫ 1

0

G(t, s)q(s)f(s, x(s), x′(s))ds

<
a

N
· max
0≤t≤1

∫ 1

0

G(t, s)q(s)ds = a.

So, Condition (S3) of Theorem 2.4 is satisfied. Therefore, an application of The-
orem 2.4 imply the boundary-value problem (1.1)-(1.2) has at least three positive
solutions x1, x2, and x3 satisfying (3.2). The proof is complete. �

Remark 3.3. To apply Theorem 2.4, we only need T : P (γ, d) → P (γ, d), therefore,
condition (C1) can be substituted with a weaker condition

(C1)’ f ∈ C([0, 1]× [0, d/2]× [−d, d], [0,∞))

Now we deal with Problem (1.1)-(1.3). The method is just similar to what we
have done above. Moreover, the solutions of Problem (1.1)-(1.3) are monotone
increasing, which leads to the situation more simple. Define the cone P1 ⊂ X by

P1 = {x ∈ X | x(t) ≥ 0, x(0) = x′(1) = 0, x is concave and increasing on [0, 1]}.
Let the nonnegative continuous concave functional α1, the nonnegative continuous
convex functional θ1, γ1, and the nonnegative continuous functional ψ1 be defined
on the cone P1 by

γ1(x) = max
t∈[0,1]

|x′(t)| = x′(0), ψ1(x) = θ1(x) = max
t∈[0,1]

|x(t)| = x(1),

α1(x) = min
t∈[ 12 ,1]

|x(t)| = x(
1
2
), for x ∈ P1 .

Lemma 3.4. If x ∈ P1, then x(1) ≤ x′(0).

With Lemma 3.4, their definition, and the concavity of x, the functionals defined
above satisfy

1
2
θ1(x) ≤ α1(x) ≤ θ1(x) = ψ1(x), ‖x‖ = max{θ1(x), γ1(x)} ≤ γ1(x), (3.3)

for all x ∈ P1(γ, d) ⊂ P1.
Denote by G1(t, s) is Green’s function for boundary-value problem

−x′′(t) = 0, 0 < t < 1,

x(0) = x′(1) = 0.

Then G1(t, s) ≥ 0 for 0 ≤ t, s ≤ 1 and

G1(t, s) =

{
t if 0 ≤ t ≤ s ≤ 1,
s if 0 ≤ s ≤ t ≤ 1.

Let

δ1 =
∫ 1

1
2

G(1/2, s)q(s)ds =
1
2

∫ 1

1
2

q(s)ds,
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M1 =
∫ 1

0

(1− s)q(s)ds,

N1 =
∫ 1

0

sq(s)ds.

Suppose there exist constants 0 < a < b ≤ d/2 such that

(A4) f(t, u, v) ≤ d/M1, for (t, u, v) ∈ [0, 1]× [0, d]× [−d, d]
(A5) f(t, u, v) > b/δ1, for (t, u, v) ∈ [1/2, 1]× [b, 2b]× [−d, d]
(A6) f(t, u, v) < a

N1
, for (t, u, v) ∈ [0, 1]× [0, a]× [−d, d].

Theorem 3.5. Under assumption (A4)–(A6), the boundary-value problem (1.1)-
(1.3) has at least three positive solutions x1, x2, and x3 satisfying

max
0≤t≤1

|x′i(t)| ≤ d, for i = 1, 2, 3;

b < min
1
2≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, with min
1
2≤t≤1

|x2(t)| < b;

max
0≤t≤1

|x3(t)| < a .

Example. Consider the boundary-value problem

x′′(t) + f(t, x(t), x′(t)) = 0, 0 < t < 1,

x(0) = x(1) = 0,
(3.4)

where

f(t, u, v) =


et + 9

2u
3 + ( v

3000 )3 for u ≤ 8,
et + 9

2 (9− u)u3 + ( v
3000 )3 for 8 ≤ u ≤ 9,

et + 9
2 (u− 9)u3 + ( v

3000 )3 for 9 ≤ u ≤ 10,
et + 4500 + ( v

3000 )3 for u ≥ 10.

Choose a = 1, b = 2, d = 3000, we note δ = 1/16,M = 1/2, N = 1/8. Consequently,
f(t, u, v) satisfy

f(t, u, v) <
a

N
= 8, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1,−3000 ≤ v ≤ 3000;

f(t, u, v) >
b

δ
= 32, for 1/4 ≤ t ≤ 3/4, 2 ≤ u ≤ 8,−3000 ≤ v ≤ 3000;

f(t, u, v) <
d

M
= 6000, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1500,−3000 ≤ v ≤ 3000.

Then all assumptions of Theorem 3.2 hold. Thus, with Theorem 3.2, Problem (3.4)
has at least three positive solutions x1, x2, x3 such that

max
0≤t≤1

|x′i(t)| ≤ 3000, for i = 1, 2, 3;

2 < min
1
4≤t≤ 3

4

|x1(t)|;

1 < max
0≤t≤1

|x2(t)|, with min
1
4≤t≤ 3

4

|x2(t)| < 2;

max
0≤t≤1

|x3(t)| < 1 .
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Remark 3.6. The early results, see [1, 2, 3, 5, 6, 10], for example, are not applicable
to the above problem. In conclusion, we see that the nonlinear term is involved in
first derivative explicitly.
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