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ASYMPTOTIC THEORY FOR WEAKLY NON-LINEAR WAVE
EQUATIONS IN SEMI-INFINITE DOMAINS

CHIRAKKAL V. EASWARAN

Abstract. We prove the existence and uniqueness of solutions of a class of

weakly non-linear wave equations in a semi-infinite region 0 ≤ x, t < L/
√
|ε|

under arbitrary initial and boundary conditions. We also establish the asymp-
totic validity of formal perturbation approximations of the solutions in this

region.

1. Introduction

Many physical phenomena involve the action of weak non-linear perturbations
acting over long periods of space and time. Some of these phenomena can be math-
ematically modeled by partial differential equations containing small non-linear
terms. These non-linear effects, characterized by a small parameter ε, could accu-
mulate over time and space to significantly impact the space and time evolution of
the systems. Some examples of physical models involving such weakly non-linear
equations are:

(i) The wave equation with a cubic non-linearity governing the slow oscillations
of overhead power lines [7].

(ii) The non-linear Schroedinger equation with slowly varying coefficients with
applications in water waves and non-linear optics [1, 12].

(iii) The shallow water wave equations with small initial displacement, and the
weakly non-linear acoustics equations [5, 8].

(iv) The equations describing the motion of a slightly viscoelastic column with
viscous damping [6].

The traditional tool to study the effect of small non-linearities is perturbation
expansion in terms of the small parameter ε. Straight forward perturbation ex-
pansion of solutions usually become unbounded at large times (or lengths) because
of unbounded growth in the wave amplitude. Averaging, matched asymptotic ex-
pansions and multiple-scale techniques are the standard techniques used to develop
approximations of solutions of these non-linear perturbation problems that remain
bounded at large times and distances. A review of these tools can be found in [5],
and a number of examples and related approaches can be found in [8].
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Generally, multiple scale expansions of solutions of wave equations anticipate in
advance the dependence of solutions on different time scales in order to construct
solutions which are explicit functions of time. Prior to 1992, most studies of weakly
nonlinear wave equations dealt with initial value problems on the infinite line −∞ <
x < ∞ or initial-boundary value problems on a finite space interval −1 ≤ x ≤ 1
with fixed end conditions. The latter problem could be transformed into an initial-
value problem on the infinite space interval. For such problems, a fast time scale
t and a slow time scale T = εt are introduced to develop asymptotic solutions.
In [11], the existence, uniqueness and continuous dependence of solutions on initial
data as well as the asymptotic validity of formal expansions of solutions were proved
for these types of problems. This was accomplished using Green’s functions and
transformation of the initial-boundary value problem to an initial value problem
on the infinite interval −∞ < x < ∞, using an odd 2π-periodic extension. For
signaling problems in which the initial conditions are zero and boundary data at
x = 0 propagate in the region x > 0, a perturbation scheme based on a slow spatial
scale X = εx can be used [4].

In [2], a multi-scale method was developed for weakly nonlinear wave equations
in the region x > 0 with arbitrary initial and boundary data. These problems
can not be transformed into initial value problems on the infinite interval −∞ <
x < ∞, since such a transformation leads to coupled, second-order, non-linear,
non-homogeneous partial differential equations that are difficult to solve. In [2], we
introduced a long time scale T = εt and a long space scale X = εx, in addition to
the fast variables x and t, to develop asymptotic solutions. The necessity of both
scaled time and space variables is an essential characteristic of such problems.

The main purpose of this paper is to establish the existence, uniqueness and
continuous dependence of classical solutions on initial data for a class of initial-
boundary value problems for the weakly non-linear wave equations in a rectangular
region 0 ≤ x, t < L/

√
|ε| , where ε is a small parameter and L is an arbitrary positive

number. In addition, we establish the asymptotic validity of formal expansions of
solutions for such problems. We use an integral representation of the solution to
accomplish this.

2. Existence, uniqueness and continuous dependence of solutions on
initial data

In this section we prove the existence and uniqueness in the classical sense of the
solution to the hyperbolic system

utt − uxx + εh(u, ut, ux) = 0, t, x > 0, 0 < ε � 1

u(x, 0) = a(x); ut(x, 0) = b(x); u(0, t) = ρ(t), t, x > 0
(2.1)

Let us assume that the initial and boundary data as well as the non-linear function
h satisfy the following conditions:

(A1) a(x), ρ(t) are twice continuously differentiable for x ≥ 0, t ≥ 0.
b(x)is continuously differentiable for x ≥ 0, the function h and its deriva-
tives are analytic and uniformly bounded in its arguments.
a(0) = ρ(0), b(0) = ρ′(0), ρ(0) = 0, a′(0) = 0, ρ′′(0) = 0,
−a′′(0) + εh(a(0), b(0), a′(0)) = 0

Theorem 2.1. Suppose h, a(x), b(x), ρ(t) satisfy the conditions (A1). Then for
any ε with 0 < |ε| ≤ ε0 � 1, the non-linear initial-boundary value problem (2.1) has
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a unique, twice continuously differentiable solution in a region of the x − t plane,
0 ≤ x, t ≤ L/

√
|ε|, where L is a sufficiently small positive constant independent of

ε. Moreover, this solution depends continuously on the initial-boundary data.

The conditions on the initial values of various functions in (A1) ensure that the
solution u and its first and second partial derivatives are continuous across x = t.
The proof of this theorem depends crucially on the integral representation of the
solution to the hyperbolic system (2.1)- (see [10]):

u(x, t) =



1
2 [a(x + t) + a(x− t)] + 1

2

∫ x+t

x−t
b(λ) dλ

+ ε
2

∫ t

0
dτ

∫ x+(t−τ)

x−(t−τ)
h(u, uτ (λ, τ), uλ(λ, τ))dλ, if 0 ≤ t ≤ x,

ρ(t− x) + 1
2 [a(t + x) + a(t− x)] + 1

2

∫ t+x

t−x
b(λ)dλ

+ ε
2

∫ t

0
dτ

∫ x+(t−τ)

|x−(t−τ)| h(u, uτ (λ, τ), uλ(λ, τ))dλ, if t ≥ x ≥ 0,

(2.2)

By direct differentiation, one can show the equivalence of the system (2.2) to (2.1)
whenever C2 solutions of (2.1) exist.

x-t x+t λ

τ

t

x

x-(t-τ) x+(t-τ)

Figure 1. Region of integration for the first case in (2.2). This
region has area t2

Using the above representation of solutions, and the assumptions on the reg-
ularity of initial and boundary conditions, one can show that a twice continu-
ously differentiable solution u(x, t; ε) of the hyperbolic system exists in a rectangle
0 ≤ t, x ≤ O(1/

√
ε). This solution depends continuously on the initial-boundary

data, and formal perturbation series expansions asymptotically converge to the
solution in this rectangle.

Let T : S → S denote the integral operator defined by (2.2), where

S = {(x, t)|0 ≤ x, t ≤ L√
|ε|
}

We represent the integral equations (2.2) in the form u = Tu. The proof consists
of showing that T is a contraction on a space of twice continuously differentiable
functions defined on S, and therefore by Banach’s Fixed Point Theorem, a unique
solution u exists.

Let C2
M (S) be the space of twice continuously differentiable functions on S with

norm

‖f‖ =
2∑

i,j=0 i+j≤2

max
(x,t)∈S

∣∣∂i+jf(x, t)
∂xi∂tj

∣∣ ≤ M



4 CHIRAKKAL V. EASWARAN EJDE-2004/07

t-x t+x

t-x

t

τ

λ
x

λ=x+t-τλ=|x-(t-τ)|

Figure 2. Region of integration for the second case in (2.2). This
region has area 2tx− x2

Let us write
Tu = uI + Tεu (2.3)

where

uI(x, t) =

{
1
2 [a(x + t) + a(x− t)] +

∫ x+t

x−t
b(λ)dλ, if 0 ≤ t ≤ x

ρ(t− x) + 1
2 [a(t + x) + a(t− x)] + 1

2

∫ t+x

t−x
b(λ)dλ, if t ≥ x ≥ 0

(2.4)

and

Tεu =


ε
2

∫ t

0
dτ

∫ x+(t−τ)

x−(t−τ)
h(u, uτ (λ, τ), uλ(λ, τ))dλ, if 0 ≤ t ≤ x

= ε
2

∫ t

0
dτ

∫ x+(t−τ)

|x−(t−τ)| h(u, uτ (λ, τ), uλ(λ, τ))dλ, if t ≥ x ≥ 0
(2.5)

From (2.3) we get
‖Tu‖ ≤ ‖uI‖+ ‖Tεu‖ (2.6)

Because of the boundedness conditions on ρ, a and b, there exists a nonnegative
constant M1, independent of ε, such that

‖uI‖ ≤
M1

2
(2.7)

From Figures 2 and 3, it follows that there exist constants M1
2 and M2

2 such that

‖Tεu‖ ≤

{
M1

2 εt2, if t ≤ x

M2
2 ε(2tx− x2), if t ≥ x

Thus for t and x in the region S, one can find an ε-independent constant M2 such
that

‖Tεu‖ ≤ M2L
2

Combining this inequality with (2.7) and (2.6),

‖Tu‖ ≤ M1

2
+ M2L

2 ≤ M1

for sufficiently small L. This shows that T : C2
M1

(S) → C2
M1

(S).
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We next show that T is a contraction on C2
M1

(S). Using the Lipschitz property
of h, there exists a constant M ′:

‖h(u, ut, ux)− h(v, vt, vx)‖ ≤ M ′‖u− v‖

for all (x, t) ∈ S. It follows from (2.5) that one can find constants K1 and K2

satisfying

‖Tεu− Tεv‖ ≤

{
εt2K1‖u− v‖, if t ≤ x

ε(2tx− x2)K2‖u− v‖, if t ≥ x

Thus there is a nonnegative constant K such that

‖Tu− Tv‖ = ‖Tεu− Tεv‖ ≤ KL2‖u− v‖

for all (x, t) ∈ S. Then for sufficiently small L, independent of ε,

‖Tu− Tv‖ ≤ k‖u− v‖ (2.8)

for all u, v ∈ C2
M1

(S) and 0 ≤ k < 1. This shows that T is a contraction of C2
M1

(S)
into itself for sufficiently small L. By applying Banach fixed point theorem, it
follows that T has a unique fixed point in C2

M1
(S). Since solutions of the integral

equation (2.2) are also solutions of the hyperbolic system (2.1), we have proved
that (2.1) has a unique solution in the space S.

We next prove that the solutions of the hyperbolic system (2.1) depends con-
tinuously on the initial-boundary values, in the sense that small changes in these
values result in small changes in the solution within the region S in which existence-
uniqueness of solutions have been proved.

Let ũ be the solution of the hyperbolic system (2.1) corresponding to the initial
boundary conditions

u(x, 0) = ã(x); ut(x, 0) = b̃(x); u(0, t) = ρ̃(t), t, x > 0 (2.9)

Assume that the initial-boundary data in (24) satisfy conditions similar to (A1).
Following (2.3), we let

T ũ = ũI + Tεũ.

Then the following estimate can be made:

‖u− ũ‖ ≤ ‖uI − ũI‖+ ‖Tεu− Tεũ‖

From an argument similar to (2.8), there exists a k, 0 ≤ k < 1, such that

‖Tεu− Tεũ‖ ≤ k‖u− ũ‖

so that

‖u− ũ‖ ≤ ‖uI − ũI‖+ k‖u− ũ‖

and

‖u− ũ‖ ≤ 1
1− k

‖uI − ũI‖

whenever u, ũ are in C2
M1

(S). This proves that small changes in initial data lead
to small changes in the solutions.
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3. Asymptotic validity of formal expansions

Next we prove that perturbation series expansions of solutions of (2.1) are asymp-
totically convergent to the exact solutions. Let v(x, t) be defined on S satisfying

vtt − vxx + εh(v, vt, vx) = εnr1(x, t)

v(x, 0) = a(x) + εn−1r2(x)

vt(x, 0) = b(x) + εn−1r3(x)

v(0, t) = ρ(t) + εn−1r4(t)

(3.1)

The motivation to study this system is that they satisfy the original partial differ-
ential equation and initial/boundary conditions to O(εn) and O(εn−1) respectively,
where usually n = 2.

(A2) Assume that h, r1, r2, r3, r4 satisfy boundary conditions as in (A1), and that
r3, r4 are in C1

Theorem 3.1. Let v satisfy (3.1) and the ri(1≤i≤4) satisfy (A2). Then for n > 1,
‖u − v‖ = O(εn−1) for all t, x ∈ S. Thus in the limit of small ε, the formal
approximation v converges to the solution u.

Proof. Note that a formal integral representation of (3.1) can be written in the
form

v = ṽI + Tεv + T̃εr1 (3.2)

where

T̃εr1 =


εn

2

∫ t

0
dτ

∫ x+(t−τ)

x−(t−τ)
r1(λ, τ)dλ, if 0 ≤ t ≤ x

εn

2

∫ t

0
dτ

∫ x+(t−τ)

|x−(t−τ)| r1(λ, τ)dλ, if t ≥ x ≥ 0

and vI is analogous to (2.4). From the geometry of Figures 1 and 2, it follows that
there exists constants M1

3 and M2
3 such that

‖T̃εr1‖ ≤

{
M1

3 εnt2, if t ≤ x

M2
3 εn(2tx− x2), if t ≥ x.

Thus for t and x in the region S, one can find a constant M3 such that

‖T̃εr1‖ ≤ εn−1M3L
2.

In addition, there exists a non-negative constant M4 such that,

‖uI − ṽI‖ ≤ εn−1M4.

From (2.3) and (3.2) it follows that

‖u− v‖ ≤ ‖Tεu− Tεv‖+ ‖uI − ṽI‖+ ‖T̃εr1‖ ≤ k‖u− v‖+ εn−1(M3L
2 + M4)

so that

‖u− v‖ ≤ εn−1

1− k
(M3L

2 + M4)

showing that ‖u− v‖ = O(εn−1) for x, t ∈ S. This establishes Theorem 3.1. �
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4. Applications of the asymptotic theory

The results obtained above give formal theoretical support to a multiple-scale
solution technique for weakly non-linear wave equations developed in [2]. It is shown
there that the solution of (2.1) involves two scaled (or slow) variables, X = εx and
T = εt, in addition to the regular (or fast) variables x and t. The perturbation
solution then defines two regions, t > x and t ≤ x. For t ≤ x, the first order
solution has the form

u0(x, t, T ) = f(σ, T ) + g(ξ, T )
where σ = x− t and ξ = x + t are the forward and backward going characteristics
of the wave equation. It is shown in [2] that f and g are governed by:

2fσT − lim
M→∞

1
M

∫ M

0

h(f + g, gξ − fσ, gξ + fσ) dξ = 0,

2gξT + lim
M→∞

1
M

∫ M

0

h(f + g, gξ − fσ, gξ + fσ) dσ = 0

with appropriate initial-boundary conditions.
For the region t > x, the first order solution takes the form

u0(x, t,X, T ) = p(µ, X, T ) + q(ξ, X, T )

where µ = t−x and ξ = t+x. In general the PDEs governing p and q are complicated
coupled nonlinear equations; but for special cases, they are considerably simplified.
For example, when h involves only the first derivatives of u, h = h(ut, ux), it can
be shown that

2pµT + 2pµX + lim
M→∞

1
M

∫ M

0

h(pµ + qξ, qξ − pµ)dξ = 0 ,

2qξT − 2qξX + lim
M→∞

1
M

∫ M

0

h(pµ + qξ, qξ − pµ)dµ = 0 .

The important point here is that the two equations governing the interaction of
backward and forward propagating waves form a pair of coupled, nonlinear first-
order PDEs whose theory is well-developed. This is a considerable simplification
from the original second order nonlinear equation. We refer to [2] for details of
solutions of these equations as well as explicit solutions for the cases h = 2ut +
u(ut − ux) and h = 2ut.

Concluding remarks. For weakly non-linear hyperbolic partial differential equa-
tions in the region t > 0, x > 0, we established the existence, uniqueness and contin-
uous dependence of solutions on initial data within a rectangle 0 ≤ x, t < L/

√
|ε|.

Although it appears from numerical evidence that the existence-uniqueness theo-
rems could hold in much longer space and time intervals, it is not clear how to
establish that. We also proved the asymptotic validity of formal perturbation ex-
pansions of solutions within this rectangle.
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