THE METHOD OF UPPER AND LOWER SOLUTIONS FOR CARATHEODORY N-TH ORDER DIFFERENTIAL INCLUSIONS

BUPURAO C. DHAGE, TARACHAND L. HOLAMBE, \& SOTIRIS K. NTOUYAS

Abstract

In this paper, we prove an existence theorem for n-th order differential inclusions under Carathéodory conditions. The existence of extremal solutions is also obtained under certain monotonicity condition of the multifunction.

1. Introduction

Let \mathbb{R} denote the real line and let $J=[0, a]$ be a closed and bounded interval in \mathbb{R}. Consider the initial value problem (in short IVP) of $n^{\text {th }}$ order differential inclusion

$$
\begin{gather*}
x^{(n)}(t) \in F(t, x(t)) \quad \text { a.e. } t \in J, \\
x^{(i)}(0)=x_{i} \in \mathbb{R} \tag{1.1}
\end{gather*}
$$

where $F: J \times \mathbb{R} \rightarrow 2^{\mathbb{R}}, i \in\{0,1, \ldots, n-1\}$ and $2^{\mathbb{R}}$ is the class of all nonempty subsets of \mathbb{R}.

By a solution of (1.1) we mean a function $x \in A C^{n-1}(J, \mathbb{R})$ whose $n^{\text {th }}$ derivative $x^{(n)}$ exists and is a member of $L^{1}(J, \mathbb{R})$ in $F(t, x)$, i.e. there exists a $v \in L^{1}(J, \mathbb{R})$ such that $v(t) \in F(t, x(t))$ a.e $t \in J$, and $x^{(i)}(0)=x_{i} \in \mathbb{R}, i=0,1, \ldots, n-1$, where $A C^{n-1}(J, \mathbb{R})$ is the space of all continuous real-valued functions whose $(n-1)$ derivatives exist and are absolutely continuous on J.

The method of upper and lower solutions has been successfully applied to the problem of nonlinear differential equations and inclusions. For the first direction, we refer to Heikkila and Laksmikantham [8] and Bernfield and Laksmikantham [1] and for the second direction we refer to Halidias and Papageorgiou [7] and Benchohra [2]. In this paper we apply the multi-valued version of Schaefer's fixed point theorem due to Martelli [10] to the initial value problem (1.1) and prove the existence of solutions between the given lower and upper solutions, using the Carathéodory condition on F.

2. Preliminaries

Let X be a Banach space and let 2^{X} be a class of all non- empty subsets of X. A correspondence $T: X \rightarrow 2^{X}$ is called a multi-valued map or simply multi and

[^0]$u \in T u$ for some $u \in X$, then u is called a fixed point of T. A multi T is closed (resp. convex and compact) if $T x$ is closed (resp. convex and compact) subset of X for each $x \in X . T$ is said to be bounded on bounded sets if $T(B)=\bigcup_{x \in B} T(x)=\bigcup T(B)$ is a bounded subset of X for all bounded sets B in $X . T$ is called upper semicontinuous (u.s.c.) if for every open set $N \subset X$, the set $\{x \in X: T x \subset N\}$ is open in $X . T$ is said to be totally bounded if for any bounded subset B of X, the set $\cup T(B)$ is totally bounded subset of X.

Again T is called completely continuous if it is upper semi-continuous and totally bounded on X. It is known that if the multi-valued map T is totally bounded with non empty compact values, the T is upper semi-continuous if and only if T has a closed graph (that is $x_{n} \rightarrow x_{*}, y_{n} \rightarrow y_{*}, y_{n} \in T x_{n} \Rightarrow y_{*} \in T x_{*}$). By $K C(X)$ we denote the class of nonempty compact and convex subsets of X. We apply the following form of the fixed point theorem of Martelli [10] in the sequel.
Theorem 2.1. Let $T: X \rightarrow K C(X)$ be a completely continuous multi-valued map. If the set

$$
\mathcal{E}=\{u \in X: \lambda u \in T u \quad \text { for some } \lambda>1\}
$$

is bounded, then T has a fixed point.
We also need the following definitions in the sequel.
Definition 2.2. A multi-valued map map $F: J \rightarrow K C(\mathbb{R})$ is said to be measurable if for every $y \in \mathbb{R}$, the function $t \rightarrow d(y, F(t))=\inf \{\|y-x\|: x \in F(t)\}$ is measurable.

Definition 2.3. A multi-valued map $F: J \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is said to be L^{1}-Carathéodory if
(i) $t \rightarrow F(t, x)$ is measurable for each $x \in \mathbb{R}$,
(ii) $x \rightarrow F(t, x)$ is upper semi-continuous for almost all $t \in J$, and
(iii) for each real number $k>0$, there exists a function $h_{k} \in L^{1}(J, \mathbb{R})$ such that

$$
\|F(t, x)\|=\sup \{|v|: v \in F(t, x)\} \leq h_{k}(t), \quad \text { a.e. } \quad t \in J
$$

for all $x \in \mathbb{R}$ with $|x| \leq k$.
Denote

$$
S_{F}^{1}(x)=\left\{v \in L^{1}(J, \mathbb{R}): v(t) \in F(t, x(t)) \quad \text { a.e. } t \in J\right\}
$$

Then we have the following lemmas due to Lasota and Opial [9].
Lemma 2.1. If $\operatorname{dim}(X)<\infty$ and $F: J \times X \rightarrow K C(X)$ then $S_{F}^{1}(x) \neq \emptyset$ for each $x \in X$.

Lemma 2.2. Let X be a Banach space, F an L^{1}-Carathéodory multi-valued map with $S_{F}^{1} \neq \emptyset$ and $\mathcal{K}: L^{1}(J, X) \rightarrow C(J, X)$ be a linear continuous mapping. Then the operator

$$
\mathcal{K} \circ S_{F}^{1}: C(J, X) \longrightarrow K C(C(J, X))
$$

is a closed graph operator in $C(J, X) \times C(J, X)$.
We define the partial ordering \leq in $W^{n, 1}(J, \mathbb{R})$ (the Sobolev class of functions $x: J \rightarrow \mathbb{R}$ for which $x^{(n-1)}$ are absolutely continuous and $\left.x^{(n)} \in L^{1}(J, \mathbb{R})\right)$ as follows. Let $x, y \in W^{n, 1}(J, \mathbb{R})$. Then we define

$$
x \leq y \Leftrightarrow x(t) \leq y(t), \forall t \in J .
$$

If $a, b \in W^{n, 1}(J, \mathbb{R})$ and $a \leq b$, then we define an order interval $[a, b]$ in $W^{n, 1}(J, \mathbb{R})$ by

$$
[a, b]=\left\{x \in W^{n, 1}(J, \mathbb{R}): a \leq x \leq b\right\}
$$

The following definition appears in Dhage et al. [3].
Definition 2.4. A function $\alpha \in W^{n, 1}(J, \mathbb{R})$ is called a lower solution of IVP (1.1) if there exists $v_{1} \in L^{1}(J, \mathbb{R})$ with $v_{1}(t) \in F(t, \alpha(t))$ a.e. $t \in J$ we have that $\alpha^{(n)}(t) \leq v_{1}(t)$ a.e. $t \in J$ and $\alpha^{(i)}(0) \leq x_{i}, i=0,1, \ldots, n-1$. Similarly a function $\beta \in W^{n, 1}(J, \mathbb{R})$ is called an upper solution of IVP (1.1) if there exists $v_{2} \in L^{1}(J, \mathbb{R})$ with $v_{2}(t) \in F(t, \beta(t))$ a.e. $t \in J$ we have that $\beta^{(n)}(t) \geq v_{2}(t)$ a.e. $t \in J$ and $\beta^{(i)}(0) \geq x_{i}, i=0,1, \ldots, n-1$.

Now we are ready to prove in the next section our main existence result for the IVP (1.1).

3. Existence Result

We consider the following assumptions:
(H1) The multi $F(t, x)$ has compact and convex values for each $(t, x) \in J \times \mathbb{R}$.
(H2) $F(t, x)$ is L^{1}-Carathéodory.
(H3) The IVP (1.1) has a lower solution α and an upper solution β with $\alpha \leq \beta$.
Theorem 3.1. Assume that (H1)-(H3) hold. Then the IVP (1.1) has at least one solution x such that

$$
\alpha(t) \leq x(t) \leq \beta(t), \quad \text { for all } \quad t \in J .
$$

Proof. First we transform (1.1) into a fixed point inclusion in a suitable Banach space. Consider the IVP

$$
\begin{gather*}
x^{(n)}(t) \in F(t, \tau x(t)) \quad \text { a.e. } t \in J, \\
x^{(i)}(0)=x_{i} \in \mathbb{R} \tag{3.1}
\end{gather*}
$$

for all $i \in\{0,1, \ldots, n-1\}$, where $\tau: C(J, \mathbb{R}) \rightarrow C(J, \mathbb{R})$ is the truncation operator defined by

$$
(\tau x)(t)= \begin{cases}\alpha(t), & \text { if } x(t)<\alpha(t) \tag{3.2}\\ x(t), & \text { if } \alpha(t) \leq x(t) \leq \beta(t) \\ \beta(t), & \text { if } \beta(t)<x(t)\end{cases}
$$

The problem of existence of a solution to (1.1) reduces to finding the solution of the integral inclusion

$$
\begin{equation*}
x(t) \in \sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} F(s, \tau x(s)) d s, \quad t \in J . \tag{3.3}
\end{equation*}
$$

We study the integral inclusion (3.3) in the space $C(J, \mathbb{R})$ of all continuous realvalued functions on J with a supremum norm $\|\cdot\|_{C}$. Define a multi-valued map $T: C(J, \mathbb{R}) \rightarrow 2^{C(J, \mathbb{R})}$ by

$$
\begin{equation*}
T x=\left\{u \in C(J, \mathbb{R}): u(t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s, \quad v \in \overline{S_{F}^{1}}(\tau x)\right\} \tag{3.4}
\end{equation*}
$$

where

$$
\overline{S_{F}^{1}}(\tau x)=\left\{v \in S_{F}^{1}(\tau x): v(t) \geq \alpha(t) \text { a.e. } t \in A_{1} \text { and } v(t) \leq \beta(t), \text { a.e. } t \in A_{2}\right\}
$$

and

$$
\begin{aligned}
& A_{1}=\{t \in J: x(t)<\alpha(t) \leq \beta(t)\}, \\
& A_{2}=\{t \in J: \alpha(t) \leq \beta(t)<x(t)\}, \\
& A_{3}=\{t \in J: \alpha(t) \leq x(t) \leq \beta(t)\} .
\end{aligned}
$$

By Lemma 2.1, $S_{F}^{1}(\tau x) \neq \emptyset$ for each $x \in C(J, \mathbb{R})$ which further yields that $\overline{S_{F}^{1}}(\tau x) \neq$ \emptyset for each $x \in C(J, \mathbb{R})$. Indeed, if $v \in S_{F}^{1}(x)$ then the function $w \in L^{1}(J, \mathbb{R})$ defined by

$$
w=\alpha \chi_{A_{1}}+\beta \chi_{A_{2}}+v \chi_{A_{3}}
$$

is in $\overline{S_{F}^{1}}(\tau x)$ by virtue of decomposability of w.
We shall show that the multi T satisfies all the conditions of Theorem 3.1.
Step I. First we prove that $T(x)$ is a convex subset of $C(J, \mathbb{R})$ for each $x \in C(J, \mathbb{R})$. Let $u_{1}, u_{2} \in T(x)$. Then there exists v_{1} and v_{2} in $\overline{S_{F}^{1}}(\tau x)$ such that

$$
u_{j}(t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v_{j}(s) d s, \quad j=1,2
$$

Since $F(t, x)$ has convex values, one has for $0 \leq k \leq 1$

$$
\left[k v_{1}+(1-k) v_{2}\right](t) \in S_{F}^{1}(\tau x)(t), \quad \forall t \in J
$$

As a result we have

$$
\left[k u_{1}+(1-k) u_{2}\right](t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!}\left[k v_{1}(s)+(1-k) v_{2}(t)\right] d s
$$

Therefore $\left[k u_{1}+(1-k) u_{2}\right] \in T x$ and consequently T has convex values in $C(J, \mathbb{R})$.
Step II. T maps bounded sets into bounded sets in $C(J, \mathbb{R})$. To see this, let B be a bounded set in $C(J, \mathbb{R})$. Then there exists a real number $r>0$ such that $\|x\| \leq r, \forall x \in B$.

Now for each $u \in T x$, there exists a $v \in \overline{S_{F}^{1}}(\tau x)$ such that

$$
u(t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s
$$

Then for each $t \in J$,

$$
\begin{aligned}
|u(t)| & \leq \sum_{i=0}^{n-1} \frac{\left|x_{i}\right| a^{i}}{i!}+\int_{0}^{t} \frac{a^{n-1}}{(n-1)!}|v(s)| d s \\
& \leq \sum_{i=0}^{n-1} \frac{\left|x_{i}\right| a^{i}}{i!}+\int_{0}^{t} \frac{a^{n-1}}{(n-1)!} h_{r}(s) d s \\
& =\sum_{i=0}^{n-1} \frac{\left|x_{i}\right| a^{i}}{i!}+\frac{a^{n-1}}{(n-1)!}\left\|h_{r}\right\|_{L^{1}} .
\end{aligned}
$$

This further implies that

$$
\|u\|_{C} \leq \sum_{i=0}^{n-1} \frac{\mid x_{i} a^{i}}{i!}+\frac{a^{n-1}}{(n-1)!}\left\|h_{r}\right\|_{L^{1}}
$$

for all $u \in T x \subset \bigcup T(B)$. Hence $\bigcup T(B)$ is bounded.
Step III. Next we show that T maps bounded sets into equicontinuous sets. Let B be a bounded set as in step II, and $u \in T x$ for some $x \in B$. Then there exists $v \in \overline{S_{F}^{1}}(\tau x)$ such that

$$
u(t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s
$$

Then for any $t_{1}, t_{2} \in J$ we have

$$
\begin{aligned}
& \left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| \\
& \leq\left|\sum_{i=0}^{n-1} \frac{x_{i} t_{1}^{i}}{i!}-\sum_{i=0}^{n-1} \frac{x_{i} t_{2}^{i}}{i!}\right|+\left|\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{n-1}}{(n-1)!} v(s) d s-\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{n-1}}{(n-1)!} v(s) d s\right| \\
& \leq\left|q\left(t_{1}\right)-q\left(t_{2}\right)\right|+\left|\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{n-1}}{(n-1)!} v(s) d s-\int_{0}^{t_{1}} \frac{\left(t_{2}-s\right)^{n-1}}{(n-1)!} v(s) d s\right| \\
& \quad+\left|\int_{0}^{t_{1}} \frac{\left(t_{2}-s\right)^{n-1}}{(n-1)!} v(s) d s-\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{n-1}}{(n-1)!} v(s) d s\right| \\
& \leq\left|q\left(t_{1}\right)-q\left(t_{2}\right)\right|+\int_{0}^{t_{1}}\left|\frac{\left(t_{1}-s\right)^{n-1}}{(n-1)!}-\frac{\left(t_{2}-s\right)^{n-1}}{(n-1)!}\right||v(s)| d s \\
& \quad+\left|\int_{t_{1}}^{t_{2}}\right| \frac{\left(t_{2}-s\right)^{n-1}}{(n-1)!}| | v(s)|d s| \\
& \leq\left|q\left(t_{1}\right)-q\left(t_{2}\right)\right|+\left|p\left(t_{1}\right)-p\left(t_{2}\right)\right| \\
& \quad+\frac{1}{(n-1)!} \int_{0}^{t_{1}}\left|\left(t_{1}-s\right)^{n-1}-\left(t_{2}-s\right)^{n-1}\right|\|F(s, u(s))\| d s \\
& \leq\left|q\left(t_{1}\right)-q\left(t_{2}\right)\right|+\left|p\left(t_{1}\right)-p\left(t_{2}\right)\right| \\
& \quad+\frac{1}{(n-1)!} \int_{0}^{a}\left|\left(t_{1}-s\right)^{n-1}-\left(t_{2}-s\right)^{n-1}\right| h_{r}(s) d s
\end{aligned}
$$

where

$$
q(t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!} \quad \text { and } \quad p(t)=\int_{0}^{t} \frac{(a-s)^{n-1}}{(n-1)!} h_{r}(s) d s
$$

Now the functions p and q are continuous on the compact interval J, hence they are uniformly continuous on J. Hence we have

$$
\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| \rightarrow 0 \quad \text { as } t_{1} \rightarrow t_{2}
$$

As a result $\bigcup T(B)$ is an equicontinuous set in $C(J, \mathbb{R})$. Now an application of Arzelá-Ascoli theorem yields that the multi T is totally bounded on $C(J, \mathbb{R})$.
Step IV. Next we prove that T has a closed graph. Let $\left\{x_{n}\right\} \subset C(J, \mathbb{R})$ be a sequence such that $x_{n} \rightarrow x_{*}$ and let $\left\{y_{n}\right\}$ be a sequence defined by $y_{n} \in T x_{n}$ for each $n \in \mathbb{N}$ such that $y_{n} \rightarrow y_{*}$. We just show that $y_{*} \in T x_{*}$. Since $y_{n} \in T x_{n}$, there exists a $v_{n} \in \overline{S_{F}^{1}}\left(\tau x_{n}\right)$ such that

$$
y_{n}(t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v_{n}(s) d s
$$

Consider the linear and continuous operator $\mathcal{K}: L^{1}(J, \mathbb{R}) \rightarrow C(J, \mathbb{R})$ defined by

$$
\mathcal{K} v(t)=\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s
$$

Now

$$
\begin{aligned}
\left\lvert\, y_{n}(t)-\sum_{i=0}^{n-1} \frac{\left|x_{i}\right| t^{i}}{i!}\right. & \left.-y_{*}(t)-\sum_{i=0}^{n-1} \frac{\left|x_{i}\right| t^{i}}{i!} \right\rvert\, \\
& \leq\left|y_{n}(t)-y_{*}(t)\right| \\
& \leq\left\|y_{n}-y_{*}\right\|_{C} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

From Lemma 2.2 it follows that $\left(\mathcal{K} \circ \overline{S_{F}^{1}}\right)$ is a closed graph operator and from the definition of \mathcal{K} one has

$$
y_{n}(t)-\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!} \in\left(\mathcal{K} \circ \overline{S_{F}^{1}}\left(\tau x_{n}\right)\right) .
$$

As $x_{n} \rightarrow x_{*}$ and $y_{n} \rightarrow y_{*}$, there is a $v_{*} \in \overline{S_{F}^{1}}\left(\tau x_{*}\right)$ such that

$$
y_{*}=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v_{*}(s) d s .
$$

Hence the multi T is an upper semi-continuous operator on $C(J, \mathbb{R})$.
Step V. Finally we show that the set

$$
\mathcal{E}=\{x \in C(J, \mathbb{R}): \lambda x \in T x \quad \text { for some } \lambda>1\}
$$

is bounded. Let $u \in \mathcal{E}$ be any element. Then there exists a $v \in \overline{S_{F}^{1}}(\tau x)$ such that

$$
u(t)=\lambda^{-1} \sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\lambda^{-1} \int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s
$$

Then

$$
|u(t)| \leq \sum_{i=0}^{n-1} \frac{\left|x_{i}\right| a^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!}|v(s)| d s
$$

Since $\tau x \in[\alpha, \beta], \forall x \in C(J, \mathbb{R})$, we have

$$
\|\tau x\|_{C} \leq\|\alpha\|_{C}+\|\beta\|_{C}:=l .
$$

By (H2) there is a function $h_{l} \in L^{1}(J, \mathbb{R})$ such that

$$
\|F(t, \tau x)\|=\sup \{|u|: u \in F(t, \tau x)\} \leq h_{l}(t) \quad \text { a.e. } t \in J
$$

for all $x \in C(J, \mathbb{R})$. Therefore

$$
\|u\|_{C} \leq \sum_{i=0}^{n-1} \frac{\left|x_{i}\right| a^{i}}{i!}+\frac{a^{n-1}}{(n-1)!} \int_{0}^{a} h_{l} d s=\sum_{i=0}^{n-1} \frac{\left|x_{i}\right| a^{i}}{i!}+\frac{a^{n-1}}{(n-1)!}\left\|h_{l}\right\|_{L^{1}}
$$

and so, the set \mathcal{E} is bounded in $C(J, \mathbb{R})$.
Thus T satisfies all the conditions of Theorem 2.1 and so an application of this theorem yields that the multi T has a fixed point. Consequently (3.2) has a solution u on J.

Next we show that u is also a solution of (1.1) on J. First we show that $u \in[\alpha, \beta]$. Suppose not. Then either $\alpha \not \leq u$ or $u \not \leq \beta$ on some subinterval J^{\prime} of J. If $u \nsupseteq \alpha$,
then there exist $t_{0}, t_{1} \in J, t_{0}<t_{1}$ such that $u\left(t_{0}\right)=\alpha\left(t_{0}\right)$ and $\alpha(t)>u(t)$ for all $t \in\left(t_{0}, t_{1}\right) \subset J$. From the definition of the operator τ it follows that

$$
u^{(n)}(t) \in F(t, \alpha(t)) \quad \text { a.e. } t \in J
$$

Then there exists a $v(t) \in F(t, \alpha(t))$ such that $v(t) \geq v_{1}(t), \forall t \in J$ with

$$
u^{(n)}(t)=v(t) \quad \text { a.e. } t \in J .
$$

Integrating from t_{0} to $t n$ times yields

$$
u(t)-\sum_{i=0}^{n-1} \frac{u_{i}(0)\left(t-t_{0}\right)^{i}}{i!}=\int_{t_{0}}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s
$$

Since α is a lower solution of (1.1), we have

$$
\begin{aligned}
u(t) & =\sum_{i=0}^{n-1} \frac{u_{i}(0)\left(t-t_{0}\right)^{i}}{i!}+\int_{t_{0}}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s \\
& \geq \sum_{i=0}^{n-1} \frac{\alpha_{i}(0)\left(t-t_{0}\right)^{i}}{i!}+\int_{t_{0}}^{t} \frac{(t-s)^{n-1}}{(n-1)!} \alpha(s) d s \\
& =\alpha(t)
\end{aligned}
$$

for all $t \in\left(t_{0}, t_{1}\right)$. This is a contradiction. Similarly if $u \not \leq \beta$ on some subinterval of J, then also we get a contradiction. Hence $\alpha \leq u \leq \beta$ on J. As a result (3.2) has a solution u in $[\alpha, \beta]$. Finally since $\tau x=x, \forall x \in[\alpha, \beta], u$ is a required solution of (1.1) on J. This completes the proof.

4. Existence of Extremal Solutions

In this section we establish the existence of extremal solutions to (1.1) when the multi-map $F(t, x)$ is isotone increasing in x. Here our technique involves combining method of upper and lower solutions with an algebraic fixed point theorem of Dhage [6] on ordered Banach spaces.

Define a cone K in $C(J, \mathbb{R})$ by

$$
\begin{equation*}
K=\{x \in C(J, \mathbb{R}): x(t) \geq 0, \forall t \in J\} \tag{4.1}
\end{equation*}
$$

Then the cone K defines an order relation, \leq, in $C(J, \mathbb{R})$ by

$$
\begin{equation*}
x \leq y \quad \text { iff } \quad x(t) \leq y(t), \quad \forall t \in J \tag{4.2}
\end{equation*}
$$

It is known that the cone K is normal in $C(J, \mathbb{R})$. See Heikkila and Laksmikantham [8] and the references therein. For any $A, B \in 2^{C(J, \mathbb{R})}$ we define the order relation, \leq, in $2^{C(J, \mathbb{R})}$ by

$$
\begin{equation*}
A \leq B \quad \text { iff } \quad a \leq b, \quad \forall a \in A \quad \text { and } \quad \forall b \in B \tag{4.3}
\end{equation*}
$$

In particular, $a \leq B$ implies that $a \leq b, \quad \forall b \in B$ and if $A \leq A$, then it follows that A is a singleton set.

Definition 4.1. A multi-map $T: C(J, \mathbb{R}) \rightarrow 2^{C(J, \mathbb{R})}$ is said to be isotone increasing if for any $x, y \in C(J, \mathbb{R})$ with $x<y$ we have that $T x \leq T y$.

We need the following fixed point theorem of Dhage [6] in the sequel.

Theorem 4.2. Let $[\alpha, \beta]$ be an order interval in a Banach space X and let T : $[\alpha, \beta] \rightarrow 2^{[\alpha, \beta]}$ be a completely continuous and isotone increasing multi-map. Further if the cone K in X is normal, then T has a least x_{*} and a greatest fixed point y^{*} in $[\alpha, \beta]$. Moreover, the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ defined by $x_{n+1} \in T x_{n}, x_{0}=\alpha$ and $y_{n+1} \in T y_{n}, y_{0}=\beta$, converge to x_{*} and y^{*} respectively.

We consider the following assumptions in the sequel.
(H4) The multi-map $F(t, x)$ is Carathéodory.
(H5) $F(t, x)$ is nondecreasing in x almost everywhere for $t \in J$, i.e. if $x<y$, then $F(t, x) \leq F(t, y)$ almost everywhere for $t \in J$.

Remark 4.3. Suppose that hypotheses (H3)-(H5) hold. Then the function h : $J \rightarrow \mathbb{R}$ defined by

$$
h(t)=\|F(t, \alpha(t))\|+\|F(t, \beta(t))\|, \quad \text { for } t \in J
$$

is Lebesque integrable and that

$$
|F(t, x)| \leq h(t), \quad \forall t \in J, \quad \forall x \in[\alpha, \beta] .
$$

Definition 4.4. A solution x_{M} of (1.1) is called maximal if for any other solution of (1.1) we have that $x(t) \leq x_{M}(t), \forall t \in J$. Similarly a minimal solution x_{m} of (1.1) is defined.

Theorem 4.5. Assume that hypotheses (H1), (H3), (H4) and (H5) hold. Then IVP (1.1) has a minimal and a maximal solution on J.

Proof. Clearly (1.1) is equivalent to the operator inclusion

$$
\begin{equation*}
x(t) \in T x(t), t \in J \tag{4.4}
\end{equation*}
$$

where the multi-map $T: C(J, \mathbb{R}) \rightarrow 2^{C(J, \mathbb{R})}$ is defined by

$$
T x=\left\{u \in C(J, \mathbb{R}): u(t)=\sum_{i=0}^{n-1} \frac{x_{i} i^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s, \quad v \in S_{F}^{1}(x)\right\}
$$

We show that the multi-map T satisfies all the conditions of Theorem 4.2. First we show that T is isotone increasing on $C(J, \mathbb{R})$. Let $x, y \in C(J, \mathbb{R})$ be such that $x<y$. Let $\alpha \in T x$ be arbitrary. Then there is a $v_{1} \in S_{F}^{1}(x)$ such that

$$
\alpha(t)=\sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v_{1}(s) d s
$$

Since $F(t, x)$ is nondecreasing in x we have that $S_{F}^{1}(x) \leq S_{F}^{1}(y)$. As a result for any $v_{2} \in S_{F}^{1}(y)$ one has

$$
\alpha(t) \leq \sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v_{2}(s) d s=\beta(t)
$$

for all $t \in J$ and any $\beta \in T y$. This shows that the multi-map T is isotone increasing on $C(J, \mathbb{R})$ and in particular on $[\alpha, \beta]$. Since α and β are lower and upper solutions of IVP (1.1) on J, we have

$$
\alpha(t) \leq \sum_{i=0}^{n-1} \frac{x_{i} t^{i}}{i!}+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} v(s) d s, \quad t \in J
$$

for all $v \in S_{F}^{1}(\alpha)$, and so $\alpha \leq T \alpha$. Similarly $T \beta \leq \beta$. Now let $x \in[\alpha, \beta]$ be arbitrary. Then by the isotonicity of T

$$
\alpha \leq T \alpha \leq T \beta \leq \beta
$$

Therefore, T defines a multi-map $T:[\alpha, \beta] \rightarrow 2^{[\alpha, \beta]}$. Finally proceeding as in Theorem 3.1, is proved that T is a completely continuous multi-operator on $[\alpha, \beta]$. Since T satisfies all the conditions of Theorem 4.2 and the cone K in $C(J, \mathbb{R})$ is normal, an application of Theorem 4.2 yields that T has a least and a greatest fixed point in $[\alpha, \beta]$. This further implies that the IVP (1.1) has a minimal and a maximal solution on J. This completes the proof.
Conclusion. We remark that when $n=2$ in (1.1) we obtain the existence of solution of the second order differential inclusions studied in Benchohra [2]. Again IVP (1.1) and its special cases have been discussed in Dhage and Kang [4], Dhage et al. [3], [5] for the existence of extremal solutions via a different approach and under the weaker continuity condition of the multifunction involved in the differential inclusions.

Acknowledgment. The authors are thankful to the anonymous referee for his/her helpful suggestions for the improvement of this paper.

References

[1] Bernfield S. and Lakshmikantham V., An Introduction to Boundary Value Problems, Academic Press, New York, 1974.
[2] Benchohra M., Upper and lower solutions method for second order differential inclusions, Dynam. Systems Appl. 11 (2002), 13-20.
[3] Agarwal, R., Dhage B. C., and O'Regan, D., The upper and lower solution method for differential inclusions via a lattice fixed point theorem, Dynamic Systems Appl. 12 (2003), 1-7.
[4] Dhage B. C. and Kang, S.M., Upper and lower solutions method for first order discontinuous differential inclusions, Math. Sci. Res. J. 6 (2002), 527-533.
[5] Dhage B. C., Holambe, T. L. and Ntouyas S. K., Upper and lower solutions method for second order discontinuous differential inclusions, Math. Sci. Res. J. 7 (2003), 2o6-212.
[6] Dhage B. C., A fixed point theorem for multi-valued mappings in Banach spaces with applications, Nonlinear Anal. (to appear).
[7] Halidias N. and Papageorgiou N., Second order multi-valued boundary value problems, Arch. Math. (Brno) 34 (1998), 267-284.
[8] Heikila S. and Lakshmikantham V., Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker Inc., New York, 1994.
[9] Lasota, A. and Opial,Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
[10] Martelli,M., A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (Suppl. Fasc.) (1975), 70-76.

Bupurao C. Dhage
Kasubai, Gurukul Colony, Ahmedpur-413 515, Dist: Latur, Maharashtra, India
E-mail address: bcd20012001@yahoo.co.in
Tarachand L. Holambe
GMCT's ACS College, Shankarnagar -431 505, Dist: Nanded, Maharashtra, India
Sotiris K. Ntouyas
Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
E-mail address: sntouyas@cc.uoi.gr

[^0]: 2000 Mathematics Subject Classification. 34A60.
 Key words and phrases. Differential inclusion, method of upper and lower solutions, existence theorem.
 (C) 2004 Texas State University - San Marcos.

 Submitted November 20, 2003. Published January 2, 2004

