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COMMENTARY ON LOCAL AND BOUNDARY REGULARITY
OF WEAK SOLUTIONS TO NAVIER-STOKES EQUATIONS

ZDENĚK SKALÁK

Abstract. We present results on local and boundary regularity for weak so-
lutions to the Navier-Stokes equations. Beginning with the regularity criterion
proved recently in [14] for the Cauchy problem, we show that this criterion

holds also locally. This is also the case for some other results: We present

two examples concerning the regularity of weak solutions stemming from the
regularity of two components of the vorticity ([2]) or from the regularity of the

pressure ([3]). We conclude by presenting regularity criteria near the boundary
based on the results in [10] and [16].

1. Introduction

Let Ω = R3 or Ω be a bounded domain in R3 with smooth boundary ∂Ω, let
T > 0 and QT = Ω × (0, T ). Consider the Navier-Stokes initial-boundary value
problem describing the evolution of the velocity u(x, t) and the pressure p(x, t) in
QT :

∂u

∂t
− ν∆u+ u · ∇u+∇p = 0 in QT , (1.1)

div u = 0 in QT , (1.2)

u = 0 on ∂Ω× (0, T ) if Ω is bounded, (1.3)

u
∣∣
t=0

= u0, (1.4)

where ν > 0 is the viscosity coefficient. The initial data u0 satisfy the compatibility
conditions u0|∂Ω = 0 and div u0 = 0. Let us stress that the condition (1.3) does
not apply if Ω = R3.

As is usual in the standard theory of the Navier-Stokes equations, define D(Ω) =
{ψ ∈ C∞0 (Ω)3;∇·ψ = 0 in Ω} and let L2

σ(Ω) be the completion of D(Ω) in L2(Ω)3.
Define also DT = {ϕ ∈ C∞0 (Ω× [0, T ))3;∇ · ϕ = 0 in Ω× [0, T )}.

Definition 1.1. Let u0 ∈ L2
σ(Ω). A measurable function u : QT → R3 is called a

weak solution of the problem (1.1)–(1.4) if u ∈ L2(0, T,W 1,2(Ω))∩L∞(0, T, L2
σ(Ω))
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and ∫ T

0

∫
Ω

[
u · ∂ϕ

∂t
− ν∇u · ∇ϕ− u · ∇u · ϕ

]
dxdt = −

∫
Ω

u0 · ϕ(·, 0) dx

for all ϕ ∈ DT .

The existence of weak solutions is generally known but their uniqueness and
regularity remains an open problem (see for example [18]).

Leray-Hopf weak solutions of (1.1)–(1.4) are those weak solutions from Defini-
tion 1.1 which satisfy the energy inequality

‖u(t)‖22 + 2
∫ t

0

‖∇u(s)‖22ds ≤ ‖u0‖22

for every t ∈ (0, T ].
A condition stronger than the energy inequality is the so called strong energy

inequality. We say that a weak solution of (1.1)–(1.4) satisfies the strong energy
inequality, if

‖u(t2)‖22 + 2
∫ t2

t1

‖∇u(s)‖22ds ≤ ‖u(t1)‖22 (1.5)

for every t2 ∈ (0, T ] and almost every 0 < t1 ≤ t2.
The pair (u, p) is called a suitable weak solutions of (1.1)–(1.4) if u is a weak

solution of (1.1)–(1.4) from Definition 1.1 and together with the pressure p satisfy
the so called generalized energy inequality, that is

2ν
∫ T

0

∫
Ω

|∇u|2φ ≤
∫ T

0

∫
Ω

[
|u|2

(∂φ
∂t

+ ν∆φ
)

+ (|u|2 + 2p)u · ∇φ
]

(1.6)

for every non-negative real-valued function φ ∈ C∞0 (QT ). There is also an equiva-
lent form of (1.6):∫

Ω×{t}
|u|2φ+2ν

∫ t

0

∫
Ω

|∇u|2φ ≤
∫ t

0

∫
Ω

|u|2
(∂φ
∂t

+ν∆φ
)

+
∫ t

0

∫
Ω

(|u|2u+2pu) ·∇φ

(1.7)
which holds for every non-negative real-valued function φ ∈ C∞0 (QT ) and every
t ∈ (0, T ).

The suitable weak solutions were thoroughly studied in [1] and used in [9, 11, 13].
Their existence is known under the assumption of a sufficient regularity of the
initial condition u0 (see [1]). We use the suitable weak solutions in this paper in
Theorems 2.2, 2.3 and 2.6. The main reason for their use is that the local boundary
integrals which appear in the proofs of these theorems are easily controllable due
to the boundedness of the velocity u and its derivatives and sufficient regularity of
the pressure p near the boundary.

It was proved in [6] that if the initial condition u0 is sufficiently smooth then
there exists a suitable weak solution of (1.1)–(1.4) which satisfies the generalized
energy inequality for every smooth test function. More precisely, the inequality∫

Ω×{t2}
|u|2φ+ 2ν

∫ t2

t1

∫
Ω

|∇u|2φ

≤
∫

Ω×{t1}
|u|2φ+

∫ t2

t1

∫
Ω

|u|2
(∂φ
∂t

+ ν∆φ
)

+
∫ t2

t1

∫
Ω

(|u|2u+ 2pu)∇φ
(1.8)
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holds for every φ ∈ C∞(QT ), φ ≥ 0 and every 0 ≤ t2 < T and almost every
0 ≤ t1 ≤ t2. By the choice of φ ≡ 1 on QT we see that such solutions satisfy
the strong energy inequality which does not seem to be known for the suitable
weak solutions satisfying the ”ordinary” generalized energy inequality (1.7). We
will use these solutions in Theorem 3.2, where the assumption of the strong energy
inequality is needed.

Recall that a point (x0, t0) ∈ Ω × (0, T ) is called a regular point of u if u is
essentially bounded in a space-time neighbourhood U of (x0, t0), that is if u ∈
L∞(U). A point (x0, t0) ∈ Ω× (0, T ) is called singular if it is not regular.

In this paper we use the following regularity criterion proved in [9, Theorem 2.2].
Let us present here only a simplified version for f ≡ 0.

Theorem 1.2. Let (u, p) be a suitable weak solution of (1.1)–(1.4). Then there
exists a positive number ε∗ with the following property. Assume that for a point
z0 = (x0, t0) ∈ QT the inequality

lim sup
r→0

1
r

∫
Q(z0,r)

|∇u|2 < ε∗ (1.9)

holds, where Q(z0, r) = B(x0, r)× (t0 − r2, t0). Then z0 is a regular point of u.

In fact, Theorem 2.2 in [9] is still stronger than Theorem 1.2. It even says that
the velocity u is Hölder continuous function in some space-time neighborhood of
z0. The famous criterion proved in [1, Proposition 2], is weaker then Theorem 1.2,
since it uses Q∗(z0, r) = B(x0, r)× (t0 − 7

8r
2, t0 + 1

8r
2) instead of Q(z0, r).

Let us note that an analogous result to Theorem 1.2 was proved in [15] for the
case of x0 ∈ ∂Ω and ∂Ω ∩Br(x0) lying in a plane for some r > 0.

In what follows, we use the standard notation for the Lebesgue and Sobolev
spaces (Lp andW k,p, respectively) and for the corresponding norms (‖·‖p and ‖·‖k,p,
respectively). To simplify the notation we often write

∫
f instead of

∫
Ω
f(x) dx or∫

f(x) dx instead of
∫
f(x, t) dx. We do not distinguish between (Lp)m and Lp. The

outer normal vector is denoted by n. In the paper c stands for a generic constant.

2. local regularity

The main goal of this section is to show that some criterions on regularity of
Leray-Hopf weak solutions of the Cauchy problem for the Navier-Stokes equations
hold also locally. We will present three examples of such local regularity results.
The results are formulated for the suitable weak solutions. The boundary inte-
grals appearing during the computations are then easily controllable due to the
boundedness of the velocity u and all its space derivatives near the boundary.

We will suppose in this section that D ⊂ QT is an open set and (x0, t0) ∈ D
is an arbitrary point. If (u, p) is a suitable weak solution of (1.1)–(1.4) and if one
wants to show that (x0, t0) is a regular point of u then it is possible to suppose that
the following conditions are fulfilled (for a detailed discussion see [11, 7, 8, 12, 13]).

There exist positive numbers ε1 < ε2 and τ such that B2 × [t0 − τ, t0 + τ ] ⊂ D
and (B2 \ B1) × [t0 − τ, t0 + τ ] ∩ S(u) = ∅, where Bi = Bεi

(x0), i = 1, 2 and
S(u) is a set of all singular points of u from QT . Further, there are no singular
points of u in B2 × [t0 − τ, t0), u and all its space derivatives are continuous in
(B2 \ B1) × [t0 − τ, t0 + τ ] and ∂u

∂t and p and all their space derivatives are in
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Lβ((B2 \ B1) × [t0 − τ, t0 + τ ]) for every β ∈ (1, 2). Moreover, if Ω = R3 then ∂u
∂t

and p and all their space derivatives are in L∞((B2 \B1)× [t0 − τ, t0 + τ ]).
For further developments, we denote B3 = Bε3(x0), where ε3 = (ε1 + ε2)/2.

As an inspiration for this section served the following regularity criterion proved
recently by M. Pokorný in [14].

Theorem 2.1. Let u0 ∈ W 1,2(R3) with div u0 = 0, Ω = R3 and let u be a weak
solution of the Navier-Stokes equations (1.1)–(1.4) satisfying the energy inequality.
Assume moreover that ∇u3 ∈ Lα(0, T ;Lγ) with 2

α + 3
γ ≤ 3

2 , 4
3 ≤ α ≤ ∞, 2 ≤

γ ≤ ∞. Then u and the corresponding pressure p is the smooth solution of the
Navier-Stokes equations, i.e. u ∈ L∞(0, T ;W 1,2(R3)) ∩ L2(0, T ;W 2,2(R3)), ∇p ∈
L2(0, T ;W 1,2(R3)). Moreover, u ∈ C∞([δ, T ) × R3) and p ∈ C∞([δ, T ) × R3) for
any small positive δ.

The following result is a local version of Theorem 2.1. Its proof uses the same
ideas as the proof of Theorem 2.3 below.

Theorem 2.2. Let (u, p) be a suitable weak solution of (1.1)–(1.4)) and D ⊂ QT

be an open set. Assume moreover that ∇u3 ∈ Lα,γ(D) with 2
α + 3

γ ≤
3
2 , 4

3 ≤ α ≤ ∞,
2 ≤ γ ≤ ∞. Then u has no singular points in D.

Let ω = curlu = (ω1, ω2, ω3) = (∂u2
∂x3

− ∂u3
∂x2

, ∂u3
∂x1

− ∂u1
∂x3

, ∂u1
∂x2

− ∂u2
∂x1

) denote the
vorticity field. The two-component vorticity field is denoted ω̃ = ω1e1+ω2e2, where
e1 = (1, 0, 0), e2 = (0, 1, 0). The following theorem is a local version of Theorem 1
proved in [2].

Theorem 2.3. Let (u, p) be a suitable weak solution of (1.1))–(1.4). Let D ⊂ QT

be an open set and ω̃ ∈ Lα,γ(D) with 2
α + 3

γ ≤ 2, 1 < α < ∞, 3
2 < γ < ∞ or

the norm of ω̃ in the space L∞, 3
2 (D) is sufficiently small. Then u has no singular

points in D.

Proof. We follow the lines of the proof in [2]. The boundary integrals can be handled
because the suitable weak solution is considered. We begin with the equation

∂ω

∂t
− ν∆ω + u · ∇ω − ω · ∇u = 0. (2.1)

Multiplying (2.1) by ω and integrating it over B3 we get that
1
2
d

dt
‖ω(t)‖22 + ν‖∇ω(t)‖22 =

∫
B3

ω · ∇u · ω +
∫

∂B3

∂ω

∂n
· ω − 1

2

∫
∂B3

u · n|ω|2 (2.2)

holds for almost every t ∈ (t0 − τ, t0). The last two boundary integral can be
estimated by a constant c independent of time.

We estimate the integral
∫

B3
ω · ∇u · ω. We can express u by means of ω:

u(x) =
1
4π

∫
B2

rotω(ξ)
|x− ξ|

dξ +
1
4π

∫
∂B2

∂u

∂nξ
(ξ)

1
|x− ξ|

dξS

− 1
4π

∫
∂B2

u(ξ)
∂

∂ξ

1
|x− ξ|

dξ.

(2.3)

Equation (2.3) holds for every t ∈ (t0−τ, t0) and every x ∈ B2. Therefore, u = ū+¯̄u,
where ū is defined by the first integral on the right hand side of (2.3) and ¯̄u is defined
by sum of the second and the third integral on the right hand side of (2.3). Since
Dγ

x
¯̄u ∈ L∞(B3×(t0−τ, t0)) for every multiindex γ = (γ1, γ2, γ3), γi ≥ 0, i = 1, 2, 3,
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it is possible to notice that there are no problems with ¯̄u in the following procedures.
Therefore, we work only with ū and for the sake of simplicity denote it as u.

From the definition of u we have for every x ∈ B3 that

∂ui

∂xj
(x) = lim

ε→0+

∫
∂Bε(x)

∂

∂ξj

1
|x− ξ|

εilknk(ξ)ωl(ξ)dξS

−
∫

∂B2

∂

∂ξj

1
|x− ξ|

εilknk(ξ)ωl(ξ)dξS

+ lim
ε→0+

∫
B2,ε(x)

∂2

∂ξj∂ξk

1
|x− ξ|

εilkωl(ξ)dξ

= I1(x) + I2(x) + I3(x),

(2.4)

where B2,ε(x) = B2 \ Bε(x) and εijk is the Levi-Civita’s tensor. After short com-
putation one can get

I1(x) = −4π
3
εijlωl(x)

and if we put I1(x) into the integral
∫

B3
ω · ∇u · ω instead of ∇u we get∫

B3

ω · ∇u · ω = −4π
3
εijl

∫
B3

ωiωjωl = 0. (2.5)

Since |x − ξ| > (ε2 − ε1)/2 for every x ∈ B3 and every ξ ∈ ∂B2, I2 is bounded in
B3 × (t0 − τ, t0) and for the sake of simplicity we do not consider this term any
further.

If we put I3(x) into the integral
∫

B3
ω · ∇u · ω instead of ∇u and decompose

ω = ω̃ + ˜̃ω, ˜̃ω = (0, 0, ω3), we get∫
B3

ωj(x) ·
(

lim
ε→0+

∫
B2,ε(x)

∂2

∂ξj∂ξk

1
|x− ξ|

εilkωl(ξ)dξ
)
· ωi(x) dx

=
∫

B3

ωjPij(ω)ωi

=
∫

B3

ωjPij(ω̃)ω̃i +
∫

B3

ωjPij(ω̃)˜̃ωi +
∫

B3

ωjPij(˜̃ω)ω̃i +
∫

B3

ωjPij(˜̃ω)˜̃ωi.

(2.6)

where P (·) = (Pij(·))3i,j=1 denotes the singular integral operator defined by the
third integral in (2.4). The last integral is equal to zero. The remaining three
integrals on the right hand side of (2.6) can be estimated by∫

B3

|ω||P (ω̃)|| ˜̃ω|+
∫

B3

|ω||P (ω̃)||ω̃|+
∫

B3

|ω||P (˜̃ω)||ω̃|

≤ c

∫
B3

|ω|2|P (ω̃)|+ c

∫
B3

|ω||P (˜̃ω)||ω̃| = J1 + J2.

(2.7)

We have by the Hölder inequality, the Calderon-Zygmund inequality, the interpo-
lation inequality, the Sobolev inequality and the Young inequality that

J1 ≤ ‖P (ω̃)‖γ‖ω‖22γ
γ−1

≤ c‖ω̃‖γ‖ω‖
2γ−3

γ

2 ‖∇ω‖
3
γ

2 ≤ 1
4
ν‖∇ω‖22 + C‖ω̃‖α

γ‖ω‖22. (2.8)

The same estimate can be obtained for J2:

J2 ≤
1
4
ν‖∇ω‖22 + C‖ω̃‖α

γ‖ω‖22. (2.9)
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If α = ∞ and γ = 3/2 then both J1 and J2 can be estimated by

C‖ω̃‖3/2‖∇ω‖22. (2.10)

We get from (2.2)–(2.10) that

d

dt
‖ω(t)‖22 + ν‖∇ω(t)‖22 ≤ C‖ω̃‖α

γ‖ω‖22 + C (2.11)

and by the Gronwall lemma we have

ω ∈ L∞(t0 − τ, t0;L2(B3)) ∩ L2(t0 − τ, t0;W 1,2(B3)). (2.12)

We can write for every x ∈ B3 that

u(x) =
1
4π

∫
B2

∇ξ
1

|x− ξ|
× ω(ξ) dξ +

1
4π

∫
∂B2

1
|x− ξ|

(
ω(ξ)× n(ξ) +

∂u

∂n
(ξ)

)
dξS

− 1
4π

∫
∂B2

∂

∂nξ

1
|x− ξ|

u(ξ) dξS.

(2.13)
The boundary integrals on the right hand side of (2.13) cause no problems because
they are from L∞(t0 − τ, t0;L∞(B3)). Applying now the famous results (see e.g.
[5]) on the first integral in (2.13) we get that

u ∈ L∞(t0 − τ, t0;L6(B3))

and from this we are going to derive that

u ∈ L∞(t0 − τ, t0;W 1,2(B3)). (2.14)

In fact we will show a stronger result which we will need further in the proof of The-
orem 2.4: if u ∈ L∞(t0−τ, t0;Ls(B3)), s ∈ (3, 6], then u ∈ L∞(t0−τ, t0;W 1,2(B3)).
Let us multiply the equation (1.1) by −∆u, integrate it over B3 and use the inte-
gration by parts. We get

1
2
d

dt
‖∇u‖22 + ν‖∆u‖22 =

∫
B3

u · ∇u ·∆u+
∫

∂B3

p n ·∆u+
∫

∂B3

n · ∇u · ∂u
∂t
. (2.15)

The last two boundary integrals are from Lβ(t0 − τ, t0) for any β ∈ (1, 2). Let us
estimate the integral

∫
B3
u · ∇u ·∆u.∣∣ ∫

B3

u · ∇u ·∆u
∣∣ ≤ ‖u‖s‖∇u‖ 2s

s−2
‖∆u‖2

≤ ‖u‖s‖∇u‖
s−3

s
2 ‖∇u‖

3
s
6 ‖∆u‖2

≤ c‖u‖s‖∇u‖
s−3

s
2 ‖∇2u‖

s+3
s

2

≤ ν

2
‖∇2u‖22 + c‖u‖

2s
s−3
s ‖∇u‖22,

(2.16)

where we used the Hölder inequality, the interpolation inequality, the Sobolev in-
equality and the Young inequality. (2.14) now follows from (2.15) and (2.16). It
means that the assumption (1.9) is fulfilled and Theorem 1.2 gives that (x0, t0) is
a regular point of u. Since (x0, t0) was an arbitrary point in D, Theorem 2.3 is
proved. �

We will now turn our attention to the paper [3]. The main result of this paper
is the following theorem:
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Theorem 2.4. Let u0 ∈ L2(R3) ∩ Lq(R3) for some q > 3 with div u0 = 0 in the
sense of distributions and Ω = R3. Suppose that u is a Leray-Hopf weak solution of
(1.1)–(1.4) in [0, T ). If p ∈ Lα,γ(R3) with 2

α + 3
γ < 2 and 1 < α ≤ ∞, 3

2 < γ <∞,
or p ∈ L1,∞, or else ‖p‖L∞,3/2 is sufficiently small, then u is a regular solution in
[0, T ).

For some α, γ it is possible to prove a local version of Theorem 2.4 - see The-
orem 2.6. In the proof of Theorem 2.6 we will use the following Gronwall lemma
(see [17, p. 88]).

Lemma 2.5. Let g, h and y be locally integrable nonnegative functions on [0,∞)
that satisfy the differential inequality

y′(t) ≤ g(t)y(t) + h(t) on [0,∞), y(0) = y0.

Let the function y′(t) be also locally integrable. Then

y(t) ≤ y(0) exp
( ∫ t

0

g(τ) dτ
)

+
∫ t

0

h(s) exp
(
−

∫ s

t

g(τ) dτ
)
ds, t ≥ 0.

Theorem 2.6. Let (u, p) be a suitable weak solution of (1.1))–1.4. Let D ⊂ QT is
an open set and p ∈ Lα,γ(D) with 1 ≤ α ≤ ∞, 3

2 ≤ γ ≤ ∞. Then u has no singular
points in D if one of the following conditions is fulfilled:

(i) 2
α + 3

γ < 2, γ ∈ (3,∞) and α ≥ 2
(ii) 2

α + 3
γ < 2, γ ∈ (3,∞) and Ω = R3

(iii) 2
α + 3

γ < 2 and γ ∈ ( 3
2 , 3]

(iv) γ = ∞, α = 1 and Ω = R3,
(v) γ = 3

2 , α = ∞ and the norm ‖p‖∞, 3
2

is sufficiently small.

Proof. Let s > 3. The proof is based on the inequality

d

dt

∫
B3

|u|s + 2
∫

B3

|∇|u|s/2|2 ≤ 2(s− 2)
∫

B3

|p||u|
s−2
2 |∇|u|s/2|

+
∣∣∣ ∫

∂B3

spu · n|u|s−2
∣∣∣ + boundary integrals,

(2.17)
which can be obtained multiplying the equation (1.1) by su|u|s−2 and using the
integration by parts. The boundary integrals and the boundary integral with p on
the right hand side of (2.17) are from the space L1(t0 − τ, t0). Using the Gronwall
lemma they play the role of the function h. We can write

p(x) = lim
ε→0+

1
4π

∫
B2,ε(x)

ui(y)uj(y)
∂2

∂yi∂yj

1
|x− y|

dy − 1
3
|u(x)|2

+
1
4π

∫
∂B2

{ ∂

∂yj
(ui(y)uj(y))ni(y)

1
|x− y|

− ui(y)uj(y)nj(y)
∂

∂yi

1
|x− y|

+
∂p

∂n
(y)

1
|x− y|

− p(y)
∂

∂ny

1
|x− y|

}
dyS

= p1(x) + p2(x),
(2.18)

for every x ∈ B3, where p2 is defined by the boundary integral in (2.18). Let us
note that in the following estimates p1 will be handled using the Calderon-Zygmund
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inequality and p2 ∈ Lβ(t0 − τ, t0;L∞(B3)) for every β ∈ (1, 2) if Ω is a bounded
domain and p2 ∈ L∞(t0 − τ, t0;L∞(B3)) if Ω = R3.

Let us estimate the integral I =
∫

B3
|p||u| s−2

2 |∇|u|s/2| on the right hand side of
(2.17). We will discus the assumptions (i)–(v).
(i) 2

α + 3
γ < 2, γ ∈ (3,∞) and α ≥ 2. Then there exists s ∈ (3, γ), such that

2− 2
α
− 3
γ
≥ s− 3

γ
. (2.19)

By the Hölder inequality and the Young inequality we have

I ≤ ‖p‖s‖u‖
s−2
2

s ‖∇|u| s
2 ‖2

≤ ‖∇|u| s
2 ‖22 + c‖p‖2s‖u‖

s(1− 2
s )

s

≤ ‖∇|u| s
2 ‖22 + c‖p‖α

γ‖u‖
s(1− 2

s )
s .

(2.20)

Without loss of generality we can suppose that ‖u‖s > 1 for almost every t ∈
(t0 − τ, t0). The inequality (2.20) then gives that I ≤ ‖∇|u|s/2‖22 + c‖p‖α

γ‖u‖s
s and

by the use of (2.17) and Lemma 2.5 we get that

u ∈ L∞(t0 − τ, t0;Ls(B3)). (2.21)

We will show that (2.21) holds also in the case of conditions (ii)–(v).
(ii) 2

α + 3
γ < 2, γ ∈ (3,∞) and Ω = R3. Again, as in (i), there exists s ∈ (3, γ) such

that (2.19) is satisfied. Then

I ≤ ‖p‖s‖u‖
s−2
2

s ‖∇|u| s
2 ‖2 ≤ ‖p‖

γ−s
2γ−s
s
2

‖p‖
γ

2γ−s
γ ‖u‖

s−2
2

s ‖∇|u| s
2 ‖2 ≤ c(I1 + I2), (2.22)

where we used the interpolation inequality and

Ik = ‖pk‖
γ−s
2γ−s
s
2

‖p‖
γ

2γ−s
γ ‖u‖

s−2
2

s ‖∇|u| s
2 ‖2, k = 1, 2.

Due to the definition of p1 in (2.18) and the Calderon-Zygmund inequality we have

I1 ≤ ‖u‖
2γ−2s
2γ−s + s−2

2
s ‖p‖

γ
2γ−s
γ ‖∇|u| s

2 ‖2 ≤ ‖∇|u| s
2 ‖22 + c‖u‖s(1− 2

2γ−s )
s ‖p‖

2γ
2γ−s
γ

≤ ‖∇|u| s
2 ‖22 + c‖u‖s(1− 2

2γ−s )
s ‖p‖α

γ ,

(2.23)

since 2γ
2γ−s ≤ α as a consequence of the inequality (2.19). Furthermore,

I2 ≤ ‖∇|u| s
2 ‖22 + c‖u‖s−2

s ‖p‖
2γ

2γ−s
γ ‖p2‖

2γ−2s
2γ−s

s
2

. (2.24)

Since Ω = R3, we know that p2 ∈ L∞(t0 − τ, t0;L∞(B3)) and

I2 ≤ ‖∇|u| s
2 ‖22 + c‖u‖s−2

s ‖p‖
2γ

2γ−s
γ ≤ ‖∇|u| s

2 ‖22 + c‖u‖s(1− 2
s )

s ‖p‖α
γ . (2.25)

In the same way as in (i) we can conclude from (2.17), (2.22), (2.23), (2.25) and
Lemma 2.5 that (2.21) is satisfied.
(iii) 2

α + 3
γ < 2 and γ ∈ ( 3

2 , 3]. Let us suppose firstly that

γ ∈ (9/4, 3]. (2.26)

Then there exists s > 3 such that

γ >
3s
s+ 1

and 2− 2
α
− 3
γ
≥ 1− 3

s
. (2.27)
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The Hölder inequality, the interpolation inequality, the Sobolev inequality and the
Young inequality give

I ≤ ‖p‖γ‖u‖
s−2
2

γ(s−2)
γ−2

‖∇|u| s
2 ‖2 ≤ ‖p‖γ‖u‖

γs−3s+γ
2γ

s ‖u‖
3s−3γ

2γ

3s ‖∇|u| s
2 ‖2

≤ ‖p‖γ‖u‖
γs−3s+γ

2γ
s ‖∇|u| s

2 ‖
3s−3γ

γs +1

2 ≤ ‖∇|u| s
2 ‖22 + c‖p‖

2γs
γs−3s+3γ
γ ‖u‖s(1− 2γ

γs−3s+3γ )
s

≤ ‖∇|u| s
2 ‖22 + c‖p‖α

γ‖u‖
s(1− 2γ

γs−3s+3γ )
s .

(2.28)
The last inequality follows from 2γs

γs−3s+3γ ≤ α (which is a consequence of the second
inequality in (2.27)) and (2.21) is satisfied.

Secondly, let
γ ∈ (3/2, 9/4]. (2.29)

Then there exists s > 3 such that

2− 2
α
− 3
γ
>
s− 3
α

. (2.30)

The Hölder inequality and the interpolation inequality give

I ≤ ‖p‖ 3s
s+1

‖u‖
s−2
2

3s ‖∇|u| s
2 ‖2 ≤ ‖p‖

γ(s−1)
3s−2γ
γ ‖p‖

3s−γ−γs
3s−2γ

3s
2

‖u‖
s−2
2

3s ‖∇|u| s
2 ‖2 ≤ c(I1 + I2),

(2.31)
where

Ik = ‖p‖
γ(s−1)
3s−2γ
γ ‖pk‖

3s−γ−γs
3s−2γ

3s
2

‖u‖
s−2
2

3s ‖∇|u| s
2 ‖2, k = 1, 2.

By the Hölder inequality, the Sobolev inequality, the Young inequality and the fact
that γs−γ

2γ−3 ≤ α (which follows from the inequality (2.30)) we have

I1 ≤ ‖p‖
γ(s−1)
3s−2γ
γ ‖u‖

6s−2γ−2γs
3s−2γ + s−2

2
3s ‖∇|u| s

2 ‖2 ≤ ‖p‖
γ(s−1)
3s−2γ
γ ‖∇|u| s

2 ‖
6s−8γ+6
3s−2γ

2

≤ c‖p‖
γ(s−1)
2γ−3

γ + ‖∇|u| s
2 ‖22 ≤ c‖p‖α

γ + ‖∇|u| s
2 ‖22.

(2.32)

Furthermore, by the Sobolev inequality and the Young inequality

I2 ≤ ‖p‖
γ(s−1)
3s−2γ
γ ‖p2‖

3s−γ−γs
3s−2γ

3s
2

‖∇|u| s
2 ‖

s−2
s +1

2 ≤ ‖∇|u| s
2 ‖22 + c‖p‖

γs(s−1)
3s−2γ

γ ‖p2‖
s(3s−γ−γs)

3s−2γ
3s
2

.

(2.33)
Now we show the integrability in time of the second part of the right hand side of
the last inequality. The Hölder inequality gives for some β ∈ (1, 2) sufficiently close
to 2 that∫ t0

t0−τ

‖p‖
γs(s−1)
3s−2γ

γ ‖p2‖
s(3s−γ−γs)

3s−2γ
3s
2

dt ≤ ‖p‖
γs(s−1)
3s−2γ

βsγ(s−1)
β(3s−2γ)−s(3s−γ−sγ) ,γ

‖p2‖
s(3s−γ−γs)

3s−2γ

β, 3s
2

. (2.34)

Since p2 ∈ Lβ(t0 − τ, t0;L∞(B3)), we have ‖p2‖
s(3s−γ−γs)

3s−2γ

β, 3s
2

< ∞. To show the
boundedness of the integral on the left hand side of the inequality (2.34), it is now
sufficient to realize that

βsγ(s− 1)
β(3s− 2γ)− s(3s− γ − sγ)

≤ α. (2.35)

We know that
2γ

2γ − 3
< α. (2.36)
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If we denote

gγ(β, s) =
βsγ(s− 1)

β(3s− 2γ)− s(3s− γ − sγ)
, (2.37)

then for every γ ∈ ( 3
2 ,

9
4 ], gγ is a continuous function in β, s defined in an open

neighbourhood of the point (2, 3). It can be easily verified that

gγ(2, 3) ≤ 2γ
2γ − 3

for every γ ∈
(3

2
,
9
4

]
. (2.38)

For β sufficiently close to 2 and s sufficiently close to 3 the inequality (2.35) now
follows from (2.36), (2.37), (2.38) and the continuity of gγ at the point (2, 3). There-
fore, the value of the integral on the left hand side of the inequality (2.34) is less
than ∞ and (2.21) now follows from (2.17), (2.31), (2.32), (2.33) and Lemma 2.5.
(iv) γ = ∞, α = 1 and Ω = R3. Then by the Hölder inequality

I ≤ ‖p‖
1
2∞‖p‖

1
2
s
2
‖u‖

s−2
2

s ‖∇|u| s
2 ‖2 ≤ c(I1 + I2), (2.39)

where
Ik = ‖p‖

1
2∞‖pk‖

1
2
s
2
‖u‖

s−2
2

s ‖∇|u| s
2 ‖2, k = 1, 2.

In a standard way we can estimate

I1 ≤ ‖p‖
1
2∞‖u‖

s
2
s ‖∇|u|

s
2 ‖2 ≤ c‖p‖∞‖u‖s

s + ‖∇|u| s
2 ‖22, (2.40)

I2 ≤ ‖∇|u| s
2 ‖22 + c‖p‖∞‖p2‖ s

2
‖u‖s(1− 2

s )
s . (2.41)

The term ‖p‖∞‖p2‖s/2 above is integrable in time since p2 ∈ L∞(t0−τ, t0;L∞(B3))
and (2.21) now follows from (2.39), (2.40), (2.41), (2.17) and Lemma 2.5.
(v) γ = 3

2 , α = ∞ and the norm ‖p‖∞, 3
2

is sufficiently small. Then for s > 3

I ≤ ‖p‖ 3s
s+1

‖u‖
s−2
2

3s ‖∇|u| s
2 ‖2 ≤ ‖p‖

1
2
3
2
‖p‖

1
2
3s
2
‖u‖

s−2
2

3s ‖∇|u| s
2 ‖2 ≤ c(I1 + I2), (2.42)

where
Ik = ‖p‖

1
2
3
2
‖pk‖

1
2
3s
2
‖u‖

s−2
2

3s ‖∇|u| s
2 ‖2, k = 1, 2.

The Calderon-Zygmund inequality gives

I1 ≤ ‖p‖
1
2
3
2
‖u‖

s
2
3s‖∇|u|

s
2 ‖2 ≤ ‖p‖

1
2
3
2
‖∇|u| s

2 ‖22 (2.43)

and we see that to finish the proof in this case the sufficient smallness of the norm
‖p‖∞, 3

2
is necessary. Furthermore,

I2 = ‖p‖
1
2
3
2
‖p2‖

1
2
3s
2
‖u‖

s−2
2

3s ‖∇|u| s
2 ‖2 ≤ ‖p‖

1
2
3
2
‖p2‖

1
2
3s
2
‖∇|u| s

2 ‖
2(s−1)

s
2

≤ ‖∇|u| s
2 ‖22 + c‖p‖

s
2
3
2
‖p2‖

s
2
3s
2
.

(2.44)

The term ‖p‖s/2
3
2
‖p2‖

s
2
3s
2

is clearly integrable in time if s ∈ (3, 4). Let us notice
that for the estimate of I2 we did not need the assumption on the smallness of
the norm ‖p‖∞, 3

2
. Again, (2.21) now follows from (2.17), (2.42), (2.43), (2.44) and

Lemma 2.5.
Thus, (2.21) holds for every condition (i) - (v) for some s > 3. As was shown in

the proof of Theorem 2.3, we then have u ∈ L∞(t0− τ, t0;W 1,2(B3)) and the proof
of Theorem 2.6 can be concluded by the use of Theorem 1.2. �
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3. Boundary regularity

In this section Ω is a bounded domain in R3 with smooth boundary ∂Ω. For
r > 0 we denote

Ur = Ur(∂Ω) = {x ∈ Ω; dist(x, ∂Ω) < r}.
In [10] J. Neustupa proved the following result.

Theorem 3.1. Let u be a weak solution of (1.1)–(1.4) that satisfies the strong
energy inequality. Let 0 ≤ t1 < t2 ≤ T and one of the two following conditions be
fulfilled:

(i) u ∈ Lp(t1, t2;Lq∗(Ur)3) for some r > 0, 2
p + 3

q∗ ≤ 1, p ∈ [2,∞], q∗ ∈ (3,∞],
(ii) u ∈ L∞(t1, t2;L3(Ur)3) and ‖u‖L∞(t1,t2;L3(Ur)3) is sufficiently small.

Let ζ > 0 be such that t1 + ζ < t2 − ζ. Then u ∈ L∞(t1 + ζ, t2 − ζ;W 2+δ,2(Uρ)3)
and both ∂u

∂t and ∇p belong to L∞(t1 + ζ, t2 − ζ;W δ,2(Uρ)3) for each δ ∈ [0, 1
2 ) and

ρ ∈ (0, r).

It follows from Theorem 3.1 that u ∈ L∞(Uρ × (t1 + ζ, t2 − ζ)) and there are no
singular points near or on the boundary ∂Ω.

We show that the same result as in Theorem 3.1 can be proved if the conditions
(i), (ii) are replaced by conditions on the vorticity field ω. To this purpose we are
going to work with the suitable weak solutions which satisfy the generalized energy
inequality for every smooth test function and were discussed in Introduction. We
will prove the following theorem.

Theorem 3.2. Let (u, p) be a suitable weak solution of (1.1)–(1.4) that satisfies
the generalized energy inequality (1.8) for every φ ∈ C∞(QT ), φ ≥ 0 and every
0 < t1 ≤ t2 < T . Let

ω ∈ Lp(t1, t2;Lq(UR)) (3.1)
for some R > 0, 2

p + 3
q ≤ 2, p ∈ [2,∞], q ∈ [ 32 , 3]. If p = ∞ and q = 3

2 we still

suppose that the norm of ω in L∞(t1, t2;L
3
2 (UR)) is sufficiently small.

Then either the condition (i) or the condition (ii) from Theorem 3.1 is fulfilled
for any 0 < r < R and thus all the conclusions of Theorem 3.1 hold. Especially,
there exist no singular points of u in Ur × (t1 − ζ, t2 + ζ) for any r ∈ (0, R) and
ζ > 0.

Proof. Let 0 < r < η < R. We start with the equality (2.13) with Uη instead of
B2 which holds for every x ∈ Ur. Moreover, η can be chosen in such a way that
there are no singular points of u on (∂Uη ∩ Ω) × (0, T ). It follows from the fact
that u is a suitable weak solution - for a detailed discussion see [11], [12], [13]. The
boundary of Uη consists of two parts, ∂Ω and ∂Uη ∩ Ω. Let us investigate firstly
the boundary integrals in (2.13) over ∂Ω. The second integral is equal to zero due
to the homogeneous boundary conditions (1.3). After short computation the first
integral can be written as ∫

∂Ω

1
|x− ξ|

∇u(ξ) · n(ξ) dξS. (3.2)

Let ξ ∈ ∂Ω is an arbitrary point. Then ∂uj

∂xi
(ξ)nk(ξ) is a tensor of the third order

and therefore ∂uj

∂xi
(ξ)nj(ξ) is a vector. Let us choose a new coordinate system with

the x1 axis in the direction of the outer normal vector to ∂Ω in the point ξ. Then
the vector ∂uj

∂xi
(ξ)nj(ξ) has the form (∂u1

∂x1
, 0, 0) due to the homogeneous boundary
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conditions (1.3) and the fact that in the new coordinate system n2(ξ) = n3(ξ) = 0.
Using the continuity equation (1.2) and the homogeneous boundary conditions (1.3)
we obtain ∂u1

∂x1
(ξ) = −∂u2

∂x2
(ξ) − ∂u3

∂x3
(ξ) = 0. Thus, ∂uj

∂xi
(ξ)nj(ξ) is a zero vector in

any coordinate system. We can conclude that the integral (3.2) is equal to zero and
the equality (2.13) can be written as

u(x) =
1
4π

∫
Uη

∇ξ
1

|x− ξ|
× ω(ξ) dξ

+
1
4π

∫
∂Uη∩Ω

1
|x− ξ|

(
ω(ξ)× n(ξ) +

∂u

∂n
(ξ)

)
dξS

− 1
4π

∫
∂Uη∩Ω

∂

∂nξ

1
|x− ξ|

u(ξ) dξS = u1(x) + u2(x).

(3.3)

Since u ∈ C∞(Ω) for almost every t ∈ (0, T ) (see e.g. [4], Theoreme de Structure),
the equality (3.3) holds for almost every t ∈ (t1, t2).

Now, since 1
|x−ξ| ≤

1
η−r for every x ∈ Ur and every ξ ∈ ∂Uη∩Ω and u is bounded

on (∂Uη ∩ Ω)× (t1, t2), we have that

u2 ∈ L∞(Ur × (t1, t2)). (3.4)

For the first integral in (3.3) we use the result from [5], Lemma 7.12, and get
that u1 ∈ Lp(t1, t2;Lq∗(Ur)), where 1

q −
1
q∗ = 1

3 and 2
p + 3

q∗ = 1. Therefore, if
3
2 < q ≤ 3 and 3 < q∗ ≤ ∞, then u1 and also u (see (3.4)) satisfy the condition (i)
from Theorem 3.1. If q = 3

2 and q∗ = 3, then u1 satisfies the condition (ii) from
Theorem 3.1. The proof of Theorem 3.2 can now be concluded by the use of (3.4)
and Theorem 2.3. �

In the final part of this paper, we discuss the paper [16], in which the following
result on the boundary regularity of weak solutions was proved.

Theorem 3.3. Let u be a weak solution of (1.1)–(1.4), x0 ∈ ∂Ω, 0 < t1 ≤ t2 < T
and δ > 0. We denote Ω1 = Bδ(x0) ∩ Ω and suppose that ∂Ω1 ∩ ∂Ω is a part of a
plane. Let one of the two following conditions be fulfilled:

(i) u ∈ Lp(t1, t2;Lq∗(Ω1)), 2
p + 3

q∗ ≤ 1, p ∈ [2,∞], q∗ ∈ (3,∞]
(ii) u ∈ L∞(t1, t2;L3(Ω1)) and ‖u‖L∞(t1,t2;L3(Ω1)) is sufficiently small.

Let ζ > 0 be such that t1 + ζ < t2− ζ. Then u has no singular points in (Bδ′(x0)∩
Ω)× (t1 + ζ, t2 − ζ) for every δ′ ∈ (0, δ).

As for Theorem 3.2, we prove the following version of Theorem 3.3, involving
the conditions on the vorticity ω.

Theorem 3.4. Let u be a weak solution of (1.1)–(1.4) that satisfies the strong
energy inequality (1.5), x0 ∈ ∂Ω, 0 < t1 ≤ t2 < T and δ > 0. We denote Ω1 =
Bδ(x0) ∩ Ω and suppose that ∂Ω1 ∩ ∂Ω is a part of a plane. Let

ω ∈ Lp(t1, t2;Lq(Ω1)) and ∇u ∈ Lp(t1, t2;L1(Ω1)), (3.5)

with 2
p + 3

q ≤ 2, p ∈ [2,∞], q ∈ [ 32 , 3]. If p = ∞ and q = 3
2 we still suppose that the

norm of ω in L∞(t1, t2;L
3
2 (Ω1)) is sufficiently small.

Let ζ > 0 be such that t1 + ζ < t2 − ζ. Then u has no singular points in
(Bδ′(x0) ∩ Ω)× (t1 + ζ, t2 − ζ) for every δ′ ∈ (0, δ).
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Proof. We proceed as in the proof of Theorem 3.2. Given 0 < δ′ < δ there exist η1,
η = η(t) and δ′′ such that 0 < δ′ < δ′′ < η1 < η < δ. We start with the equality
(2.13) with B2 replaced by Bη(x0) ∩ Ω which holds for every x ∈ Bδ′′(x0) ∩ Ω. In
the same way as in the proof of Theorem 3.2 we get that the boundary integrals
over ∂Ω are equal to zero and we have

u(x) =
1
4π

∫
Bη(x0)∩Ω

∇ξ
1

|x− ξ|
× ω(ξ) dξ

+
1
4π

∫
∂Bη(x0)∩Ω

1
|x− ξ|

(
ω(ξ)× n(ξ) +

∂u

∂n
(ξ)

)
dξS

− 1
4π

∫
∂Bη(x0)∩Ω

∂

∂nξ

1
|x− ξ|

u(ξ) dξS = u1(x) + u2(x),

(3.6)

which holds for every x ∈ Bδ′′(x0)∩Ω and almost every t ∈ (t1, t2). Now, u1 can be
treated in the same way as in Theorem 3.2 and we get that u1 fulfills the conditions
(i) (if q > 3

2 ) or (ii) (if p = ∞ and q = 3
2 ) from Theorem 3.3, where 1

q −
1
q∗ = 1

3 .
Let us discuss u2. Let t ∈ (t1, t2). There exists η = η(t) ∈ (η1, δ) such that∫

∂Bη(x0)∩Ω

|∇u| dxS ≤
1

δ − η1

∫
(Bδ(x0)\Bη1 (x0))∩Ω

|∇u| dx. (3.7)

Thus, for every x ∈ Bδ′′(x0) ∩ Ω we have due to the definition u2 and (3.7) that

|u2(x)| ≤ c

∫
∂Bη(x0)∩Ω

|∇u| dxS ≤ c

∫
Ω1

|∇u| dx (3.8)

and
‖u2‖L∞(Bδ′′ (x0)∩Ω) ≤ c‖∇u‖L1(Ω1). (3.9)

It follows from (3.5) and (3.9) that

u2 ∈ Lp(t1, t2;L∞(Bδ′′(x0) ∩ Ω)) (3.10)

and the conclusion of Theorem 3.4 follows from (3.10), the facts proved above on
u1 and Theorems 3.3, and 2.3. �
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