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TRAJECTORIES CONNECTING TWO SUBMANIFOLDS ON A
NON-COMPLETE LORENTZIAN MANIFOLD

ROSSELLA BARTOLO, ANNA GERMINARIO, & MIGUEL SÁNCHEZ

Abstract. This article presents existence and multiplicity results for orthog-
onal trajectories joining two submanifolds Σ1 and Σ2 of a static space-time
manifold M under the action of gravitational and electromagnetic vector po-
tential. The main technical difficulties are because M may not be complete

and Σ1, Σ2 may not be compact. Hence, a suitable convexity assumption and
hypotheses at infinity are needed. These assumptions are widely discussed in

terms of the electric and magnetic vector fields naturally associated. Then,
these vector fields become relevant from both their physical interpretation and

the mathematical gauge invariance of the equation of the trajectories.

1. Introduction

The pair (S, g) is called Lorentzian manifold if S is a connected finite dimensional
smooth manifold with dimS ≥ 2 and g is a Lorentzian metric on S, that is g is a
smooth, symmetric, two covariant tensor field such that, for any z ∈ S, the bilinear
form g(z)[·, ·] induced on TzS is non-degenerate and of index one. A vector ζ ∈
TzS is said timelike (respectively lightlike; spacelike) if g(z)[ζ, ζ] < 0 (respectively
g(z)[ζ, ζ] = 0, ζ 6= 0; g(z)[ζ, ζ] > 0 or ζ = 0). The points of S are called events. A
Lorentzian manifold (S, g) is called (standard) static if S is a product manifold

S = M × R,

where M is a C3 connected manifold and g can be written as

〈ζ, ζ ′〉L = 〈ξ, ξ′〉 − β(x)ττ ′ (1.1)

for any z = (x, t) ∈ S, ζ = (ξ, τ), ζ ′ = (ξ′, τ ′) ∈ TzS = TxM ×R, where 〈·, ·〉 and β
are respectively a Riemannian metric and a smooth scalar field on M . The smooth
function T (x, t) = t is a time-function, that is the Lorentzian gradient ∇LT is a
timelike vector field, where

∇LT (x, t) =
(
0,− 1

β(x)
)
.
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The vector field ∇LT yields a time-orientation on S: a vector ζ ∈ TzS, z ∈ S, is
said future-pointing (respectively past-pointing) if 〈∇LT (z), ζ〉L < 0 (respectively
〈∇LT (z), ζ〉L > 0).

We refer the reader to [25, 26, 22] for the background material assumed in this
paper. Let us consider a smooth stationary vector field A on S, that is

A(z) = A(x, t) = A(x) = (A1(x), A2(x)) ∀z = (x, t) ∈ S
where A1(x) can be regarded as a vector field on M and A2(x) as a function on M .

In previous papers the existence and the multiplicity of trajectories (under the
action of A) joining two events in S have been studied. Namely, fixed two events
z, w ∈ S, the trajectories joining them satisfy the Euler-Lagrange equation associ-
ated to the functional introduced in [9]

F (γ) =
1
2

∫ 1

0

〈γ̇, γ̇〉Lds+
∫ 1

0

〈A (γ), γ̇〉Lds (1.2)

on
Ω(z, w;S) =

{
γ ∈ H1([0, 1], S) : γ(0) = z, γ(1) = w

}
(see Section 2 for details), that is

Dsγ̇ = ((A′(γ))∗ −A′(γ)) [γ̇] (1.3)

where Dsγ̇ is the covariant derivative of γ̇ along γ, A′ denotes the covariant de-
rivative of A (that is A′(γ)[γ̇] = ∇γ̇A(γ)) and (A′(z))∗ denotes for any z ∈ S the
adjoint operator of A′(z) on TzS with respect to 〈·, ·〉L.

Recall that equation (1.3) is gauge invariant, that is, it remains equal if one adds
the gradient of any function to A. In fact, the right hand side of (1.3) is the skew
symmetric part of A′ or rotational of A, and admits a natural decomposition in the
“electric” and “magnetic” vector fields (see Section 4). Nevertheless, it is natural
to assume that these vector fields are independent of t, and the simpler way to
ensure this is to “choose a gauge” such that A is independent of t. At any case,
one must bear in mind that A can always be replaced by A + (∇V, c), where V is
any function on M , ∇ denotes its gradient with respect to 〈·, ·〉 and c ∈ R.

Remark that equation (1.3) has a prime integral, in fact:
d

ds
〈γ̇, γ̇〉L = 2〈Dsγ̇, γ̇〉L = 〈(A′(γ))∗[γ̇]−A′(γ)[γ̇], γ̇〉L = 0,

hence if γ : [0, 1] → S is a trajectory, there exists a constant of the motion Eγ ∈ R
such that

〈γ̇, γ̇〉L = Eγ on [0, 1]. (1.4)
Therefore a trajectory γ is said to be timelike, lightlike or spacelike according to
the causal character of γ̇.

Trajectories joining two given events have been studied in [2], [16] on complete
stationary Lorentzian manifolds, in [3], [17] on open subsets of stationary Lorentzian
manifolds and in [1] in a different setting. It is clear that this problem generalizes
the geodesic connectedness one (see e.g. [10, 19]).

We point out that these results have a physical interpretation. Indeed, the
Lorentz world-force law which determines the motion of relativistic particles γ sub-
mitted to an electromagnetic field is the Euler-Lagrange equation related to the
action functional

S(γ) = −m0c
1
2

∫ s1

s0

√
−〈γ̇, γ̇〉Lds+ q

∫ s1

s0

〈A (γ), γ̇〉Lds
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where m0 is the rest mass of the particle, q is its charge, c is the speed of light (see
[21]). In [9] it is proved that for timelike trajectories the search of critical points of
S is equivalent to that of the critical points of F . In particular, when Eγ < 0, this
constant of the motion turns to be, up to a dimensional factor, the inertial mass
(necessarily equal to the gravitational mass), which is determined by the initial
conditions (see [9]).

Here we shall look for orthogonal trajectories under the action of a gravitational
and electromagnetic field joining two given submanifolds of a static Lorentzian
manifold S.

Definition 1.1. Let Σ1,Σ2 be two submanifolds of S. A curve γ : [0, 1] → S is
called orthogonal trajectory (under the action of A) joining Σ1 to Σ2 if

(i) γ satisfies (1.3)
(ii) γ(0) ∈ Σ1, γ(1) ∈ Σ2 and γ̇(0) ∈ Tγ(0)Σ⊥1 , γ̇(1) ∈ Tγ(1)Σ⊥2 .

This problem has been studied in the case when A ≡ 0 in [23, 14] on static
Lorentzian manifolds and on orthogonal splitting Lorentzian manifolds (see also
[13]).

Let P and Q be two submanifolds of M and let us set

Σ1 = P × {0} Σ2 = Q× {T} for some T ∈ R. (1.5)

Of course, we could consider Σ1 = P ×{t0}, t0 ∈ R, however, as the metric is static,
there is not loss of generality if we assume t0 = 0.

Here we shall present existence and multiplicity results for timelike orthogonal
trajectories joining Σ1 to Σ2. We shall use variational methods since it can be
easily proved (see Proposition 2.1) that if A is orthogonal to Σ1 and Σ2, that is

〈A(z), ζ〉L = 0 ∀z ∈ Σi ∀ζ ∈ TzΣi i = 1, 2 (1.6)

then the orthogonal trajectories joining Σ1 to Σ2 are the critical points of F (see
(1.2)) on a suitable Hilbert manifold (see Section 2).

We allow both P and Q to be non compact and M to be not complete. Then
three problems arise:

(a) Due to the indefiniteness of the metric (see (1.1)) F is strongly indefinite
(b) Since P and Q may not be compact, Palais-Smale sequences (see Section

2) could exist which are not bounded
(c) Due to the possible lack of completeness of M , bounded Palais-Smale se-

quences may not converge.
In the following L will denote a domain (i.e. an open connected subset) of a static
Lorentzian manifold (S, 〈·, ·〉L), ∂L its topological boundary and L = L ∪ ∂L.

Let us assume that ∂L is differentiable. Then there exists a differentiable function
Φ : L→ R such that

Φ−1(0) = ∂L

Φ > 0 on L

∇LΦ(w) 6= 0 ∀w ∈ ∂L
(1.7)

where ∇LΦ denotes the Lorentzian gradient of Φ.
We shall use the following definition.

Definition 1.2. A manifold (L, 〈·, ·〉L), with L = D × R, is said to be a static
Lorentzian manifold with differentiable boundary ∂L = ∂D×R if a static Lorentzian
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manifold (S, g), with S = M ×R, exists such that D is a domain of M , g restricted
to L is 〈·, ·〉L andD = D∪∂D is a complete Riemannian manifold with differentiable
boundary.

We remark that if L is a static Lorentzian manifold with differentiable boundary,
as ∂D is differentiable, there exists a smooth function φ : D → R such that

φ−1(0) = ∂D

φ > 0 on D

∇φ(q) 6= 0 ∀q ∈ ∂D.
(1.8)

Moreover Φ in (1.7) can be chosen such that, for any z = (x, t) ∈ S:

Φ(z) = Φ(x, t) = φ(x). (1.9)

Then

∇LΦ(z) = (∇φ(x), 0). (1.10)

Since the metric is stationary, we can overcome the problem in (a) by a slight variant
(Proposition 2.3) of the variational principle in [2] (see also [10]) which reduces the
study of the orthogonal trajectories joining Σ1 to Σ2 to the search of the critical
points of a suitable functional J depending only on the “spatial” component.

As in previous papers on this topic, we shall assume that there exist η, b ∈ R
such that

0 < η ≤ β(x) ≤ b ∀x ∈ D (1.11)

and that there exist a1, a2 ∈ R such that

sup
x∈D

|A1(x)| = a1, sup
x∈D

|A2(x)| = a2. (1.12)

Under these two assumptions, J is bounded from below (Remark 2.4). Note that a
condition such as (1.12) is not gauge invariant, but combined with other conditions
as (1.14) and (1.15) below, it admits more intrinsic interpretations (see Section 4).

Problem (b) above arises on non compact manifolds also in the study of periodic
solutions of (1.3) which have been studied in [7, 8] (see [11] for the case A ≡ 0).
Moreover, this problem appears first in the Riemannian case to ensure the existence
of closed geodesics; a detailed discussion of hypothesis at infinity in this case is
carried out in [6]. We choose here the simplest hypothesis, concerning the existence
of a certain function U . More precisely, we shall assume that

for some x0 ∈ D, there exist U ∈ C2(D,R) and two positive real
constants r, σ such that for any x ∈ D with d(x, x0) ≥ r,

HU (x)[ξ, ξ] ≥ σ〈ξ, ξ〉 ∀ξ ∈ TxD, (1.13)

where HU (x)[ξ, ξ] denotes the Riemannian Hessian of U at x in the
direction of ξ.

Nevertheless, we need to ensure now the compatibility between the role of U (at
infinity) and the other elements of our problem, as well as the compatibility be-
tween β,A and the submanifolds P,Q. This compatibility holds under the following
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technical assumptions: for a suitable ν > 0, which will be defined in (3.8),
lim

d(x,x0)→∞, d(x,P )<ν
β(x) = b,

lim
d(x,x0)→∞, d(x,P )<ν

|A1(x)| = 0

lim
d(x,x0)→∞, d(x,P )<ν

A2(x) = a2

(1.14)

lim
d(x,x0)→∞, d(x,P )<ν

|A′1(x)|∗|∇U(x)| = 0

lim
d(x,x0)→∞, d(x,P )<ν

|∇A2(x)||∇U(x)| = 0,
(1.15)

where |·|∗ denotes the norm for endomorphisms on TxD induced by the Riemannian
metric on D at any x ∈ D, and

lim
d(x,x0)→∞, d(x,P )<ν

|∇β(x)||∇U(x)| = 0. (1.16)

Moreover, we need to ensure the compatibility between the role of U and the
boundary conditions of orthogonal trajectories. This will hold if, for trajectories
γ(s) = (x(s), t(s)) as in Definition 1.1 with “x(0), x(1) going to infinity”,

〈∇U(x(0)), ẋ(0)〉 ≥ 〈∇U(x(1)), ẋ(1)〉. (1.17)

A simple condition which ensures (1.17), is:
∇U(x) ∈ TxP ∀x ∈ P with d(x, x0) ≥ r ,

∇U(x) ∈ TxQ ∀x ∈ Q with d(x, x0) ≥ r .
(1.18)

But this is not the unique possibility: If either P or Q are compact then we can
assume that this condition is automatically satisfied (as in [4]); we explore another
possibility in Remark 1.4.

We remark that only for the sake of simplicity we deal with static (instead
of stationary) manifolds, and we follow [11] (in our assumption (1.13) about the
existence of function U) instead of using a more intrinsic approach introduced in
[12] in the study of periodic geodesics on Riemannian manifolds.

To bypass problem (c) above, we shall deal with static Lorentzian manifolds
whose (differentiable) boundaries satisfy suitable convexity assumptions. We recall
that ∂L is convex if and only if

HL
Φ(z)[ζ, ζ] ≤ 0 ∀z ∈ ∂L, ζ ∈ Tz∂L (1.19)

where Φ is as in (1.7) and HL
Φ(z)[ζ, ζ] denotes the Lorentzian Hessian of Φ at z

in the direction of ζ, or equivalently (see [5]) if for any z, w ∈ L the range of any
geodesic γ : [0, 1] → L such that γ(0) = z, γ(1) = w satisfies

γ([0, 1]) ⊂ L. (1.20)

Moreover ∂L is time-convex (respectively light-convex, space-convex) if and only if
(1.19) holds on timelike (respectively lightlike, spacelike) vectors or equivalently
(see [5]) (1.20) holds for any timelike (respectively lightlike, spacelike) geodesic.

We shall look for future-pointing orthogonal trajectories joining Σ1 to Σ2, thus
we assume T > 0 in (1.5). Our main result which will be proved in Section 3 is the
following theorem.

Theorem 1.3. Let L = D × R be a static Lorentzian manifold with differentiable
boundary ∂D×R and assume that (1.6), (1.11), (1.12), (1.13), (1.18), (1.14), (1.15),
(1.16) hold and:
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(i) ∂L is time-convex;
(ii) ∂D is compact;
(iii) Σ1 and Σ2 are submanifolds of L as in (1.5) with P,Q closed submanifolds

of D;
(iv) out of a ball the distance between P and Q is greater than zero, that is

there exists σ1 > 0 such that d(P ′, Q′) ≥ σ1 where P ′ = P \ Br(x0),
Q′ = Q \ Br(x0) (where x0, r are as in (1.13) and Br(x0) = {x ∈ D :
d(x, x0) < r});

(v) for any z ∈ ∂L, for any ζ ∈ ∂L timelike and future-pointing

〈((A′(z))∗ −A′(z)) [ζ],∇LΦ(z)〉L ≤ 0 (1.21)

where Φ is as in (1.7).

Then there exists T > 0 such that for any T ∈ R with T > T there exists an
orthogonal timelike future-pointing trajectory joining Σ1 to Σ2.

Remark 1.4. Let us assume that P and Q denote the closures of two open domains
with smooth boundaries ofM . LetN1 andN2 denote respectively the inner normals
to ∂P and ∂Q. Any orthogonal trajectory γ(s) = (x(s), t(s)) with x(0) (resp. x(1))
in the interior of P (resp. Q) must have, according to Definition 1.1, ẋ(0) = 0 (resp.
ẋ(1) = 0); thus, (1.17) will be satisfied. If x(0) ∈ ∂P, x(1) ∈ ∂Q and the trajectory
does not come into the interior of P and Q then necessarily ẋ(0) (resp. ẋ(1)) is
parallel to N1 (resp. N2) and points out in the opposite (resp. same) direction.
Thus, if

〈∇U(x), N1(x)〉 ≤ 0 ∀x ∈ ∂P with d(x, x0) ≥ r

〈∇U(x), N2(x)〉 ≥ 0 ∀x ∈ ∂Q with d(x, x0) ≥ r
(1.22)

then, essentially, (1.17) will hold.

We refer the reader to Section 4 for further discussions on the hypothesis in
relation to references [17], [8], [28]. The following theorem concerns the multiplicity
of orthogonal trajectories and will be proved in Section 3.

Theorem 1.5. Let the assumptions of Theorem 1.3 hold. If D is not contractible
in itself and P , Q are both contractible in D, then denoted by N(T,Σ1,Σ2) the
number of the timelike future-pointing orthogonal trajectories joining Σ1 to Σ2 it
results

lim
T→∞

N(T,Σ1,Σ2) = ∞.

We point out that our results hold also for past-pointing timelike trajectories if
(1.21) holds for past-pointing timelike vectors tangent to ∂L.

Remark 1.6. Essentially, if P and Q reduce respectively to {p} and {q}, then
we reobtain the results in [3] for timelike trajectories joining two fixed events in
L, and if either P or Q are compact, the results in [4] are reobtained (in these
cases, assumptions at infinity are not needed). See [27] for analogous results on
Riemannian manifolds.

2. Functional setting

Let S be a static Lorentzian manifold, with S = M × R and let Σ1,Σ2 be two
submanifolds of S as in (1.5). Hereafter we shall assume that M is a submanifold
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of RN for N sufficiently large (see [24]), thus

H1([0, 1],M) =
{
x ∈ H1([0, 1],RN ) : x([0, 1]) ⊂M

}
where

H1([0, 1],RN ) ≡ H1,2([0, 1],RN )

=
{
y ∈ L2([0, 1],RN ) : y is absolutely cont., ẏ ∈ L2([0, 1],RN )

}
.

We shall denote by ‖ · ‖ the usual norm on H1([0, 1],RN ) and by ‖ · ‖2 the usual
norm on L2([0, 1],RN ). Let us introduce the manifold

Γ(Σ1,Σ2;S) =
{
z ∈ H1([0, 1], S) : z(0) ∈ Σ1, z(1) ∈ Σ2

}
.

It is well known that for any z ∈ Γ(Σ1,Σ2;S)

TzΓ(Σ1,Σ2;S) =
{
ζ ∈ TzH

1([0, 1], S) : ζ(0) ∈ Tz(0)Σ1, ζ(1) ∈ Tz(1)Σ2

}
.

By using standard arguments [20, 9] we can prove the following statement.

Proposition 2.1. Let γ ∈ Γ(Σ1,Σ2;S) and assume that (1.6) holds. Then γ is a
critical point of F at (1.2) if and only if it is an orthogonal trajectory joining Σ1

to Σ2.

By this proposition, the orthogonal trajectories joining Σ1 to Σ2 are the critical
points of F on

ZT := Γ(Σ1,Σ2;S) = Ω(P,Q;M)×H1(0, T )

where
Ω(P,Q;M) =

{
x ∈ H1([0, 1],M) : x(0) ∈ P, x(1) ∈ Q

}
is a smooth submanifold of H1([0, 1],M) (see [20]) and

H1(0, T ) =
{
t ∈ H1([0, 1],R) : t(0) = 0, t(1) = T

}
.

For any z = (x, t) ∈ ZT it results that

TzZT = TxΩ(P,Q;M)×H1
0 ([0, 1],R)

where

TxΩ(P,Q;M) =
{
ξ ∈ TxH

1([0, 1],M) : ξ(0) ∈ Tx(0)P, ξ(1) ∈ Tx(1)Q
}

and
H1

0 ([0, 1],R) =
{
τ ∈ H1([0, 1],R) : τ(0) = 0 = τ(1)

}
.

Remark 2.2. If γ = (x, t) is a trajectory joining Σ1 to Σ2, (ii) of Definition 1.1
and (1.6) can be respectively written as

x(0) ∈ P, t(0) = 0 x(1) ∈ Q, t(1) = T

ẋ(0) ∈ Tx(0)P
⊥ ẋ(1) ∈ Tx(1)Q

⊥

〈A1(x), ξ〉 = 0 ∀x ∈ P ∪Q, ξ ∈ Tx(P ∪Q).

By Proposition 2.1, orthogonal trajectories joining Σ1 to Σ2 are the critical points
of FT := F on ZT . We have already observed that, as for the geodesic problem
on Lorentzian manifolds (see e.g. [10]), the functional FT is strongly indefinite;
nevertheless, as announced in Section 1, the following variational principle can be
proved.

Proposition 2.3. Let γ = (x, t) ∈ ZT . The following statements are equivalent:
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(a) γ is a critical point of FT

(b) (i) x ∈ Ω(P,Q;M) is a critical point of the C2 functional JT defined on
Ω(P,Q;M) by

JT (x) =
1
2

∫ 1

0

〈ẋ, ẋ〉 ds+
∫ 1

0

〈A1(x), ẋ〉 ds

+
1
2

∫ 1

0

β(x)A2
2(x) ds−

1
2
H2(x)

∫ 1

0

1
β(x)

ds

(2.1)

where

H(x) =
T +

∫ 1

0
A2(x) ds∫ 1

0
1

β(x) ds
(2.2)

(ii) t ∈ H1(0, T ) is the solution of the Cauchy problem

ṫ =
H(x)
β(x)

−A2(x)

t(0) = 0.
(2.3)

Moreover, if (a) or (b) is true, then FT (γ) = JT (x).

Remark 2.4. By (1.11), (1.12) and the Hölder inequality for any x ∈ Ω(P,Q;M)
we get

JT (x) ≥ 1
2
‖ẋ‖2

2 − a1‖ẋ‖2 − b
(T 2

2
+
a2
2

2
+ Ta2

)
(2.4)

hence JT is bounded from below.

In the remaining of this section we shall denote by X a C2 Hilbert manifold
endowed with a Riemannian metric. Let us recall some definitions and results to
be used in the next section.

A function f in C1(X,R) satisfies the Palais-Smale condition if every sequence
{ym} such that

{f(ym)} is bounded (2.5)

and

lim
m→∞

‖f ′(ym)‖∗ = 0 (2.6)

contains a converging subsequence (where ‖·‖∗ is the norm induced on the cotangent
bundle by the Riemannian metric on X). A sequence satisfying (2.5) and (2.6) is
said a Palais-Smale sequence.

Let A be a subspace of X. The category of A in X, denoted by catX A, is the
minimum number of closed and contractible subsets of X covering A (possibly ∞).
We shall write catX = catX X.

We shall obtain multiplicity results thanks to the following theorem [15, 18].

Theorem 2.5. Let D be a noncontractible in itself C3 Riemannian manifold. Let
P and Q be two submanifolds of D both contractible in D. Then there exists a
sequence {Km} of compact subsets of Ω(P,Q;D) such that

lim
m→∞

cat Ω(P,Q;D)Km = ∞.
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3. Proof of Theorems 1.3 and 1.5

Let us consider

Ω(P,Q;D) =
{
x ∈ H1([0, 1], D) : x(0) ∈ P, x(1) ∈ Q

}
which is an open submanifold of Ω(P,Q;M). Following [11], we penalize the func-
tional FT in a suitable way. For any ε ∈]0, 1], we consider a non-negative increasing
function ψε ∈ C2(R,R) defined by

ψε(s) =

{
0 if s ≤ 1/ε∑∞

m=3
1

m!σ
m

(
s− 1

ε

)m if s > 1/ε
(3.1)

where σ is as in (1.13). Set, for any ε ∈]0, 1], γ = (x, t) ∈ ZT = Ω(P,Q;D) ×
H1(0, T )

FT,ε(γ) = FT (γ) +
∫ 1

0

ψε(U(x)) ds+
∫ 1

0

ψε

( 1
Φ2(γ)

)
ds

and for any ε ∈]0, 1], x ∈ Ω(P,Q;D)

JT,ε(x) = JT (x) +
∫ 1

0

ψε(U(x))ds+
∫ 1

0

ψε

( 1
φ2(x)

)
ds (3.2)

where the function U is as in (1.13) and Φ, φ are respectively as in (1.7), (1.8). It
is clear that the first penalization term takes into account the lack of boundedness
of the submanifolds P,Q and the second one the presence of the boundary ∂D.

Remark 3.1. Since the penalization terms do not depend on t, Proposition 2.3
still holds when FT and JT are respectively replaced by FT,ε, JT,ε.

For the proof of the following proposition we refer the reader to [11, 3].

Proposition 3.2. For any ε ∈]0, 1] and c ∈ R, the sublevels

Jc
T,ε = {x ∈ Ω(P,Q;D) : JT,ε(x) ≤ c}

are complete metric subspaces of Ω(P,Q;D) and JT,ε satisfies the Palais-Smale
condition.

The following lemma can be found in [11, Lemma 2.2].

Lemma 3.3. Let U, r, σ, x0 be as in (1.13). Then there exist c1, c2, c3 > 0 such
that for any x ∈ D:

〈∇U(x),∇U(x)〉1/2 ≥ σd(x, x0)− c1

U(x) ≥ σ

2
d2(x, x0)− c2d(x, x0)− c3.

Remark 3.4. Since JT,ε(x) ≥ JT (x) for any ε ∈]0, 1], x ∈ Ω(P,Q;D), by Remark
2.4 JT,ε is bounded from below. Then, by Proposition 3.2, JT,ε attains its infimum
at a point xε ∈ Ω(P,Q;D). We set

K = min
x∈Ω(P,Q;D)

JT,1(x). (3.3)

By the form of the penalization, it results JT,ε(xε) ≤ JT,ε(x1) ≤ K.

The following lemma will be crucial in the proof of Theorem 1.3.
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Lemma 3.5. For any ε ∈]0, 1] let xε ∈ Ω(P,Q;D) be a critical point of the func-
tional JT,ε satisfying

−b
(T 2

2
+ Ta2

)
+ δ ≤ JT,ε(xε) ≤ K (3.4)

where δ is a suitable real constant independent of ε, K is as in (3.3), b is as in
(1.11) and a2 is as in (1.12). Then there exist ε0 ∈]0, 1] and T > 0 such that, for
any ε ∈]0, ε0] and for any T ∈ R with T > T , xε is necessarily a critical point of
JT .

Proof. By the form of the penalization, it suffices to prove the existence of a ε1 ∈
]0, 1] such that for any ε ∈]0, ε1] it results

sup
s∈[0,1]

d(xε(s), x0) ≤M1 (3.5)

for a suitable M1 > 0, the existence of ε2 ∈]0, 1] such that for any ε ∈]0, ε2] it results

φ(xε(s)) ≥
√
ε ∀s ∈ [0, 1] (3.6)

and set ε0 = min{ε1, ε2}.
Step 1: Let us prove (3.5). Assume by contradiction that there exist an infinitesimal
and decreasing sequence {εm} of numbers in ]0, 1] and a sequence of critical points
{xm} of JT,m ≡ JT,εm satisfying (3.4) and such that

sup {d(xm(s), x0)|s ∈ [0, 1],m ∈ N} = ∞. (3.7)

By (ii) of Theorem 1.3, there exists µ > 0 such that for m large

φ(xm(s)) ≥ µ > 0 ∀s ∈ [0, 1].

Therefore, from (3.1), for m large enough we get

ψεm

( 1
φ2(xm(s))

)
= 0 ∀s ∈ [0, 1].

From (2.4) and (3.4) for any m ∈ N

‖ẋm‖2 ≤ ν = a1 +

√
a2
1 + 2b

(T 2

2
+
a2
2

2
+ Ta2

)
+ 2K. (3.8)

From (3.7) and (3.8) it follows

lim
m→∞

inf
[0,1]

d(xm(s), x0) = ∞. (3.9)

If tm is the solution of (2.3) corresponding to xm, by Proposition 2.3 and Remark
3.1 it follows that γm = (xm, tm) is a critical point of FT,m ≡ FT,εm

. Therefore, for
any ξ ∈ C∞0 ([0, 1],RN ),

F ′T,m(xm, tm)[ξ, 0]

= −
∫ 1

0

〈Dsẋm, ξ〉ds−
1
2

∫ 1

0

〈∇β(xm), ξ〉ṫ2mds

+
∫ 1

0

〈((∇A1(xm))∗ −∇A1(xm))[ẋm], ξ〉ds−
∫ 1

0

[〈∇β(xm), ξ〉A2(xm)

+ β(xm)〈∇A2(xm), ξ〉]ṫmds+
∫ 1

0

ψ′εm
(U(xm))〈∇U(xm), ξ〉ds = 0.



EJDE-2004/10 TRAJECTORIES CONNECTING TWO SUBMANIFOLDS 11

Then from (2.3) we get

Dsẋm = −1
2
H(xm)

∇β(xm)
β(xm)

ṫm − 1
2
∇β(xm)A2(xm)ṫm

+
(
(∇A1(xm))∗ −∇A1(xm)

)
[ẋm]− β(xm)∇A2(xm)ṫm

+ ψ′εm
(U(xm))∇U(xm).

(3.10)

Now set, for any m ∈ N, s ∈ [0, 1], um(s) = U(xm(s)). Then, as xm is a critical
point of JT,m, by (3.9), (3.10) and (1.13) for m large enough, it results that∫ 1

0

üm ds =
∫ 1

0

HU (xm)[ẋm, ẋm]ds+
∫ 1

0

〈∇U(xm), Dsẋm〉ds

≥ σ

∫ 1

0

〈ẋm, ẋm〉ds−
1
2
H(xm)

∫ 1

0

〈∇U(xm),
∇β(xm)
β(xm)

〉ṫmds

− 1
2

∫ 1

0

〈∇U(xm),∇β(xm)〉A2(xm)ṫm ds

+
∫ 1

0

〈∇U(xm),
(
(∇A1(xm))∗ −∇A1(xm)

)
[ẋm]〉ds

−
∫ 1

0

〈∇U(xm),∇A2(xm)〉β(xm)ṫmds

+
∫ 1

0

ψ′εm
(U(xm))〈∇U(xm),∇U(xm)〉ds.

(3.11)

Again from (1.11) and (1.12) it follows that {H(xm)}, {ṫm} are bounded too (see
(2.2) and (2.3)) and then, from (1.16), it follows that

H(xm)
∫ 1

0

〈∇U(xm),
∇β(xm)
β(xm)

〉ṫmds = o(1). (3.12)

Indeed it results

H(xm)
∫ 1

0

〈∇U(xm),
∇β(xm)
β(xm)

〉ṫmds ≤ K max
s∈[0,1]

|∇U(xm(s))| |∇β(xm(s))|

= K|∇U(xm(s̄))| |∇β(xm(s̄))|

for suitable K > 0, s̄ ∈ [0, 1]. Since xm(0) ∈ P ,

d(xm(s̄), P ) ≤ d(xm(s̄), xm(0)) ≤ ‖ẋm‖2,

thus (3.12) follows from (3.8), (3.9) and (1.16). By a similar argument we also
obtain ∫ 1

0

〈∇U(xm),∇β(xm)〉A2(xm)ṫmds = o(1)

and, from (1.15) and (3.8)∫ 1

0

〈∇U(xm),
(
(∇A1(xm))∗ −∇A1(xm)

)
[ẋm]〉ds = o(1),∫ 1

0

〈∇U(xm),∇A2(xm)〉β(xm)ṫmds = o(1).
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From (1.18) it is u̇m(0) = 0 = u̇m(1), hence from (3.11) we have:

0 =
∫ 1

0

üm(s)ds

≥ σ

∫ 1

0

〈ẋm, ẋm〉ds+
∫ 1

0

ψ′εm
(U(xm))〈∇U(xm),∇U(xm)〉ds+ o(1).

(3.13)

From (3.4) and (3.2) we get

1
2

∫ 1

0

〈ẋm, ẋm〉ds

≥ −b
(T 2

2
+ Ta2

)
+ δ −

∫ 1

0

〈A1(xm), ẋm〉ds−
1
2

∫ 1

0

β(xm)A2
2(xm) ds

+
1
2
H2(xm)

∫ 1

0

1
β(xm)

ds−
∫ 1

0

ψεm
(U(xm)) ds.

(3.14)

Moreover from (3.9) and (1.14) for any positive real number α and for m large
enough,

a2 + α > A2(xm) > a2 − α, (3.15)

b+ α > β(xm) > b− α. (3.16)

Then from (3.9), (3.14), (3.15), (3.16) and (1.14), it follows that, form large enough,

1
2

∫ 1

0

〈ẋm, ẋm〉ds

≥ δ − α
(
a2
2 + α2 + 2a2b+ bT +

T

2
+ Ta2 − Tα

)
−

∫ 1

0

ψεm
(U(xm))ds+ o(1).

(3.17)
Hence, chosen α small enough such that

δ

2
> α

(
a2
2 + α2 + 2a2b+ bT +

T

2
+ Ta2 − Tα

)
,

(3.13) implies

0 =
∫ 1

0

üm ds ≥ σ (δ + o(1))− 2σ
∫ 1

0

ψεm
(U(xm))ds

+
∫ 1

0

ψ′εm
(U(xm))〈∇U(xm),∇U(xm)〉ds+ o(1).

(3.18)

By Lemma 3.3 and (3.9), for m large, 〈∇U(xm),∇U(xm)〉 ≥ 2. Hence, by (3.18)
and the form of the penalization, we obtain

0 =
∫ 1

0

üm ds

≥ σδ + 2
∫ 1

0

(
ψ′εm

(U(xm))− σψεm(U(xm))
)
ds+ o(1)

≥ σδ + o(1),

which is a contradiction.
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Step 2: In order to prove (3.6) assume by contradiction that there exist an infini-
tesimal and decreasing sequence {εm} of numbers in ]0, 1] and a sequence of critical
points {xm} of JT,m ≡ JT,εm satisfying (3.4) and such that

φ(xm(sm)) <
√
εm (3.19)

where for any m ∈ N sm is a minimum point for hm(s) = φ(xm(s)) on [0, 1]. From
(3.5) it follows that {‖xm‖∞} is bounded. Therefore from (3.8) we get that {xm}
is bounded in Ω(P,Q;D) and, up to a subsequence,

xm → x uniformly. (3.20)

Remark that, up to a subsequence, there exists s0 ∈ [0, 1] such that

lim
m→∞

sm = s0. (3.21)

Since
|xm(sm)− x(s0)| ≤ ‖xm − x‖∞ + |x(sm)− x(s0)|

from (3.20), (3.21), and the continuity of x we get that {xm(sm)} converges to
x(s0) ∈ ∂D. It results

φ(xm(sm)) → φ(x(s0))

thus from (3.19) φ(x(s0)) = 0, that is x(s0) ∈ ∂D (see (1.8)). Since the set

{xm(0), xm(1) : m ∈ N}

is relatively compact in D, there exists δ1 > 0 such that φ(xm(0)) ≥ δ1, φ(xm(1)) ≥
δ1 for any m ∈ N, thus s0 ∈]0, 1[. In order to obtain a contradiction, we shall
exploit the convexity assumption on the boundary. From (3.4), reasoning as in [3,
Lemma 4.5] we get the existence of a curve γ = (x, t) ∈ Ω(P,Q;D)×H1(0, T ) such
that, up to a subsequence,

γm → γ in H1([0, 1],RN+1). (3.22)

Moreover, γ ∈ H2([0, 1],RN+1) and it solves the equation

Dsγ̇ = ((A′(γ))∗ −A′(γ)) [γ̇]− µ(s)∇LΦ(γ) (3.23)

where µ ∈ L2([0, 1],R) is positive almost everywhere in [0, 1] and vanishes if γ(s) ∈
L. From (3.23) we easily get that

〈Dsγ̇, γ̇〉L + µ(s)〈∇LΦ(γ), γ̇〉L = 0

and standard arguments show that 〈Dsγ̇, γ̇〉L = 0 a.e. on [0, 1] (see e.g. [19,
Theorem 5.1]); therefore, there exists Eγ ∈ R such that Eγ = 〈γ̇, γ̇〉L. We claim
that for T large enough Eγ is negative. By Remark 3.4 and (1.11)

cT,m := JT,m(xm) ≤ c1 −
1
2
ηT 2 (3.24)

for a suitable c1 > 0. From (3.22) we get

1
2
Eγ = lim

m→∞

[
cT,m −

∫ 1

0

ψε

( 1
Φ2(γm)

)
ds−

∫ 1

0

〈A(γm), γ̇〉Lds
]
. (3.25)

Standard calculations, (1.11) and (1.12) show that∣∣∣ ∫ 1

0

〈A(γm), γ̇m〉Lds
∣∣∣ ≤ a1

∫ 1

0

|ẋm| ds+ c2T + c3
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for suitable c2, c3 > 0, hence from (3.24) and (3.25) we get

1
2
Eγ ≤ c1 −

1
2
ηT 2 + a1 lim

m→∞

∫ 1

0

|ẋm| ds+ c2T + c3.

By the Young inequality

a1‖ẋ‖2 ≤
1
4
‖ẋ‖2

2 + 4a2
1 , (3.26)

(2.4), (3.24) and the Hölder inequality, we get
1
2
Eγ ≤ c4 + c2T −

1
2
ηT 2 + a1

√
K1 +K2T +K3T 2

for suitable c4,K1,K2,K3 > 0. Therefore, for T large enough γ is a timelike curve.
From (2.3) it follows that for T large enough γ is also future-pointing.

We have already shown that there exists a s0 as in (3.21). Then, set h(s) =
Φ(γ(s)) we get

HL
Φ(γ(s0))[γ̇(s0), γ̇(s0)] + 〈((A′(γ(s0)))∗ −A′(γ(s0))) [γ̇(s0)],∇LΦ(γ(s0))〉L

− µ(s0)〈∇LΦ(γ(s0)),∇LΦ(γ(s0))〉L ≥ 0. (3.27)

Thus by (1.21) and (i) of Theorem 1.3 (remark that as 〈∇LΦ(γ(s0)), γ̇(s0)〉L = 0,
γ̇(s0) ∈ Tγ(s0)∂L),

µ(s0)〈∇LΦ(γ(s0)),∇LΦ(γ(s0))〉L ≤ 0

and this implies µ(s0) = 0 since from (1.9), (1.10) and (1.8)

〈∇LΦ(γ(s0)),∇LΦ(γ(s0))〉L = 〈∇φ(x(s0)),∇φ(x(s0))〉 > 0. (3.28)

Moreover, it can be proved that if s̄ ∈ [0, 1] is such that γ(s̄) ∈ L, there exists a
neighborhood I of s̄ such that µ(s) = 0 for every s ∈ I. Thus from (3.23) γ is a
orthogonal (timelike, future-pointing) trajectory joining Σ1 to Σ2.

Now it suffices to prove that the range of γ is contained in L. Let C = {s ∈
[0, 1] : γ(s) ∈ ∂L}. From (3.19) we have shown that there exists s0 ∈]0, 1[ such that
s0 ∈ C. Clearly C is compact; say sM ∈]0, 1[ its maximum. Using the Gronwall
Lemma we shall prove that there exists δ1 > 0 such that [sM , sM +δ1] ⊂ C, getting
a contradiction. Indeed, for η1 > 0 there exists δ1 > 0 such that

Φ(γ(s)) < η1 ∀s ∈ [sM , sM + δ1]

and we can consider the projection γp = (xp, tp) : [sM , sM + δ1] → ∂L of γ on ∂L
obtained by using the flow of the vector field −∇Φ/|∇Φ|2 where

tp(s) = c

∫ s

0

1
β(xp)

dτ,

see also [5]. Let us remark that δ1 can be chosen such that the projected curve
γp is (future-pointing and) timelike on [sM , sM + δ1]. Indeed, by continuity, it is
sufficient to check that ẋ(sM ) = ẋp(sM ). Denote by η(s, x) the flow of −∇Φ/|∇Φ|2;
then

xp(s) = η(h(s), x(s))
and

ẋp(s) = ηx(h(s), x(s))[ẋ(s)]− ∇φ(xp(s))
|∇φ(xp(s))|2

ḣ(s).

Since h(sM ) = 0 and ḣ(sM ) = 0, clearly ẋp(sM ) = ẋ(sM ), which implies the
required equality.
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As the geometric-time convexity is equivalent to the variational one we get

HL
Φ(γp(s))[γ̇p(s), γ̇p(s)] ≤ 0 ∀s ∈ [sM , sM + δ1].

Hence, for any s ∈ [sM , sM + δ1] it is

ḧ(s) ≤ HL
Φ(γ(s))[γ̇(s), γ̇(s)]−HL

Φ(γp(s))[γ̇p(s), γ̇p(s)]

+ 〈((A′(γ(s)))∗ −A′(γ(s))) [γ̇(s)],∇LΦ(γ(s))〉L.

Reasoning as in [5, Theorem 4.3] for any s ∈ [sM , sM + δ1] it results

HL
Φ(γ(s))[γ̇(s), γ̇(s)]−HL

Φ(γp(s))[γ̇p(s), γ̇p(s)] ≤M1h(s) +M2ḣ(s) (3.29)

for some M1,M2 > 0. Moreover from (1.21),

〈∇LΦ(γ(s)), ((A′(γ(s)))∗ −A′(γ(s))) [γ̇(s)]〉L
≤ 〈∇LΦ(γ(s)), ((A′(γ(s)))∗ −A′(γ(s))) [γ̇(s)]〉L
− 〈∇LΦ(γp(s)), ((A′(γp(s)))∗ −A′(γp(s))) [γ̇p(s)]〉L

= 〈∇LΦ(γ(s)), ((A′(γ(s)))∗ −A′(γ(s))) [γ̇(s)]〉L
− 〈∇LΦ(γp(s)), ((A′(γ(s)))∗ −A′(γ(s))) [γ̇(s)]〉L
+ 〈∇LΦ(γp(s)), ((A′(γ(s)))∗ −A′(γ(s))) [γ̇(s)]〉L
− 〈∇LΦ(γp(s)), ((A′(γp(s)))∗ −A′(γp(s))) [γ̇p(s)]〉L .

Using arguments similar to those used to prove (3.29), because A and Φ are C2,
there exists M3 > 0 such that

〈∇LΦ(γ(s)), ((A′(γ(s)))∗ −A′(γ(s))) [γ̇(s)]〉L ≤M3|x(s)− xp(s)| ≤M3h(s) .
(3.30)

Therefore,

ḧ(s) ≤ (M1 +M3)h(s) +M2ḣ(s) ∀s ∈ [sM , sM + δ1].

Since h(sM ) = 0, ḣ(sM ) = 0 by the Gronwall lemma we obtain h ≡ 0 in [sM , sM +
δ1], which is a contradiction. �

Remark 3.6. In the proof of Lemma 3.5 we have proved in particular that to the
critical point of JT corresponds a timelike future-pointing orthogonal trajectory.

Lemma 3.7. Let (iv) of Theorem 1.3 hold, and for each ε ∈]0, 1] let xε ∈ Ω(P,Q;D)
be a critical point of the functional JT,ε satisfying

JT,ε(xε) ≤ K (3.31)

where K is as in (3.3). Then there exist ε0 ∈]0, 1] and T > 0 such that, for any
ε ∈]0, ε0] and for any T ∈ R with T > T , xε is necessarily a critical point of JT .

Proof. The only difference with the proof of Lemma 3.5 is the following. If by
contradiction there exists a subsequence {xm} such that

lim
m→∞

JT (xm) = −b
(T 2

2
+ Ta2

)
(3.32)

(see (3.4)) and (3.9) holds, then from (3.32) and (1.14) it follows that

lim
m→∞

∫ 1

0

〈ẋm, ẋm〉ds = 0
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and this contradicts assumption (iv). Therefore, by the form of the penalization
we get the existence of δ > 0 such that (3.4) holds and we can repeat the proof of
Lemma 3.5. �

Proof of Theorem 1.3. The existence of a critical point of JT for T large follows
from Remark 3.4 and Lemma 3.7. Finally, by Propositions 2.3, 2.1 and Remark 3.6
the proof is complete. �

Proof of Theorem 1.5. For any c ∈ R, set

JT,c = {x ∈ Ω(P,Q;D) : JT (x) ≥ c} ,
JT,ε,c = {x ∈ Ω(P,Q;D) : JT,ε(x) ≥ c} .

It can be proved that even if J does not satisfy the Palais-Smale condition,

cat Ω(P,Q;D)J
c <∞ (3.33)

(see [11]). By Theorem 2.5 for any m ∈ N there exists m = m(c) ∈ N such that,
for any A ∈ Γm =

{
B ⊂ Ω(P,Q;D) : catΩ(P,Q;D)B ≥ m

}
,

A ∩ JT,c 6= ∅

and since JT,c ⊂ JT,ε,c, for any A ∈ Γm it also results

A ∩ JT,ε,c 6= ∅ ∀ε ∈]0, 1].

Proposition 3.2 and classical arguments in critical point theory imply that for any
i ∈ {1, . . . ,m} the values

cT,ε,i = inf
A∈Γi

sup
x∈A

JT,ε(x)

are well defined and are critical values of JT,ε. Moreover

c ≤ cT,ε,1 ≤ . . . ≤ cT,ε,m ∀ε ∈]0, 1].

Now let K be a compact subset of Γm; then for any i ∈ {1, . . . ,m} we have

c ≤ cT,ε,1 ≤ . . . ≤ cT,ε,m ≤ max
x∈K

JT,ε(x) ∀ε ∈]0, 1].

Hence there exist at least m critical points of JT,ε. As K is compact, for T large
enough, we can reason as in Lemma 3.5 (see also [4, Theorem 1.4]) obtaining at least
m distinct timelike future-pointing orthogonal trajectories joining Σ1 to Σ2. �

4. Discussion: A time-convexity, electric and magnetic vector fields

In this section, firstly we shall discuss the notion of A-timeconvexity and shall
show that the proof of Theorem 1.3 holds under other definitions of convexity. Sec-
ondly we introduce the electric and magnetic fields E,B associated to A, and discuss
the meaning of the boundary condition (1.21) in terms of these fields. Finally, some
comments about the translation of the other hypotheses on A to hypotheses on E,
B are given.

The following definition of convexity has been introduced in [17].
∂L is A-timeconvex in the future if for any future-pointing timelike
solution γ : [0, 1] → L ∪ ∂L of (1.3) such that γ(0), γ(1) ∈ L it
results

γ([0, 1]) ⊂ L. (4.1)
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Then, if γ : [0, 1] → L∪∂L is a timelike future-pointing orthogonal trajectory joining
Σ1 to Σ2, (4.1) holds. Moreover, it can be proved that if ∂L is A-timeconvex, then
for all z ∈ ∂L and for any future-pointing timelike ζ ∈ Tz∂L

HL
Φ(z)[ζ, ζ] + 〈((A′(z))∗ −A′(z)) [ζ],∇LΦ(z)〉L ≤ 0. (4.2)

Conversely, if this inequality holds strictly then ∂L is A-timeconvex in the future.
Recall that time-convexity of ∂L and formula (1.21) for any future-pointing timelike
ζ (that is, hypotheses (i), (v) of Theorem 1.3) also imply (4.2). Moreover, if,
additionally, one of these two conditions is strict (that is, either (1.19) or (1.21)
holds strictly for any future-pointing timelike ζ) then ∂L is A-timeconvex in the
future.
A-timeconvexity in the future can replace assumptions (i), (v) in Theorem 1.3.

In fact, we have proved in Step 2 of Lemma 3.5 the existence of a timelike curve
γ = (x, t) ∈ Ω(P,Q;D) × H1(0, T ) such that, up to a subsequence, (3.22) holds.
From (3.27), using (4.2), it follows that γ is a orthogonal trajectory joining Σ1 to
Σ2. We have also proved that from (3.19) it follows that γ touches the boundary
of L, and this is an absurd for the A-timeconvexity of the boundary.

Inequality (1.21), as well as other hypotheses in Theorem 1.3, can be interpreted
in terms of the electric and magnetic parts of the electromagnetic field for the
natural observers. In fact, assume that the spacetime is 4-dimensional. The electric
and magnetic fields associated to A for the observers in ∂t are defined as follows
(see for example [26, p. 75]). The electric field is

E = (A′)∗(∂̄t)− (A′)(∂̄t) (4.3)

where ∂̄t = ∂t/(β)1/2. Explicitly, from (4.3) and the expression of ∇ in a static
manifold (see for example [25, Proposition 7.35])

E = −(β)1/2∇A2 −∇β. (4.4)

For the the magnetic field B, firstly one fixes an orientation on S (it is enough
on M , or just in the tangent space to ∂D), and constructs the volume element Ω
associated to the metric and the orientation at each point. Then, B is the unique
vector tangent to M satisfying

Ω(X,Y,B, ∂̄t) = 〈((A′)∗ −A′)(X), Y 〉L, (4.5)

for all X,Y tangent to M . Thus, essentially, B = curlA1 (B is the rotational of the
vector field A1 in the corresponding slice t = constant, up to a sign which depends
of the chosen orientations).

Note that the electric and magnetic vector fields are physically measurable quan-
tities, and they remain invariant under the allowed gauge transformation A →
A+ (∇V, c).

Proposition 4.1. Let N = ∇φ/|∇φ| be the unitary inner normal vector to ∂D at
any point x. Inequality (1.21) holds for any timelike future-pointing vector ζ if and
only if the electric and magnetic vector fields E,B associated to A satisfy:

(i) 〈E,N〉 ≤ 0 (E does not point out inward the boundary)
(ii) The norm of the projection of the magnetic field B on the tangent of ∂D is

smaller or equal to |〈E,N〉|.
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Proof. Recall first that the necessity of (i) is obvious applying inequality (1.21) to
∂̄t, and using ∇LΦ ≡ ∇φ and (4.3). Now, put ζ = ∂̄t + ae where e is a unitary
vector tangent to M and |a| < 1. Using (4.5), inequality (1.21) can be written as

aΩ(e,N,B, ∂̄t) ≤ −〈E,N〉. (4.6)

As Ω is the volume element in (L, 〈·, ·〉L), then

|Ω(e,N,B, ∂̄t)| = |ΩM (e,N,B)| = |〈e×N,B〉|
where ΩM and × are, respectively, the volume element and vectorial product in
(M, 〈·, ·〉). Thus, the result follows applying (4.6) to any direction e and any a ∈
(−1, 1). �

When the boundary is time-convex and inequalities in (i), (ii) are strict, one
obtains A-timeconvexity in the future. From (4.4), condition (i) of Proposition 4.1
can be rewritten as

−〈N,∇β〉 ≤ (β)1/2〈N,∇A2〉.

Remark 4.2. Recall that if β = 1, E = −∇V and B = 0 (that is, E is the
opposite of the gradient of a potential function V = A2 on M , and A = A2∂t)
then we obtain results about connecting geodesics orthogonal to two Riemannian
submanifolds (compare with [20], [27]).

Finally, it is worth discussing the other hypotheses on A = (A1, A2) of our
theorems (see formulas (1.12), (1.14), (1.15)), in terms of E and B. From (4.4),
(1.11) and (1.16), the condition on ∇A2 in (1.15) is equivalent to

lim
d(x,x0)→∞, d(x,P )<ν

|E(x)||∇U(x)| = 0.

The conditions on A2 in (1.12) and (1.14) say that the supremum of A2 is ap-
proximated if d(x, x0) → ∞, d(x, P ) < ν; this also holds for β from (1.11) and
(1.14). Thus, essentially, the gradients of A2 and β “points out to infinity” when
d(x, x0) → ∞, d(x, P ) < ν; from (4.4), the electric vector field E “does not point
out to infinity”.

The condition on A′1 in (1.15) applies to both, the skew-symmetric (i.e. the
magnetic vector field B) and the symmetric parts of A′1. Thus, one has

lim
d(x,x0)→∞, d(x,P )<ν

|B(x)| |∇U(x)| = 0,

and an analogous limit for the symmetric part SymA′1 of A′1. This limit for SymA′1
is not gauge invariant: if one takes Â1 = A1 + V then Sym Â′1 = SymA′1 + HessV .
Nevertheless, recall that hypothesis (1.15) is used in addition to (1.14) (for A1) and
(1.13) (for U), which, essentially, fixes a restricted class of gauges.
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Univ. Pisa, 1996.

[24] J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math. 63, 20-63 (1956)

[25] B. O’Neill, Semi-Riemannian Geometry with applications to Relativity. Academic Press:
New York-London, 1983.

[26] R.K.Sachs, H.Wu, General Relativity for Mathematicians. Springer–Verlag: New York,

1977.
[27] A.Salvatore, Trajectories of dynamical systems joining two given submanifolds Differential

Integral Equations 4, 779-790 (1996).

[28] M.Sánchez, Geodesic connectedness of semi-Riemannian manifolds Nonlinear Anal. Third
World Congress of Nonlinear Analysts 47, 3085-3102 (2001).

Rossella Bartolo

Dipartimento di Matematica, Politecnico di Bari, Via G. Amendola, 126/B, 70126 Bari
Italy

E-mail address: rossella@poliba.it

Anna Germinario

Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona, 4, 70125
Bari Italy

E-mail address: germinar@dm.uniba.it



20 R. BARTOLO, A. GERMINARIO, & M. SÁNCHEZ EJDE-2004/10
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