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RICCATI-TYPE INEQUALITY AND OSCILLATION CRITERIA
FOR A HALF-LINEAR PDE WITH DAMPING

ROBERT MAŘÍK

Abstract. Under suitable conditions on the coefficients of a partial differen-

tial equation, we prove a Riccati-type inequality. As an application of this

result, we find oscillation criteria for second order damped half-linear partial
differential equations. These criteria improve and complement earlier results

on oscillation for partial differential equations. The main feature in our results

is that the oscillation criteria are not radially symmetric and do not depend
only on the mean value of the coefficients. We consider unbounded domains

and state a special oscillation criterion for conic domains.

1. Introduction

It is well known that the Riccati differential equation

w′ + w2 + c(x) = 0 (1.1)

plays an important role in the study of the second order linear differential equation

u′′ + c(x)u = 0. (1.2)

In fact, if (1.2) has a positive solution u on an interval I, then the function w = u′/u
is a solution of (1.1), defined on I. Conversely, if the Riccati inequality

w′ + w2 + c(x) ≤ 0

has a solution w, defined on I, then (1.2) has a positive solution on I. It is also
well known that this property can be extended also to other types of second order
differential equations and inequalities, which include the selfadjoint second order
differential equation (

r(x)u′
)′ + c(x)u = 0 ,

the half-linear equation(
r(x)|u′|p−2u′

)′ + c(x)|u|p−2u = 0, p > 1, (1.3)

and the Schrödinger equation
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u = 0 .
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see for example [7, 13, 15, 16, 17].
Another important fact of the substitution w = u′/u for the Riccati equation

is that it is embedded in the Picone identity which forms the link between the
so-called Riccati technique and variational technique in the oscillation theory of
equation (1.2). See Section 3 for a short discussion concerning the Picone identity.

In this paper we study the partial Riccati-type differential inequality

div ~w + ‖~w‖q + c(x) ≤ 0

and some generalizations of this inequality in the forms

div(α(x)~w) + Kα(x)‖~w‖q + α(x)c(x) ≤ 0 (1.4)

and
div ~w + K‖~w‖q + c(x) + 〈~w,~b〉 ≤ 0, (1.5)

where K ∈ R, q > 1. The assumptions on the functions α, b and c are stated bellow.
The operator div(·) is the usual divergence operator, i.e. for ~w = (w1, . . . , wn) it
holds div ~w =

∑n
i=1

∂wi

∂xi
, the norm ‖ · ‖ is the usual Euclidean norm in Rn and 〈·, ·〉

is the usual scalar product in Rn.
As an application of these results, we obtain new oscillation criteria for the half-

linear partial differential equation with damping. The main difference between the
criteria obtained and similar results in the literature lies in the fact, that our criteria
are not “radially symmetric”. See the discussion in Section 3, bellow.

This paper is organized as follows. In the next section the Riccati-type inequality
is studied. The results of this section are applied in the third section, which contains
the results concerning the oscillation for damped half-liner PDEs. The last section
is for examples and comments.

2. Riccati inequality

Notation. Let

Ω(a) = {x ∈ Rn : a ≤ ‖x‖},
Ω(a, b) = {x ∈ Rn : a ≤ ‖x‖ ≤ b},

S(a) = {x ∈ Rn : ‖x‖ = a}.

Let p > 1 and q > 1 be mutually conjugate numbers, i.e. 1/p + 1/q = 1. Let ωn be
the surface of the unit sphere in Rn. For M ⊆ Rn, the symbols M and M0 denote
the closure and the interior of M , respectively.

Integration over the domain Ω(a, b) is performed introducing hyperspherical co-
ordinates (r, θ), i.e. ∫

Ω(a,b)

f(x) dx =
∫ b

a

∫
S(r)

f(x(r, θ)) dS dr,

where dS is the element of the surface of the sphere S(r).
We will study the Riccati inequality on two types of unbounded domains in Rn:

The exterior of a ball, centered in the origin, and a general unbounded domain Ω.
In the latter case we use the assumption:

(A1) The set Ω is an unbounded domain in Rn, simply connected with a piecewise
smooth boundary ∂Ω and meas(Ω ∩ S(t)) > 0 for t > 1.
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Theorem 2.1. Let Ω satisfy (A1) and c ∈ C(Ω, R). Suppose α satisfies

α ∈ C1(Ω ∩ Ω(a0), R+) ∩ C0(Ω, R),∫ ∞

a0

(∫
Ω∩S(t)

α(x) dS
)1−q

dt = ∞ . (2.1)

Also suppose that there exist a ≥ a0, a real constant K > 0 and a real-valued
differentiable vector function ~w(x) which is bounded (in the sense of the continu-
ous extension, if necessary) on every compact subset of Ω ∩ Ω(a) and satisfies the
differential inequality (1.4) on Ω ∩ Ω(a). Then

lim inf
t→∞

∫
Ω∩Ω(a0,t)

α(x)c(x) dx < ∞. (2.2)

Proof. For simplicity let us denote Ω̃(a) = Ω(a) ∩ Ω, S̃(a) = S(a) ∩ Ω, Ω̃(a, b) =
Ω(a, b) ∩ Ω. Suppose, by contradiction, that (2.1) and (1.4) are fulfilled and

lim
t→∞

∫
Ω̃(a0,t)

α(x)c(x) dx = ∞. (2.3)

Integrating (1.4) over the domain Ω̃(a, t) and applying the Gauss-Ostrogradski di-
vergence theorem gives∫

S̃(t)

α(x)〈~w(x), ~ν(x)〉dS −
∫

S̃(a)

α(x)〈~w(x), ~ν(x)〉dS

+
∫

Ω̃(a,t)

α(x)c(x) dx + K

∫
Ω̃(a,t)

α(x)‖~w(x)‖q dx ≤ 0, (2.4)

where ~ν(x) is the outside normal unit vector to the sphere S(‖x‖) in the point x
(note that the product α(x)~w(x) vanishes on the boundary ∂Ω since α ∈ C0(Ω, R)
and ~w is bounded near the boundary). In view of (2.3) there exists t0 ≥ a such
that ∫

Ω̃(a,t)

α(x)c(x) dx−
∫

S̃(a)

α(x)〈~w(x), ~ν(x)〉dS ≥ 0 (2.5)

for every t ≥ t0. Further Schwarz and Hölder inequality give

−
∫

S̃(t)

α(x)〈~w(x), ~ν(x)〉dS ≤
∫

S̃(t)

α(x)‖w(x)‖dS

≤
(∫

S̃(t)

α(x)‖w(x)‖q dS
)1/q(∫

S̃(t)

α(x) dS
)1/p

.

(2.6)

Combination of inequalities (2.4), (2.5), and (2.6) gives

K

∫
Ω̃(a,t)

α(x)‖~w(x)‖q dx ≤
(∫

S̃(t)

α(x)‖w(x)‖q dS
)1/q(∫

S̃(t)

α(x) dS
)1/p

for every t ≥ t0. Denote

g(t) =
∫

Ω̃(a,t)

α(x)‖w(x)‖q dx.

Then the last inequality can be written in the form

Kg(t) ≤
(
g′(t)

)1/q(∫
S̃(t)

α(x) dS
)1/p

.
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From here we conclude for every t ≥ t0

Kqgq(t) ≤ g′(t)
(∫

S̃(t)

α(x) dS
)q/p

and equivalently

Kq
(∫

S̃(t)

α(x) dS
)1−q

≤ g′(t)
gq(t)

.

This inequality shows that the integral on the left-hand side of (2.1) has an inte-
grable majorant on [t0,∞) and hence it is convergent as well, a contradiction to
(2.1). �

A commonly considered case is Ω = Rn or Ω = Ω(a0). In this case the preceding
theorem gives:

Theorem 2.2. Let α ∈ C1(Ω(a0), R+), c ∈ C(Ω(a0), R). Suppose that∫ ∞

a0

(∫
S(t)

α(x) dS
)1−q

dt = ∞. (2.7)

Further suppose, that there exists a ≥ a0, real constant K > 0 and real–valued
differentiable vector function ~w(x) defined on Ω(a) which satisfies the differential
inequality (1.4) on Ω(a). Then

lim inf
t→∞

∫
Ω(a0,t)

α(x)c(x) dx < ∞. (2.8)

The proof of this theorem is a modification and simplification of the proof of
Theorem 2.1.

In the following theorem we will use the integral averaging technique which is
due to Philos [14], where the linear ordinary differential equation is considered.
This technique has been later extended in several directions (see [8, 9, 18] and
the references therein). The main idea of this technique is in the presence of the
two-parametric weighting function H(t, x) defined on the closed domain

D = {(t, x) ∈ R× Rn : a0 ≤ ‖x‖ ≤ t}

Further denote D0 = {(t, x) ∈ R × Rn : a0 < ‖x‖ < t} and suppose that the
function H(t, x) satisfies the hypothesis

(A2) H(t, x) ∈ C(D, R+
0 ) ∩ C1(D0, R+

0 ).
Some additional assumptions on the function H are stated bellow. First let us
remind the well-known Young inequality.

Lemma 2.3 (Young inequality). For ~a,~b ∈ Rn

‖~a‖p

p
± 〈~a,~b〉+

‖~b‖q

q
≥ 0 . (2.9)

Theorem 2.4. Let Ω be an unbounded domain in Rn which satisfies (A1), c ∈
C(Ω, R) and ~b ∈ C(Ω, Rn). Suppose the function H(t, x) satisfies (A2) and the
following conditions:

(i) H(t, x) ≡ 0 for x 6∈ Ω.
(ii) If x ∈ ∂Ω, then H(t, x) = 0 and ‖∇H(t, x)‖ = 0 for every t ≥ x.
(iii) If x ∈ Ω0, then H(t, x) = 0 if and only if ‖x‖ = t.
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(iv) The vector function ~h(x) defined on D0 with the relation

~h(t, x) = −∇H(t, x) +~b(x)H(t, x) (2.10)

satisfies ∫
Ω(a0,t)∩Ω

H1−p(t, x)‖~h(t, x)‖p dx < ∞. (2.11)

(v) There exists a continuous function k(r) ∈ C([a0,∞), R+) such that the
function Φ(r) := k(r)

∫
S(r)∩Ω

H(t, x) dx is positive and nonincreasing on
[a0, t) with respect to the variable r for every t, t > r.

Also suppose that there exist real numbers a ≥ a0, K > 0 and differentiable vector
function ~w(x) defined on Ω which is bounded on every compact subset of Ω ∩ Ω(a)
and satisfies the Riccati inequality (1.5) on Ω ∩ Ω(a). Then

lim sup
t→∞

(∫
S(a0)

H(t, x) dS
)−1

∫
Ω(a0,t)∩Ω

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx < ∞

(2.12)

Remark 2.5. Let us mention that nabla operator ∇H(t, x) relates only to the
variables of x, i.e. ∇H(t, x) = ( ∂

∂x1
, . . . , ∂

∂xn
)H(t, x), and does not relate to the

variable t.

Proof of Theorem 2.4. For simplicity let us introduce the notation Ω̃(a), S̃(a) and
Ω̃(a, b) as in the proof of Lemma 2.1. Suppose that the assumptions of theorem are
fulfilled. Multiplication of (1.5) by the function H(t, x) gives

H(t, x) div ~w(x) + H(t, x)c(x) + KH(t, x)‖~w(x)‖q + H(t, x)〈~w(x),~b(x)〉 ≤ 0

and equivalently

div(H(t, x)~w(x)) + H(t, x)c(x)

+ KH(t, x)‖~w(x)‖q + 〈~w(x),H(t, x)~b(x)−∇H(t, x)〉 ≤ 0

for x ∈ Ω̃(a) and t ≥ ‖x‖. This and Young inequality (2.9) implies

div(H(t, x)~w(x)) + H(t, x)c(x)− ‖H(t, x)~b(x)−∇H(t, x)‖p

(Kq)p−1pHp−1(t, x)
≤ 0.

Integrating this inequality over the domain Ω̃(a, t) and the Gauss-Ostrogradski
divergence theorem give

−
∫

S̃(a)

H(t, x)〈~w(x), ~ν(x)〉dS +
∫

Ω̃(a,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx ≤ 0

and hence∫
Ω̃(a,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx ≤

∫
S̃(a)

H(t, x)‖w(x)‖dS
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holds for t > a. This bound we will use to estimate the integral from the condition
(2.12) ∫

Ω̃(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

=
∫

Ω̃(a0,a)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

+
∫

Ω̃(a,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

≤
∫

Ω̃(a0,a)

H(t, x)c(x) dx +
∫

S̃(a)

H(t, x)‖w(x)‖dS.

Denote the maximal functions c∗(r) = max{|c(x)| : x ∈ S(r)} and w∗(r) =
max{‖w(x)‖ : x ∈ S(r)}. Then it holds∫

Ω̃(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

≤
∫ a

a0

[
k(r)

∫
S̃(r)

H(t, x) dS
]c∗(r)

k(r)
dr + k(a)

w∗(a)
k(a)

∫
S̃(a)

H(t, x) dS

≤ k(a0)
∫

S̃(a0)

H(t, x) dS
[ ∫ a

a0

c∗(r)
k(r)

dr +
w∗(a)
k(a)

]
for every t ≥ a0. From here we conclude that the expression(∫

S̃(a0)

H(t, x) dS
)−1

∫
Ω̃(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx

is bounded for all t ≥ a0. Hence (2.12) follows. The proof is complete. �

As in Theorem 2.2, we state the result of Theorem 2.4 also for Ω = Rn.

Theorem 2.6. Let c ∈ C(Ω(a0)), ~b ∈ C(Ω(a0), Rn). Suppose that the function
H(t, x) satisfies hypothesis (A2) and the following conditions:

(i) H(t, x) = 0 if and only if ‖x‖ = t

(ii) The vector function ~h(x) defined on D0 with the relation (2.10) satisfies∫
Ω(a0,t)

H1−p(t, x)‖~h(t, x)‖p dx < ∞

(iii) There exists a continuous function k(r) ∈ C([a0,∞), R+) such that the
function Φ(r) := k(r)

∫
S(r)

H(t, x) dx is positive and nonincreasing on [a0, t)
with respect to the variable r for every t, t > r.

Further suppose that there exist real numbers a ≥ a0, K > 0 and differentiable
vector function ~w(x) defined on Ω(a) which satisfies the Riccati inequality (1.5) on
Ω(a). Then

lim sup
t→∞

(∫
S(a0)

H(t, x) dS
)−1

∫
Ω(a0,t)

[
H(t, x)c(x)− ‖~h(t, x)‖p

(Kq)p−1pHp−1(t, x)

]
dx < ∞

The proof of this theorem is a simplification of the proof of Theorem 2.4.
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3. Oscillation for half-linear equation

In this section we will employ the results concerning the Riccati inequality to
derive oscillation criteria for the second order partial differential equation

div(‖∇u‖p−2∇u) + 〈~b(x), ‖∇u‖p−2∇u〉+ c(x)|u|p−2u = 0, (3.1)

where p > 1. The second order differential operator div(‖∇u‖p−2∇u) is called
the p-Laplacian and this operator is important in various technical applications
and physical problems – see [3]. The functions c and ~b are assumed to be Hölder
continuous functions on the domain Ω(1). The solution of (3.1) is every function
defined on Ω(1) which satisfies (3.1) everywhere on Ω(1).

The special cases of equation (3.1) are the linear equation

∆u + 〈~b,∇u〉+ c(x)u = 0 (3.2)

which can be obtained for p = 2, the Schrödinger equation

∆u + c(x)u = 0 (3.3)

obtained for p = 2 and ~b ≡ 0 and the undamped half-linear equation

div(‖∇u‖p−2∇u) + c(x)|u|p−2u = 0 (3.4)

for ~b ≡ 0.
Equation (3.1) is called the half-linear equation, since the operator on the left-

hand side is homogeneous and hence a constant multiple of every solution of (3.1)
is a solution of (3.1) as well. If p = 2, then equation (3.1) is linear elliptic equation
(3.2), however in the general case p 6= 2 is the linearity of the space of solutions
lost and only homogenity remains.

Concerning the linear equation two types of oscillation are studied – nodal oscil-
lation and strong oscillation. The equivalence between these two types of oscillation
has been proved in [12] for locally Hölder continuous function c, which is an usual
assumption concerning the smoothness of c, see also [4] for short discussion con-
cerning the general situation p 6= 2. In the connection to equation (3.1) we will use
the following concept of oscillation.

Definition 3.1. The function u defined on Ω(1) is said to be oscillatory, if the set
of the zeros of the function u is unbounded with respect to the norm. Equation
(3.1) is said to be oscillatory if every its solution defined on Ω(1) is oscillatory.

Definition 3.2. Let Ω be an unbounded domain in Rn. The function u defined on
Ω(1) is said to be oscillatory in the domain Ω, if the set of the zeros of the function
u, which lies in the closure Ω is unbounded with respect to the norm. Equation
(3.1) is said to be oscillatory in the domain Ω if every its solution defined on Ω(1)
is oscillatory in Ω. The equation is said to be nonoscillatory (nonoscillatory in Ω)
if it is not oscillatory (oscillatory in Ω).

Due to the homogenity of the set of solutions, it follows from the definition that
the equation which possesses a solution on Ω(1) is nonoscillatory, if it has a solution
u which is positive on Ω(T ) for some T > 1 and oscillatory otherwise. Further the
equation is nonoscillatory in Ω if it has a solution u such that u is positive on
Ω ∩ Ω(T ) for some T > 1 and oscillatory otherwise.

Jaroš et. al. studied in [5] the partial differential equation

div
(
a(x)‖∇u‖p−2∇u

)
+ c(x)|u|p−2u = 0, (3.5)
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where a(x) is a positive smooth function and obtained the Sturmian-types compar-
ison theorems and oscillation criteria for (3.5). The same results have been proved
independently by Došlý and Mař́ık in [4] for the case a(x) ≡ 1.

Theorem 3.3 ([4, 5]). Equation (3.5) is oscillatory, if the ordinary differential
equation

(rn−1a(r)|y′|p−2y′)′ + rn−1c(r)|y|p−2y = 0, ′ =
d
dr

is oscillatory, where a(r) and c(r) denote the mean value of the function a and c
over the sphere S(r), respectively, i.e.

a(r) =
1

ωnrn−1

∫
S(r)

a(x) dS, c(r) =
1

ωnrn−1

∫
S(r)

c(x) dS.

The main tool in the proof of this theorem is a Picone identity for equation
(3.5). Another application (not only to the oscillation or comparison theory) of the
Picone identity to the equation with p-Lapalacian can be found in [1].

Concerning the Riccati-equation methods in the oscillation theory of PDE, Nous-
sair and Swanson used in [13] the transformation

~w(x) = −α(‖x‖)
φ(u)

(A∇u)(x)

to detect nonexistence of eventually positive solution of the semilinear inequality
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ p(x)φ(u) ≤ 0,

which seems to be one of the first papers concerning the transformation of PDE
into the Riccati type equation.

In the paper of Schminke [15] is the Riccati technique used in the proof of nonex-
istence of positive and eventually positive solution of Schrödinger equation (3.3).
The results are expressed in the spectral terms, concerning the lower spectrum of
Schrödinger operator.

Recently Kandelaki et. al. [7] via the Riccati technique improved the Nehari and
Hille criteria for oscillation and nonoscillation of linear second order equation (1.2)
and extended these criteria to the half-linear equation (1.3). The further extension
of the oscillatory results from [7] to the case of equation (3.4) can be found in [10].
One of the typical result concerning the oscillation of equation (3.4) is the following.

Theorem 3.4 (Hartman–Wintner type criterion, [11]). Denote

C(t) =
p− 1
tp−1

∫ t

1

sp−2

∫
Ω(1,s)

‖x‖1−nc(x) dxds.

If
−∞ < lim inf

t→∞
C(t) < lim sup

t→∞
C(t) ≤ ∞ or if lim

t→∞
C(t) = ∞,

then equation (3.4) is oscillatory.

A quick look at this condition and also at Theorem 3.3 reveals that the potential
function c(x) is in these criteria contained only within the integral over the balls,
centered in the origin. As a consequence of this fact it follows that though the
criteria are sharp in the cases when the function c(x) is radially symmetric, these
criteria cannot detect the contingent oscillation of the equation in the cases when
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the mean value of the function c(x) over the balls centered in the origin is small. In
order to remove this disadvantage we will apply the theorems from the preceding
section to the Riccati equation obtained by the transformation of equation (3.1). As
a result we obtain the oscillation criteria which are applicable also in such extreme
cases when

∫
S(r)

c(x) dS = 0. The criteria can detect also the oscillation over the
more general exterior domains, than the exterior of some ball. An application to
the oscillation over the conic domain is given in Section 4.

Remark that there are only few results in the literature concerning the oscillation
on another types of unbounded domain, than an exterior of a ball. Let us mention
the paper of Atakarryev and Toraev [2], where Kneser–type oscillation criteria for
various types of unbounded domains were derived for the linear equation

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+ p(x)u = 0.

In the paper [6] of Jaroš et. al. the forced superlinear equation
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)|u|β−1u = f(x), β > 1

is studied via the Picone identity and the results concerning oscillation on the
domains with piecewise smooth boundary are established.

Our main tool will be the following Lemma 3.5 which presents the relationship
between positive solution of (3.1) and a solution of the Riccati–type equation.

Lemma 3.5. Let u be solution of (3.1) positive on the domain Ω. The vector
function ~w(x) defined by

~w(x) =
‖∇u(x)‖p−2∇u(x)
|u(x)|p−2u(x)

(3.6)

is well defined on Ω and satisfies the Riccati equation

div ~w + c(x) + (p− 1)‖~w‖q + 〈~w,~b(x)〉 = 0 (3.7)

for every x ∈ Ω.

Proof. From (3.6) it follows (the dependence on the variable x is suppressed in the
notation)

div ~w =
div(‖∇u‖p−2∇u)

|u|p−2u
− (p− 1)

‖∇u‖p

|u|p

on the domain Ω. Since u is a positive solution of (3.1) on Ω it follows

div ~w = −c− 〈~b, ‖∇u‖p−2∇u

|u|p−2u
〉 − (p− 1)

‖∇u‖p

|u|p

= −c− (p− 1)
‖∇u‖p

|u|p
− 〈~b, ‖∇u‖p−2∇u

|u|p−2u
〉.

Application of (3.6) gives div ~w = −c − (p − 1)‖~w‖q − 〈~b, ~w〉 on Ω. Hence (3.7)
follows. �

The first theorem concerns the case in which left-hand sides of (3.7) and (1.4)
differ only in a multiple by the function α.
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Theorem 3.6. Suppose that there exists function α ∈ C1(Ω(a0), R+) which satis-
fies

(i) for x ∈ Ω(a0)
∇α(x) = ~b(x)α(x) (3.8)

(ii) the condition (2.7) holds and
(iii)

lim
t→∞

∫
Ω(a0,t)

α(x)c(x) dx = ∞. (3.9)

Then equation (3.1) is oscillatory in Ω(a0).

Proof. Suppose, by contradiction, that (2.7), (3.8) and (3.9) hold and (3.1) is not
oscillatory in Ω(a0). Then there exists a real number a ≥ a0 such that equation
(3.1) possesses a solution u positive on Ω(a). The function ~w(x) defined on Ω(a)
by (3.6) is well-defined, satisfies (3.7) on Ω(a) and is bounded on every compact
subset of Ω(a). In view of the condition (3.8) equation (3.7) can be written in the
form

α div ~w + αc + (p− 1)α‖~w‖q + 〈~w,∇α〉 = 0
which implies (1.4) with K = p− 1. Theorem 2.2 shows that (2.8) holds, a contra-
diction to (3.9). �

The following theorem concerns the linear case p = 2.

Theorem 3.7. Let α ∈ C(Ω(a0), R+) Denote

C1(x) = c(x)− 1
4α2(x)

‖α(x)~b(x)−∇α(x)‖2 − 1
2α(x)

div
(
α(x)~b(x)−∇α(x)

)
.

Suppose that ∫ ∞

a0

(∫
S(t)

α(x) dS
)−1

dt = ∞ ,

lim
t→∞

∫
Ω(a0,t)

α(x)C1(x) dx = ∞. (3.10)

Then equation (3.2) is oscillatory in Ω(a0).

Proof. Suppose, by contradiction, that (3.2) is nonoscillatory. As in the proof of
Theorem 3.6, there exists a ≥ a0 such that (3.7) with p = 2 has a solution ~w(x)
defined on Ω(a). Denote ~W (x) = ~w(x) + 1

2

(
~b − ∇α

α

)
. Direct computation shows

that the function ~W satisfies the differential equation

div ~W + C1(x) + ‖~w‖2 +
〈∇α

α
, ~W

〉
= 0

on Ω(a). From here we conclude that the function ~W satisfies

div(α ~W ) + C1α + α‖ ~W‖2 = 0

on Ω(a). However by Theorem 2.2 inequality (2.8) with C1 instead of c holds, a
contradiction to (3.10). �

The next theorem concerns the general case p > 1. In this case we allow also
another types of unbounded domains, than Ω(a0).
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Theorem 3.8. Let Ω be an unbounded domain which satisfies (A1). Suppose that
k ∈ (1,∞) is a real number and α ∈ C1(Ω(a0), R+

0 ) is a function defined on Ω(a0)
such that

(i) α(x) = 0 if and only if x 6∈ Ω ∩ Ω(a0)
(ii) (2.1) holds.

For x ∈ Ω ∩ Ω(a0) denote

C2(x) = c(x)− k

(pα(x))p
‖α(x)~b(x)−∇α(x)‖p.

If

lim
t→∞

∫
Ω∩Ω(a0,t)

α(x)C2(x) dx = ∞ (3.11)

holds, then (3.1) is oscillatory in Ω.

Remark 3.9. Under (3.11) we understand that the integral

f(t) =
∫

Ω∩S(t)

α(x)C2(x) dS

which may have singularity near the boundary ∂Ω is convergent for large t’s and
the function f satisfy

∫∞
f(t) dt = ∞.

Proof of Theorem 3.8. Suppose, by contradiction, that (3.1) is not oscillatory. Then
there exists a number a ≥ a0 and a function u defined on Ω(a) which is positive on
Ω ∩ Ω(a) and satisfies (3.1) on Ω∩Ω(a). The vector function ~w(x) defined by (3.6)
satisfies (3.7) on Ω ∩ Ω(a) and is bounded on every compact subset of Ω ∩ Ω(a).
Denote l = k

1
p−1 and let l∗ be a conjugate number to the number l, i.e. 1

l + 1
l∗ = 1

holds. Clearly l > 1 and l∗ > 1. The Riccati equation (3.7) can be written in the
form

div ~w + c(x) +
p− 1

l
‖~w‖q + 〈~w,~b(x)− ∇α

α
〉+

p− 1
l∗

‖~w‖q + 〈~w,
∇α

α
〉 = 0

for x ∈ Ω ∩ Ω(a). From inequality (2.9) it follows

p− 1
l

‖~w‖q + 〈~w,~b− ∇α

α
〉 =

(p− 1)q
l

{‖~w‖q

q
+ 〈~w,

l

(p− 1)q

(
~b− ∇α

α

)
〉
}

≥ − (p− 1)q
l

lp

[(p− 1)q]p
‖~b− ∇α

α
‖p 1

p

= − lp−1

pp
‖~b− ∇α

α
‖p

= − k

pp
‖~b− ∇α

α
‖p

Hence the function ~w is a solution of the inequality

div ~w + C2(x) +
p− 1

l∗
‖~w‖q + 〈~w,

∇α

α
〉 ≤ 0

on Ω ∩ Ω(a). This last inequality is equivalent to

div(α~w) + αC2 +
p− 1

l∗
α‖~w‖q ≤ 0.

By Theorem 2.1 inequality (2.2) with C2 instead of c holds, a contradiction to
(3.11). The proof is complete. �
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The last theorem makes use of the two-parametric weighting function H(t, x)
from Theorem 2.4 to prove the nonexistence of the solution of Riccati equation.

Theorem 3.10. Let Ω be an unbounded domain in Rn which satisfy (A1). Let
H(t, x) be the function which satisfies hypothesis (A2) and has the properties (i)–
(v) of Theorem 2.4. If

lim sup
t→∞

(∫
S(a0)

H(t, x) dS
)−1

∫
Ω(a0,t)∩Ω

[
H(t, x)c(x)− ‖~h(t, x)‖p

ppHp−1(t, x)

]
dx = ∞,

(3.12)
then equation (3.1) is oscillatory in Ω.

Proof. Suppose that the equation is nonoscillatory. Then the Riccati equation
(3.7) has a solution defined on Ω∩Ω(T ) for some T > 1, which is bounded near the
boundary ∂Ω. Hence (2.12) of Theorem 2.4 with K = p− 1 holds, a contradiction
to (3.12). Hence the theorem follows. �

4. Examples

In the last part of the paper we will illustrate the ideas from the preceding
section. The specification of the function α in Theorem 3.8 leads to the following
oscillation criterion for a conic domain on the plane. In this case the function α is
only the function of a polar coordinate φ.

Corollary 4.1. Let us consider equation (3.4) on the plane (i.e. n = 2) with polar
coordinates (r, φ) and let

Ω = {(x, y) ∈ R2 : φ1 < φ(x, y) < φ2}, (4.1)

where 0 ≤ φ1 < φ2 ≤ 2π and φ(x, y) is a polar coordinate of the point (x, y) ∈ R2.
Further suppose that the smooth function α ∈ C1(Ω(1), R+

0 ) does not depend on r,
i.e. α = α(φ). Also, suppose that

(i) α(φ) 6= 0 if and only if φ ∈ (φ1, φ2)
(ii)

I1 :=
∫ φ2

φ1

|α′φ(φ)|p

4αp−1(φ)
< ∞,

where α′φ = ∂α
∂φ .

Each one of the following conditions is sufficient for oscillation of (3.4) on the
domain Ω:

(i) p > 2 and

lim
t→∞

∫ t

1

r

∫ φ2

φ1

c(r, φ)α(φ) dφ dr = ∞ (4.2)

(ii) p = 2 and

lim inf
t→∞

1
ln t

∫ t

1

r

∫ φ2

φ1

c(r, φ) α(φ) dφdr > I1, (4.3)

where c(r, φ) is the potential c(x) transformed into the polar coordinates.
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Proof. First let us remind that in the polar coordinates dx = r dr dφ and dS = r dφ
holds. Direct computation shows that∫ ∞(∫

Ω∩S(t)

α(φ) dS
)1−q

dt =
∫ φ2

φ1

α(φ) dφ ·
∫ ∞

t1−q dt.

and the integral diverges, since p ≥ 2 is equivalent to q ≤ 2. Hence (2.1) holds.
Transforming the nabla operator to the polar coordinates gives∇α = (0, r−1α′φ(φ)).
Hence, according to Theorem 3.8, it is sufficient to show that there exists k > 1
such that

lim
t→∞

∫
Ω∩Ω(1,t)

[
c(r, φ)α(φ)− k

pp

|α′φ(φ)|p

rpαp−1(φ)

]
dx = ∞. (4.4)

Since for p > 2

lim
t→∞

∫
Ω∩Ω(1,t)

|α′φ(φ)|p

rpαp−1(φ)
dx =

∫ φ2

φ1

|α′φ(φ)|p

αp−1(φ)
dφ lim

t→∞

∫ t

1

r1−p dr < ∞,

the conditions (4.4) and (4.2) are equivalent.
Finally, suppose p = 2. From (4.3) it follows that there exists t0 > 1 and ε > 0

such that
1

ln t

∫
Ω∩Ω(1,t)

c(r, φ) α(φ) dx > I1 + 2ε

for all t ≥ t0 and hence∫
Ω∩Ω(1,t)

c(r, φ) α(φ) dx >
[
kI1 + ε

]
ln t

where k = 1 + εI−1
1 holds for t ≥ t0. Since

kI1 ln t =
k ln t

4

∫ φ2

φ1

|α′φ(φ)|2α−1(φ) dφ

=
∫ t

1

k

4r

(∫ φ2

φ1

|α′φ(φ)|2α−1(φ) dφ
)

dr

=
∫

Ω∩Ω(1,t)

k

4r2
|α′φ(φ)|2α−1(φ) dx

holds, the last inequality can be written in the form∫
Ω∩Ω(1,t)

[
c(r, φ)α(φ)− k

4
|α′φ(φ)|2

r2α(φ)

]
dx > ε ln t

and the limit process t → ∞ shows that (4.4) holds also for p = 2. The proof is
complete. �

Example 4.2. For n = 2 let us consider the Schrödinger equation (3.3), which in
the polar coordinates (r, φ) reads as

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂φ2
+ c(r, φ)u = 0. (4.5)

In Corollary 4.1 let us choose φ1 = 0, φ2 = π, α(φ) = sin2 φ for φ ∈ [0, π] and
α(φ) = 0 otherwise. In this case the direct computation shows that the oscillation
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constant I1 in (4.3) is π
2 , i.e. the equation is oscillatory on the half-plane Ω =

{(x1, x2) ∈ R2 : x2 > 0} if

lim
t→∞

1
ln t

∫ t

1

r

∫ π

0

c(r, φ) sin2(φ) dφ dr >
π

2
. (4.6)

Similarly, the choice α(φ) = sin3 φ gives an oscillation constant 3/2.

Remark 4.3. It is easy to see that the condition (4.6) can be fulfilled also for the
function c which satisfy

∫ 2π

0
c(r, φ) dφ = 0 and hence the criteria from Theorems

3.3 and 3.4 fails to detect the oscillation.

Another specification of the function α(x) leads to the following corollary.

Corollary 4.4. Let Ω be an unbounded domain in R2 specified in Corollary 4.1.
Let A ∈ C1([0, 2π], R+

0 ) be a smooth function satisfying
(i) A(φ) 6= 0 if and only in φ ∈ (φ1, φ2)
(ii) A(0) = A(2π) and A′(0+) = A′(2π−)
(iii) the following integral converges

I2 :=
∫ φ2

φ1

[A2(φ)(p− 2)2 + (A′(φ))2]
p
2

ppAp−1(φ)
dφ < ∞. (4.7)

If

lim inf
t→∞

1
ln t

∫ t

1

rp−1

∫ φ2

φ1

c(r, φ)A(φ) dφdr > I2, (4.8)

then (3.4) is oscillatory in Ω.

Proof. Let α be defined in polar coordinates by the relation

α(x(r, φ)) = rp−2A(φ).

Computation in the polar coordinates gives∫ ∞(∫
Ω∩S(t)

α(x) dS
)1−q

dt =
∫ ∞(

rp−1
)1−q

dr

∫ φ2

φ1

A(φ) dφ

=
∫ ∞ 1

r
dr

∫ φ2

φ1

A(φ) dφ = ∞

and hence (2.1) holds. The application of the nabla operator in polar coordinates
yields

∇α(x(r, φ)) =
(∂α(x(r, φ))

∂r
,
1
r

∂α(x(r, φ))
∂φ

)
= rp−3((p− 2)A(φ), A′(φ))

and hence on Ω

‖∇α(x(r, φ))‖p

αp−1(x(r, φ))
=

rp(p−3)
[
(p− 2)2A2(φ) + A′2(φ)

]p/2

r(p−1)(p−2)Ap−1(φ)

= r−2

[
(p− 2)2A2(φ) + A′2(φ)

]p/2

Ap−1(φ)
holds. Integration over the part Ω ∩ S(r) of the sphere S(r) in polar coordinates
gives (in view of (4.7))∫

Ω∩S(r)

‖∇α(x(r, φ))‖p

ppαp−1(x(r, φ))
dS = r−1I2.
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From (4.8) it follows that there exist a real numbers ε > 0 and t0 > 1 such that

1
ln t

∫ t

1

rp−1

∫ φ2

φ1

c(r, φ)A(φ) dφ dr > I2 + 2ε = I2(1 + εI−1
2 ) + ε (4.9)

holds for t > t0. Denote k = 1 + εI−1
2 . Clearly k > 1. From (4.9) it follows that for

t > t0 ∫ t

1

rp−1

∫ φ2

φ1

c(r, φ)A(φ) dφ dr > kI2 ln t + ε ln t

holds. This inequality can be written in the form∫ t

1

[
rp−1

∫ φ2

φ1

c(r, φ)A(φ) dφ− r−1kI2

]
dr > ε ln t

which is equivalent to∫
Ω∩Ω(1,t)

[
c(r, φ)α(r, φ)− k

‖∇α(r, φ)‖p

ppαp−1(r, φ)

]
dx > ε ln t,

where dx = r dr dφ. Now the limit process t → ∞ shows that (3.11) holds and
hence (3.4) is oscillatory in Ω by Theorem 3.8. �

Example 4.5. An example of the function A which for p > 1, φ1 = 0 and φ2 =
π satisfies the conditions from Corollary 4.4 is A(φ) = sinp φ for φ ∈ (0, π) and
A(φ) = 0 otherwise. In this case the condition

lim inf
t→∞

1
ln t

∫ t

1

rp−1
( ∫ π

0

c(r, φ) sinp φdφ
)

dr

>

∫ π

0

[
(p− 2)2 sin2p φ + p2 sin2p−2 φ cos2 φ

]p/2

pp sinp(p−1) φ
dφ

is sufficient for oscillation of (3.4) (with n = 2) over the domain Ω specified in (4.1).
Here c(r, φ) is the potential c(x) transformed into the polar coordinates (r, φ), i.e.
c(r, φ) = c(x(r, φ)).

Corollary 4.6. Let us consider the Schrödinger equation (4.5) in the polar co-
ordinates. Every of the following conditions is sufficient for the oscillation of the
equation over the half-plane

Ω = {(x1, x2) ∈ R2 : x2 > 0}. (4.10)

(i) There exists λ > 1 such that

lim sup
t→∞

t−λ

∫ t

1

(t− r)λ
(
r

∫ π

0

c(r, φ) sin2 φdφ− π

2r

)
dr = ∞. (4.11)

(ii) There exists λ > 1 and γ < 0 such that

lim sup
t→∞

t−λ

∫ t

1

rγ+1(t− r)λ

∫ π

0

c(r, φ) sin2 φdφ dr = ∞. (4.12)

Proof. For γ ≤ 0 let us define

H(t, x) =

{
rγ(t− r)λ sin2 φ φ ∈ (0π)
0 otherwise,



16 ROBERT MAŘÍK EJDE-2004/11

where (r, φ) are the polar coordinates of the point x ∈ R2. In the polar coordinates
∇ = ( ∂

∂r , 1
r

∂
∂φ ). Hence

~h(t, x(r, φ)) = −∇H(t, x(r, φ))

= −
(
rγ−1(t− r)λ−1(γ(t− r)− λr) sin2 φ, 2rγ−1(t− r)λ sinφ cos φ

)
and consequently

‖~h(t, x(r, φ))‖2

H(t, x(r, φ))
= γ2rγ−2(t− r)λ sin2 φ− 2λγrγ−1(t− r)λ−1 sin2 φ

+ λ2rγ(t− r)λ−2 sin2 φ + 4rγ−2(t− r)λ cos2 φ. (4.13)

Now it is clear that for λ > 1 inequality λ− 2 > −1 holds. Hence the integral over
Ω ∩ Ω(1, t) converges and (2.11) for p = 2 holds. Further∫

S(r)∩Ω

H(t, x) dS = r

∫ π

0

rγ(t− r)λ sin2 φ dφ =
π

2
rγ+1(t− r)λ

and the condition (v) of Theorem 2.4 holds with k(r) = r−1−γ . It remains to
prove that the conditions (4.11) and (4.12) imply the condition (3.12). Since∫ π

0
sin2 φdφ =

∫ π

0
cos2 φ dφ = π

2 , it follows from (4.13) that∫
S(r)∩Ω

‖~h(t, x(r, φ))‖2

H(t, x(r, φ))
dS =

π

2
(γ2 + 4)rγ−1(t− r)λ − πλγrγ(t− r)λ−1

+
π

2
λ2rγ+1(t− r)λ−2. (4.14)

Next we will show that

lim
t→∞

t−λ

∫ t

1

rγ(t− r)λ−1 dr < ∞ (4.15)

lim
t→∞

t−λ

∫ t

1

rγ+1(t− r)λ−2 dr < ∞ (4.16)

and for γ < 0 also

lim
t→∞

t−λ

∫ t

1

rγ−1(t− r)λ dr < ∞ (4.17)

holds. Inequality (4.15) follows from the estimate∫ t

1

rγ(t− r)λ−1 dr ≤
∫ t

1

1γ(t− r)λ−1 dr =
1
λ

(t− 1)λ.

Integration by parts shows∫ t

1

rγ+1(t− r)λ−2 dr =
(t− 1)λ−1

λ− 1
+

γ + 1
λ− 1

∫ t

1

rγ(t− r)λ−1 dr

and in view of (4.15) inequality (4.16) holds as well. Finally, for γ < 0 integration
by parts gives ∫ t

1

rγ−1(t− r)λ dr =
(t− 1)λ

γ
+

λ

γ

∫ t

1

rγ(t− r)λ−1 dr

and again the inequality (4.17) follows from (4.15). Hence the terms from (4.14)
have no influence on the divergence of (3.12) (except the term r−1(t − r)λ which



EJDE-2004/11 RICCATI-TYPE INEQUALITY 17

appears for γ = 0) and hence (3.12) follows from (4.11) and (4.12), respectively.
Consequently, the equation is oscillatory by Theorem 3.10. �
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[5] J. Jaroš, T. Kusano, N. Yoshida, A Picone–type identity and Sturmian comparison and

oscillation theorems for a class of half-linear partial differential equations of second order,
Nonlin. Anal. TMA 40 (2000), 381–395.
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