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NONTRIVIAL SOLUTION FOR A THREE-POINT
BOUNDARY-VALUE PROBLEM

YONG-PING SUN

Abstract. In this paper, we study the existence of nontrivial solutions for

the second-order three-point boundary-value problem

u′′ + f(t, u) = 0, 0 < t < 1,

u′(0) = 0, u(1) = αu′(η).

where η ∈ (0, 1), α ∈ R, f ∈ C([0, 1] × R, R). Under certain growth condi-
tions on the nonlinearity f and by using Leray-Schauder nonlinear alternative,
sufficient conditions for the existence of nontrivial solution are obtained. We
illustrate the results obtained with some examples.

1. Introduction

This paper, we prove existence results for the following second-order three-point
boundary value problem (BVP):

u′′ + f(t, u) = 0, 0 < t < 1,

u′(0) = 0, u(1) = αu′(η).
(1.1)

where η ∈ (0, 1), α ∈ R, f ∈ C([0, 1]× R, R).
The study of three-point BVP for certain nonlinear ordinary differential equa-

tions was initiated by Gupta [4]. Over the ten yeas, three-point boundary value
problems have been extensively studied by many authors, for example, see [2, 3,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], and references therein. But in the existing
literature on the BVP (1.1) is few. Most of them studied the following three-point
BVP

u′′ + f(t, u) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η).

(for example, Gupta [5], Ma [13], Liu [10], Webb [16], He and Ge [7]) or

u′′ + f(t, u) = 0, 0 < t < 1,

u′(0) = 0, u(1) = αu(η).
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(for example, Liu [11] and Webb [16]). In a recent paper, Infante [9] investigated
the BVP (1.1) for the first time. The aim of the present paper is to establish
some simple criteria of the existence of nontrivial solution for the BVP (1.1). Note
that we do not require any monotonicity and nonnegativity on f . The results we
obtained are new.

The paper is organized as follows. In Section 2, we present two lemmas that will
be used to prove the main results. In Section 3, we obtain some existence results
for nontrivial solution of the BVP (1.1). Finally, in Section 4, as an application,
we give some examples to illustrate the results we obtained.

2. Preliminaries

Let E = C[0, 1], with supremum norm ‖y‖ = supt∈[0,1] |y(t)| for any y ∈ E. A
solution u(t) of the BVP (1.1) is called nontrivial solution if u(t) 6≡ 0. In arriving
at our results, we need to state two preliminary results.

Lemma 2.1. Let y ∈ C[0, 1], then the three-point BVP

u′′ + y(t) = 0, 0 < t < 1,

u′(0) = 0, u(1) = αu′(η).

has a unique solution

u(t) =
∫ 1

0

(1− s)y(s)ds−
∫ t

0

(t− s)y(s)ds− α

∫ η

0

y(s)ds.

The proof of this lemma is easy, and we omit it.
Define the integral operator T : E → E by

Tu(t) =
∫ 1

0

(1− s)f(s, u(s))ds−
∫ t

0

(t− s)f(s, u(s))ds

− α

∫ η

0

f(s, u(s))ds, t ∈ [0, 1].
(2.1)

By Lemma 2.1, the BVP (1.1) has a solution if and only if the operator T has a
fixed point in E. So we only need to seek a fixed point of T in E. By Ascoli-Arzela
Theorem, we can prove that T is a completely continuous operator. The key tool
in our approach is the following Leray-Schauder nonlinear alternative (See [1]).

Lemma 2.2. Let E be Banach space and Ω be a bounded open subset of E, 0 ∈ Ω
T : Ω → E be a completely continuous operator. Then, either there exists x ∈ ∂Ω,
λ > 1 such that T (x) = λx, or there exists a fixed point x∗ ∈ Ω.

3. Main Results

In this section, we present and prove our main results.

Theorem 3.1. Suppose f(t, 0) 6≡ 0, and there exist nonnegative functions k, h ∈
L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R,

2
∫ 1

0

(1− s)k(s)ds + |α|
∫ η

0

k(s)ds < 1.

Then the BVP (1.1) has at least one nontrivial solution u∗ ∈ C[0, 1].
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Proof. Let

A = 2
∫ 1

0

(1− s)k(s)ds + |α|
∫ η

0

k(s)ds,

B = 2
∫ 1

0

(1− s)h(s)ds + |α|
∫ η

0

h(s)ds.

Then A < 1. Since f(t, 0) 6≡ 0, there exists an interval [σ, τ ] ⊂ [0, 1] such that
minσ≤t≤τ |f(t, 0)| > 0. On the other hand, from h(t) ≥ |f(t, 0)|, a.e. t ∈ [0, 1], we
know that B > 0. Let m = B(1 − A)−1, Ω = {u ∈ C[0, 1] : ‖u‖ < m}. Suppose
u ∈ ∂Ω, λ > 1 such that Tu = λu, then

λm = λ‖u‖ = ‖Tu‖ = max
0≤t≤1

|(Tu)(t)|

≤
∫ 1

0

(1− s)|f(s, u(s))|ds + max
0≤t≤1

∫ t

0

(t− s)|f(s, u(s))|ds

+ |α|
∫ η

0

|f(s, u(s))|ds

≤ 2
∫ 1

0

(1− s)|f(s, u(s))|ds + |α|
∫ η

0

|f(s, u(s))|ds

≤
[
2

∫ 1

0

(1− s)k(s)|u(s)|ds + |α|
∫ η

0

k(s)|u(s)|ds
]

+
[
2

∫ 1

0

(1− s)h(s)ds + |α|
∫ η

0

h(s)ds
]

≤ A‖u‖+ B = Am + B.

Therefore,

λ ≤ A +
B

m
= A +

B

B(1−A)−1
= A + (1−A) = 1,

this contradicts λ > 1. By Lemma 2.2, T has a fixed point u∗ ∈ Ω. In view of
f(t, 0) 6≡ 0, the BVP (1.1) has a nontrivial solution u∗ ∈ C[0, 1]. This completes
the proof. �

Theorem 3.2. Suppose f(t, 0) 6≡ 0, and there exist nonnegative functions k, h ∈
L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions is fulfilled:
(1) There exists constant p > 1 such that∫ 1

0

kp(s)ds <
[ (1 + q)1/q

2 + |α| [η(1 + q)]1/q

]p
,

(1
p

+
1
q

= 1
)
.

(2) There exists a constant µ > −1 such that

k(s) ≤ (1 + µ)(2 + µ)
2 + |α|(2 + µ)η1+µ

sµ, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

(1 + µ)(2 + µ)
2 + |α|(2 + µ)η1+µ

sµ
}

> 0.
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(3) There exists a constant µ > −1 such that

k(s) ≤ (1 + µ)(2 + µ)
2(1 + µ) + |α|(2 + µ)

(1− s)µ, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

(1 + µ)(2 + µ)
2(1 + µ) + |α|(2 + µ)

(1− s)µ
}

> 0.

(4) k satisfies

k(s) ≤ 1
1 + |α|η

, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

1
1 + |α|η

}
> 0.

(5) f satisfies

Λ := lim sup
|x|→∞

max
t∈[0,1]

∣∣f(t, x)
x

∣∣ <
1

1 + |α|η
.

Then the BVP (1.1) has at least one nontrivial solution u∗ ∈ C[0, 1].

Proof. Let A be given in Theorem 3.1. In view of Theorem 3.1, we only need to
prove A < 1.
(1) By using the Hölder inequality, we have

A ≤
[ ∫ 1

0

kp(s)ds
]1/p{

2
[ ∫ 1

0

(1− s)qds
]1/q

+ |α|
[ ∫ η

0

1qds
]1/q}

≤
[ ∫ 1

0

kp(s)ds
]1/p[

2
( 1
1 + q

)1/q + |α| η1/q
]

<
(1 + q)1/q

2 + |α| [η(1 + q)]1/q
· 2 + |α| [η(1 + q)]1/q

(1 + q)1/q
= 1.

(2) In this case, we have

A <
(1 + µ)(2 + µ)

2 + |α|(2 + µ)η1+µ

[
2

∫ 1

0

(1− s)sµds + |α|
∫ η

0

sµds
]

≤ (1 + µ)(2 + µ)
2 + |α|(2 + µ)η1+µ

[ 2
(1 + µ)(2 + µ)

+ |α| · η1+µ

1 + µ

]
=

(1 + µ)(2 + µ)
2 + |α|(2 + µ)η1+µ

· 2 + |α|(2 + µ)η1+µ

(1 + µ)(2 + µ)
= 1.

(3) In this case, we have

A <
(1 + µ)(2 + µ)

2(1 + µ) + |α|(2 + µ)

[
2

∫ 1

0

(1− s)1+µds + |α|
∫ η

0

(1− s)µds
]

=
(1 + µ)(2 + µ)

2(1 + µ) + |α|(2 + µ)

[ 2
2 + µ

+ |α| · 1− (1− η)1+µ

1 + µ

]
≤ (1 + µ)(2 + µ)

2(1 + µ) + |α|(2 + µ)

[ 2
2 + µ

+ |α| · 1
1 + µ

]
=

(1 + µ)(2 + µ)
2(1 + µ) + |α|(2 + µ)

· 2(1 + µ) + |α|(2 + µ)
(1 + µ)(2 + µ)

= 1.
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(4) In this case, we have

A <
1

1 + |α|η

[
2

∫ 1

0

(1− s)ds + |α|
∫ η

0

ds
]

=
1

1 + |α|η
(1 + |α|η) = 1.

(5) Let ε = 1
2 ( 1

1+|α|η − Λ), then there exists c > 0 such that

|f(t, x)| ≤
( 1
1 + |α|η

− ε
)
|x|, (t, x) ∈ [0, 1]× R \ (−c, c).

Set M = max{|f(t, x)| : (t, x) ∈ [0, 1]× [−c, c]}, then

|f(t, x)| ≤
( 1
1 + |α|η

− ε
)
|x|+ M, (t, x) ∈ [0, 1]× R.

Set k(s) = 1
1+|α|η − ε, h(s) = M , then (4) holds. This completes the proof. �

Corollary 3.3. Suppose f(t, 0) 6≡ 0, and there exist two nonnegative functions
k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions holds
(1) There exists a constant p > 1 such that∫ 1

0

kp(s)ds <
[ (1 + q)1/q

2 + |α| (1 + q)1/q

]p

,
(1
p

+
1
q

= 1
)
.

(2) There exists a constant µ > −1 such that

k(s) ≤ (1 + µ)(2 + µ)
2 + |α|(2 + µ)

sµ, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

(1 + µ)(2 + µ)
2 + |α|(2 + µ)

sµ
}

> 0.

(3) k satisfies

k(s) ≤ 1
1 + |α|

, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

1
1 + |α|

}
> 0.

(4) f satisfies

Λ =: lim sup
|x|→∞

max
t∈[0,1]

∣∣f(t, x)
x

∣∣ <
1

1 + |α|
.

Then the BVP (1.1) has at least one nontrivial solution u∗ ∈ C[0, 1].

Proof. In this case, we have

A = 2
∫ 1

0

(1− s)k(s)ds + |α|
∫ η

0

k(s)ds ≤ 2
∫ 1

0

(1− s)k(s)ds + |α|
∫ 1

0

k(s)ds.

The rest of the proof is the same as in Theorem 3.2. �
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Corollary 3.4. Suppose f(t, 0) 6≡ 0, and there exist two nonnegative functions
k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions is holds.
(1) There exists a constant p > 1 such that∫ 1

0

kp(s)ds <
[ 1
2 + |α|

·
( 1 + q

21+q − 1
)1/q

]p

,
(1
p

+
1
q

= 1
)
.

(2) There exists a constant µ > −1 such that

k(s) ≤ (1 + µ)(2 + µ)
(2 + |α|)(µ + 3)

sµ, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

(1 + µ)(2 + µ)
(2 + |α|)(µ + 3)

sµ
}

> 0.

(3) There exists a constant µ > −2 such that

k(s) ≤ (2 + µ)
(2 + |α|)(22+µ − 1)

(2− s)µ, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

(2 + µ)
(2 + |α|)(22+µ − 1)

(2− s)µ
}

> 0.

Then the BVP (1.1) has at least one nontrivial solution u∗ ∈ C[0, 1].

Proof. In this case,

A = 2
∫ 1

0

(1− s)k(s)ds + |α|
∫ η

0

k(s)ds

≤ 2
∫ 1

0

(1− s)k(s)ds + |α|
∫ 1

0

k(s)ds

≤ (2 + |α|)
∫ 1

0

(2− s)k(s)ds.

(1) Using the Hölder inequality,

A ≤ (2 + |α|)
∫ 1

0

(2− s)k(s)ds

≤ (2 + |α|)
[ ∫ 1

0

kp(s)ds
]1/p[ ∫ 1

0

(2− s)qds
]1/q

< (2 + |α|) · 1
2 + |α|

( 1 + q

21+q − 1
)1/q ·

(21+q − 1
1 + q

)1/q = 1.

(2) In this case, we have

A ≤ (2 + |α|)
∫ 1

0

(2− s)k(s)ds

< (2 + |α|) · (1 + µ)(2 + µ)
(2 + |α|)(µ + 3)

∫ 1

0

(2− s)sµds

=
(1 + µ)(2 + µ)

µ + 3
· µ + 3
(1 + µ)(2 + µ)

= 1.
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(3) In this case,

A ≤ (2 + |α|)
∫ 1

0

(2− s)k(s)ds

< (2 + |α|) · (2 + µ)
(2 + |α|)(22+µ − 1)

∫ 1

0

(2− s)1+µds

=
2 + µ

22+µ − 1
· 22+µ − 1

2 + µ
= 1.

The proof is complete. �

4. Examples

In this section, in order to illustrate our results, we consider some examples.

Example 4.1. Consider the three-point BVP

u′′ + (t− t2)|u| sinu− t2u + t3 − 2 sin t = 0, 0 < t < 1,

u′(0) = 0, u(1) = 4u′(1/2).
(4.1)

Set α = 4, η = 1
2 , and

f(t, x) = (t− t2)|x| sinx− t2x + t3 − 2 sin t,

k(t) = t, h(t) = t3 + 2 sin t.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions and

f(t, x) ≤ k(t)|x|+ h(t), (t, x) ∈ [0, 1]× R.

and

A = 2
∫ 1

0

(1− s)k(s)ds + |α|
∫ η

0

k(s)ds =
5
6

< 1.

Hence, by Theorem 3.1, the BVP (4.1) has at least one nontrivial solution u∗ in
C[0, 1].

Example 4.2. Consider the three-point BVP

u′′ +
2
√

tu3

3 + u4
e−|sin(u2−t)| + 3et − 2 sin t = 0, 0 < t < 1,

u′(0) = 0, u(1) =
√

3u′(1/4).
(4.2)

Set α =
√

3, η = 1
4 , and

f(t, x) =
2
√

tx3

3 + x4
e−| sin(x2−t)| + 3et − 2 sin t,

k(t) =

√
t

3
, h(t) = 3et + 2 sin t.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions and

f(t, x) ≤ k(t)|x|+ h(t), (t, x) ∈ [0, 1]× R.
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Let p = q = 2, then ∫ 1

0

kp(s)ds =
∫ 1

0

1
3
s ds =

1
6
,[ (1 + q)1/q

2 + |α|[η(1 + q)]1/q

]p

=
12
49

.

Therefore, ∫ 1

0

kp(s)ds <
[ (1 + q)1/q

2 + |α|[η(1 + q)]1/q

]p

.

Thus, by Theorem 3.2 (1), the BVP (4.2) has at least one nontrivial solution u∗ in
C[0, 1].

Example 4.3. Consider the three-point BVP

u′′ +
u2e−t

3(1 + u2)(1 + 2eu)
√

t
+

1
7
√

t
u + et −

√
t cos t = 0, 0 < t < 1,

u′(0) = 0, u(1) =
1
3
u′(1/4).

(4.3)

Set α = 1
3 , η = 1

4 , and

f(t, x) =
x2e−t

3(1 + x2)(1 + 2ex)
√

t
+

1
7
√

t
x + et −

√
t cos t,

k(t) =
1

6
√

t
+

1
7
√

t
, h(t) = et +

√
t cos t.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

f(t, x) ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R,

Let µ = − 1
2 , then

(1 + µ)(2 + µ)
2 + |α|(2 + µ)η1+µ

=
1
3
.

Therefore,

k(s) =
1

6
√

s
+

1
7
√

s
<

1
6
√

s
+

1
6
√

s
=

1
3
s−

1
2

=
(1 + µ)(2 + µ)

2 + |α|(2 + µ)η1+µ
sµ, a.e. s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

(1 + µ)(2 + µ)
2 + |α|(2 + µ)η1+µ

sµ
}

= 1 > 0.

Hence, by Theorem 3.2 (2), the BVP (4.3) has at least one nontrivial solution
u∗ ∈ C[0, 1].

Example 4.4. Consider the three-point BVP

u′′ +
u2e−u2

3(1 + u2) 4
√

1− t
− 3e−t +

√
sin t = 0, 0 < t < 1,

u′(0) = 0, u(1) = −3u′(1/4).
(4.4)
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Set η = 1
4 , α = −3, and

f(t, x) =
x2e−x2

3(1 + x2) 4
√

1− t
− 3e−t +

√
sin t,

k(t) =
1

6 4
√

1− t
, h(t) = 3e−t +

√
sin t.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

f(t, x) ≤ k(t)|x|+ h(t), a.e.(t, x) ∈ [0, 1]× R,

Let µ = − 1
4 . Then

(1 + µ)(2 + µ)
2(1 + µ) + |α|(2 + µ)

=
7
36

.

Therefore,

k(s) =
1

6 4
√

1− s
<

7
36 4
√

1− s
=

(1 + µ)(2 + µ)
2(1 + µ) + |α|(2 + µ)

(1− s)−
1
4 , a.e.s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

(1 + µ)(2 + µ)
2(1 + µ) + |α|(2 + µ)

(1− s)−
1
4
}

= 1 > 0.

Hence, by Theorem 3.2 (3), the BVP (4.4) has at least one nontrivial solution
u∗ ∈ C[0, 1].

Example 4.5. Consider the three-point BVP

u′′ +
t2u2e−u2

t2 + u2
− cos et + 3 sin2 t = 0, 0 < t < 1,

u′(0) = 0, u(1) = 3u′(1/3).
(4.5)

Set η = 1
3 , α = 3, and

f(t, x) =
t2x2e−x2

t2 + x2
− cos et + 3 sin2 t,

k(t) =
t

2
, h(t) = cos et + 3 sin2 t.

Then it is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

f(t, x) ≤ k(t)|x|+ h(t), a.e. (t, x) ∈ [0, 1]× R,

k(s) =
s

2
≤ 1

1 + |α|η
=

1
2
, s ∈ [0, 1],

meas
{
s ∈ [0, 1] : k(s) <

1
1 + |α|η

}
= 1 > 0.

Hence, by Theorem 3.2 (4), the BVP (4.5) has at least one nontrivial solution
u∗ ∈ C[0, 1].
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