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GENERIC SIMPLICITY OF EIGENVALUES FOR A DIRICHLET
PROBLEM OF THE BILAPLACIAN OPERATOR

MARCONE C. PEREIRA

Abstract. In this work we show that the eigenvalues of the Dirichlet problem
for the Bilaplacian are generically simple in the set of C4-regular regions.

1. Introduction

Boundary perturbations have been studied by several authors through different
perspectives, since the pioneering works of Rayleigh [17] and Hadamard [6]. Among
others, we mention the works of Micheletti [11] and Uhlenbeck [20] in which generic
properties of eigenvalues and eigenfunctions of second order eliptical operators with
respect to variation of the domain were obtained.

Many problems of the same type were considered by Henry in [8] where the
author developed a general theory on perturbation of domains and proved several
results on boundary perturbations for second order eliptic operators. Following his
approach Pereira [15] obtained results on the eigenvalues of the Dirichlet’s problem
for the Laplace operator on regions satisfying symmetry properties. Some results
correlating boundary perturbation to the Laplace operator and to reaction-diffusion
problems can be found in [16] and [12].

There are also many works on perturbation of the boundary in the literature
using the concept of shape differentiation (see e.g. [18, 19]). In particular, Ortega
and Zuazua used this concept in [13] to study the eigenvalue problem

(∆2 + λ)u = 0 in Ω

u =
∂u

∂N
= 0 on ∂Ω .

(1.1)

In this interesting work, the authors, among others results, presented a proof of
the generic simplicity of the eigenvalues of (1.1). Unfortunately, there is a problem
in their proof. The authors assumed that the eigenvalues and eigenfunctions are
analytic with respect to the diffeomorphism giving the variation of the region, which
is not true in general.
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Our goal here is to give a somewhat different approach to obtain the simplicity of
the eigenvalues of (1.1) using as our main tool a general form of the Transversality
Theorem to overcome the problem in their proof.

This paper is organized as follows. In section 2 we state some background results
needed in the sequel. In section 3, we prove the continuous dependence of a part
of spectrum of (1.1) consisting of a finite system of eigenvalues with respect to
variation of domain. In section 4, we prove analytic dependence of the simple
eigenvalues with respect to the perturbation of the boundary. In section 5, we prove
the main results of the paper, namely, the generic simplicity of the eigenvalues of
(1.1) in the set of open, connected, bounded, C4-regular regions Ω ⊂ Rn, n ≥ 2.

2. Preliminaries

The results in this section were taken from the monograph by Henry [8], where
complete proofs can be found.

2.1. Some notation and geometrical preliminaries. Given a real function f
defined in a neighborhood of x ∈ Rn, its m-derivative at x can be considered as a
m-linear symmetric form h 7→ Dmf(x)hm in Rn, with norm

|Dmf(x)| = max|h|≤1|Dmf(x)hm|.

If Ω is an open subset of Rn and E is a normed vector space, Cm(Ω, E) is the
space of m-times continuously and bounded differentiable functions on Ω whose
derivatives extend continuously to the closure Ω̄, with the usual norm

‖f‖Cm(Ω,E) = max
0≤j≤m

supx∈Ω|Djf(x)|.

If E = R, we write simply Cm(Ω).
Let Cm

unif (Ω, E) be the closed subspace of Cm(Ω, E) consisting of functions whose
mth derivative is uniformly continuous.

We say that an open set Ω ⊂ Rn is Cm-regular if there exists φ ∈ Cm(Rn,R),
which is at least in C1

unif(Rn,R), such that

Ω = {x ∈ Rn;φ(x) > 0}

and φ(x) = 0 implies |∇φ| ≥ 1.
Let m be a non negative integer and p ≥ 1 a real number. We define the Sobolev

spacesWm,p(Ω) andWm,p
0 (Ω), as the completion of Cm(Ω) and Cm

0 (Ω) respectively
under the norm

‖u‖ =
( ∫

Ω

∑
|α|≤m

|Dαu|pdx
)1/p

where Cm
0 (Ω) is the subspace of functions on Cm(Ω) with compact support (when

p = 2 we usually write Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω)). We some-
times need to use differential operators (gradient, divergence and Laplacian) in a
hypersurface S ⊂ Rn.

Let S be a C1 hypersurface in Rn and let φ : S → R be C1 (so it can be extended
to be C1 on a neighborhood of S), then ∇Sφ is the tangent vector field in S such
that, for each C1 curve t 7→ x(t) ⊂ S, we have

d

dt
φ(x(t)) = ∇Sφ(x(t)) · ẋ(t).
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Let S be a C2 hypersurface in Rn and ~a : S → Rn a C1 vector field tangent to S.
Then divS ~a : S → Rn is the continuous function such that, for every C1 φ : S → R
with compact support in S,∫

S

(div S~a)φ = −
∫

S

~a · ∇Sφ.

Also, if u : S → R is C2, then ∆Su = divS(∇Su) or, equivalently, for all C1

φ : S → R with compact support∫
S

φ∆Su = −
∫

S

∇Sφ · ∇Su.

Theorem 2.1. (1) If S is a C1 hypersurface and φ : Rn → R is C1 in a
neighborhood of S, then, on S, ∇Sφ(x) is the component of ∇φ(x) tangent
S at x, that is

∇Sφ(x) = ∇φ(x)− ∂φ

∂N
(x)N(x)

where N is an unit normal field on S.
(2) If S is a C2 hypersurface in Rn, ~a : S → Rn is C1 in a neighborhood of

S, N : Rn → Rn is a C1 unit normal field in a neighborhood of S and
H = divN is the mean curvature of S, then

div S~a = div~a−H~a ·N − ∂

∂N
(a ·N)

on S.
(3) If S is a C2 hypersurface, u : Rn → R is C2 in a neighborhood of S and N

is a normal vector field for S, then

∆Su = ∆u−H
∂u

∂N
− ∂2u

∂N2
+∇Su ·

∂N

∂N

on S. We may choose N so that ∂N
∂N = 0 on S and then the final term

vanishes.

Remark 2.2. If u ∈ H4 ∩H2
0 (Ω), we have ∆u = ∂2u

∂N2 on ∂Ω. In fact, by Theorem
2.1

0 = ∆∂Ωu

= ∆u− divN
∂u

∂N
− ∂2u

∂N2 +∇∂Ωu ·
∂N

∂N

= ∆u− ∂2u

∂N2 on ∂Ω.

We often need the following uniqueness theorem for the Bilaplacian.

Theorem 2.3. Let Ω ⊂ Rn be an open, connected, bounded, C4-regular region and
B a ball which meets ∂Ω in a C4 hypersurface B ∩ ∂Ω. Assume u ∈ H4(Ω) and for
some constant K

|∆2u| ≤ K
(
|∆u|+ |∇u|+ |u|

)
a.e. Ω with

u =
∂u

∂N
=

∂2u

∂N2 =
∂3u

∂N3 = 0 on B ∩ ∂Ω.
(2.1)

Then u ≡ 0 in Ω.

This theorem follows from [10, Theorem 8.9.1].
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2.2. Differential calculus of boundary perturbation. Consider a formal non-
linear differential operator u 7→ v

v(y) = f
(
y, u(y),

∂u

∂y1
(y), . . . ,

∂u

∂yn
(y),

∂2u

∂y2
1

(x),
∂2u

∂y1∂y2
(y), . . .

)
y ∈ Rn

To simplify the notation, we define a constant matrix coefficient differential operator
L

Lu(y) =
(
u(y),

∂u

∂y1
(y), . . . ,

∂u

∂yn
(y),

∂2u

∂y2
1

(y),
∂2u

∂y1∂y2
(y), . . .

)
y ∈ Rn

with as many terms as needed, so our nonlinear operator becomes

u 7→ v(·) = f(·, Lu(·))

More precisely, suppose Lu(·) has values in Rp and f(y, λ) is defined for (y, λ) in
some open set O ⊂ Rn × Rp. For subsets Ω ⊂ Rn define FΩ by

FΩ(u)(y) = f(y, Lu(y)), y ∈ Ω

for sufficiently smooth functions u in Ω such that (y, Lu(y)) ∈ O for any y ∈ Ω̄. For
example, if f is continuous, Ω is bounded and L involves derivatives of order ≤ m,
the domain of FΩ is an open subset (perhaps empty) of Cm(Ω), and the values of
FΩ are in C0(Ω). (Other function spaces could be used with obvious modifications).

If h : Ω 7→ Rn is a Ck imbedding, we can also consider Fh(Ω) : Cm(h(Ω)) 7→
C0(h(Ω)). But then the problem will be posed in different spaces. To bring it back
to the original spaces we consider the ‘pull-back’ of h

h? : Ck(h(Ω)) 7→ Ck(Ω) (0 ≤ k ≤ m)

defined by h?(ϕ) = ϕ ◦ h (which is a diffeomorphism) and then h?Fh(Ω)h
?−1 is

again a map from Cm(Ω) into C0(Ω). In this sense, we may express problems of
perturbation of the boundary of a boundary value problem as problems of differ-
ential calculus in Banach spaces. This is more convenient to apply tools like the
Implicit Function or Transversality theorems. On the other hand, a new variable
h is introduced. We then need to study the differentiability properties of the func-
tion (h, u) 7→ h?Fh(Ω)h

?−1u. This has been done in [8] where it is shown that, if
(y, λ) 7→ f(y, λ) is Ck or analytic then so is the map above, considered as a map
from Diffm(Ω) × Cm(Ω) to C0(Ω) (other function spaces can be used instead of
Cm) where

Diff m(Ω) =
{
h ∈ Cm(Ω,Rn) : h is injective and

1
|deth′(x)|

is bounded in Ω
}

is an open subset of Cm(Ω,Rn) (given an open, bounded, Cm region Ω0 ⊂ Rn). To
compute the derivative we then need only compute the Gateaux derivative that is,
the t-derivative along a smooth curve t 7→ (h(t, .), u(t, .)) ∈ Diffm(Ω)× Cm(Ω).

Suppose we want to compute

∂

∂t
FΩ(t)(v)(y) =

∂

∂t
f(y, Lv(y))

with y = h(t, x) fixed in Ω(t) = h(t,Ω). To keep y fixed we must take x = x(t),
y = h(t, x(t)) with

0 =
∂h

∂t
+
∂h

∂x
x′(t) =⇒ x′(t) = −(

∂h

∂x
)−1 ∂h

∂t
,
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that is, x(t) is the solution of the differential equation dx
dt = −U(x, t) where

U(x, t) = (∂h
∂x )−1 ∂h

∂t . The differential operator

Dt =
∂

∂t
− U(x, t)

∂

∂x
, U(x, t) =

(∂h
∂x

)−1 ∂h

∂t

is called the anti-convective derivative. This derivative at a fixed point x corre-
sponds to the t-derivative at y = h(t, x) fixed. The results (theorems 2.4, 2.7)
below are the main tools used to compute derivatives.

Theorem 2.4. Suppose f(t, y, λ) is C1 in an open set in R × Rn × Rp, L is a
constant-coefficient differential operator of order ≤ m with Lv(y) ∈ Rp (where
defined). For open sets Q ⊂ Rn and Cm functions v on Q, let FQ(t)v be the
function

y → f(t, y, Lv(y)), y ∈ Q.
where defined. Suppose t→ h(t, ·) is a curve of imbeddings of an open set Ω ⊂ Rn,
Ω(t) = h(t,Ω) and for |j| ≤ m, |k| ≤ m+1 (t, x) → ∂t∂

j
xh(t, x), ∂

k
xh(t, x), ∂

k
xu(t, x)

are continuous on R×Ω near t = 0, and h(t, ·)∗−1
u(t, ·) is in the domain of FΩ(t).

Then, at points of Ω

Dt(h∗FΩ(t)(t)h∗
−1)(u) = (h∗ḞΩ(t)(t)h∗

−1)(u) + (h∗F ′Ω(t)(t)h
∗−1)(u) ·Dtu

where Dt is the anti-convective derivative defined above,

ḞQ(t)v(y) =
∂f

∂t
(t, y, Lv(y))

and

F ′Q(t)v · w(y) =
∂f

∂λ
(t, y, Lv(y)) · Lw(y), y ∈ Q

is the linearization of v → FQ(t)v.

Remark 2.5. Suppose we deal with a linear operator A =
∑
|α|≤m aα(y)

(
∂
∂y

)α not
explicitly dependent on t, and h(t, x) = x+ tV (x) + o(t) as t→ 0 and x ∈ Ω. Then
at t = 0

∂

∂t
(h∗Ah∗−1u)

∣∣
t=0

= Dt(h∗Ah∗
−1u)

∣∣
t=0

+ h−1
x ht∇(h∗Ah∗−1u)

∣∣∣
t=0

= A(
∂u

∂t
− V · ∇u) + V · ∇(Au)

= A
∂u

∂t
+ [V · ∇, A]u

since ∂
∂tA = 0. Note that the commutator [V · ∇, A](·) is still an operator of order

m.

Consider now a boundary condition of the form

b(t, y, Lv(y),MNΩ(t)(y)) = 0 for y ∈ ∂Ω(t),

where L, M are constant-coefficient differential operators and NΩ(t)(y) is the out-
ward unit normal for y ∈ ∂Ω(t), extended smoothly as a unit vector field on a
neighborhood of ∂Ω(t). Choose some extension of NΩ in the reference region and
then define NΩ(t) = Nh(t,Ω) by

h∗Nh(t,Ω)(x) = Nh(t,Ω)(h(x)) =
(h−1

x )TNΩ(x)
‖(h−1

x )TNΩ(x)‖
(2.2)
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for x near ∂Ω, where (h−1
x )T is the inverse-transpose of the Jacobian matrix hx and

‖·‖ is the Euclidean norm. This is the extension understood in the above boundary
condition: b(t, y, Lv(y),MNΩ(t)(y)) is defined for y ∈ Ω near ∂Ω and has limit zero
(in some sense, depending on the functional space employed) as y → ∂Ω.

Lemma 2.6. Let Ω be a C2-regular region, NΩ(·) a C1 unit-vector field defined on
a neighborhood of ∂Ω which is the outward normal on ∂Ω, and for a C2 function
h : Ω → Rn define Nh(Ω) on a neighborhood of h(∂Ω) = ∂h(Ω) by (2.2) above.
Suppose h(t, ·) is an imbedding for each t, defined by

∂

∂t
h(t, x) = V (t, h(t, x)) for x ∈ Ω, h(0, x) = x,

(t, y) → V (t, y) is C2 and Ω(t) = h(t,Ω), NΩ(t) = Nh(t,Ω). Then for x near
∂Ω, y = h(t, x) near ∂Ω(t), we may compute the derivative ( ∂

∂t )y=constant and, if
y ∈ ∂Ω,

∂

∂t
NΩ(t)(y) = Dt(h∗Nh(t,Ω))(x) = −

(
∇∂Ω(t)σ + σ

∂NΩ(t)

∂NΩ(t)
(y)

)
where σ = V · NΩ(t) is the normal velocity and ∇∂Ω(t)σ is the component of the
gradient tangent to ∂Ω.

Theorem 2.7. Let b(t, y, λ, µ) be a C1 function on an open set of R× Rn × Rp ×
Rq and let L, M be constant-coefficient differential operators with order ≤ m of
appropriate dimensions so b(t, y, Lv(y),MNΩ(t)(y)) makes sense. Assume that Ω
is a Cm+1 region, NΩ(x) is a Cm unit-vector field near ∂Ω which is the outward
normal on ∂Ω, and define Nh(t,Ω) by (2.2) when h : Ω → Rn is a Cm+1 smooth
imbedding. Also define Bh(Ω)(t) by

Bh(Ω)v(y) = b(t, y, Lv(y),MNh(Ω)(y))

for y ∈ h(Ω) near ∂h(Ω).
If t→ h(t, ·) is a curve of Cm+1 imbeddings of Ω and for |j| ≤ m, |k| ≤ m+ 1,

(t, x) → (∂t∂
j
xh, ∂

k
x , ∂t∂

j
xu, ∂

k
xu)(t, x) are continuous on R × Ω near t = 0, then at

points of Ω near ∂Ω

Dt(h∗Bh(Ω)h
∗−1)(u) = (h∗Ḃh(Ω)h

∗−1)(u) + (h∗B′h(Ω)h
∗−1)(u) ·Dtu

+ (h∗
∂Bh(Ω)

∂N
h∗−1)(u) ·Dt(h∗NΩ(t))

where h = h(t, ·); Ḃh(Ω) e B′h(Ω) are defined as in Theorem 2.2,

∂Bh(Ω)

∂N
(v) · n(y) =

∂b

∂µ
(t, y, Lv(y),MNh(Ω)(y)) ·Mn(y)

and Dt(h∗NΩ(t))
∣∣
∂Ω

is computed in Lemma 2.6.

2.3. Change of Origin. In the above, the “origin” or reference region is Ω. But
we may easily transfer the origin to any Ω0 diffeomorphic to Ω. Let H0 : Ω → Ω0

be the diffeomorphism and for every imbedding h : Ω → Rn define the imbedding
h0 = h ◦H−1

0 : Ω0 → Rn. Similarly define

x0 = H0(x), u0 = H∗
0
−1u,

NΩ0(x0) = NH0(Ω)(H0(x0)) =
(H−1

0,x)TNΩ(x)

‖(H−1
0,x)TNΩ(x)‖
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and then h(Ω) = h0(Ω0),

h∗Fh(Ω)h
∗−1u(x) = h∗0Fh0(Ω0)h

∗
0
−1u0(x0),

h∗Bh(Ω)h
∗−1u(x) = h∗0Bh0(Ω0)h

∗
0
−1u0(x0),

using the normal
Nh0(Ω0)(h0(x0)) = Nh(Ω)(h(x)).

This “change of origin” is used frequently in the sequel, as it permits us to compute
derivatives in h at h = iΩ, where the formulas are simpler.

2.4. The Transversality Theorem. A basic tool for our results will be the
Transversality Theorem in the form below, due to D. Henry [8]. We first recall
some definitions.

A map T ∈ L(X,Y ) where X and Y are Banach spaces is a semi-Fredholm map
if the range of T is closed and at least one (or both, for Fredholm) of dimN (T ),
codimR(T ) is finite; the index of T is then

ind(T ) = dimN (T )− codimR(T ).

We say that a subset F of a topological space X is rare if its closure has empty
interior and meager if it is contained in a countable union of rare subsets of X. We
say that F is residual if its complement in X is meager. We also say that X is a
Baire space if any residual subset of X is dense.

Let f be a Ck map between Banach spaces. We say that x is a regular point of f
if the derivative f ′(x) is surjective and its kernel is finite-dimensional. Otherwise,
x is called a critical point of f . A point is critical if it is the image of some critical
point of f .

Let now X be a Baire space and I = [0, 1]. For any closed or σ-closed F ⊂ X
and any nonnegative integer m we say that the codimension of F is greater or
equal to m (codim F≥ m) if the subset {φ ∈ C(Im, X) : φ(Im)∩ F is non-empty }
is meager in C(Im, X). We say codimF = k if k is the largest integer satisfying
codimF ≥ m.

Theorem 2.8. Suppose given positive numbers k and m; Banach manifolds X,Y, Z
of class Ck; an open set A ⊂ X × Y ; a Ck map f : A 7→ Z and a point ξ ∈ Z.
Assume for each (x,y) ∈ f−1(ξ) that:

(1) ∂f
∂x (x, y) : TxX 7→ TξZ is semi-Fredholm with index < k.

(2) Either
(α) Df(x, y) =

(
∂f
∂x ,

∂f
∂y

)
: TxX × TyY 7→ TξZ is surjective; or

(β) dim
{
R

(
Df(x, y)

)
/R

(
∂f
∂x (x, y)

)}
≥ m+ dimN

(
∂f
∂x (x, y)

)
.

(3) (x, y) 7→ y : f−1(ξ) 7→ Y is σ-proper, f−1(ξ) =
⋃∞

j=1Mj is a countable
union of sets Mj such that (x, y) 7→ y : Mj 7→ Y , is a proper map for
each j. [ Given (xν , yν) ∈ Mj such that yν converges in Y , there exists a
subsequence (or subnet) with limit in Mj].

We note that (3) holds if f−1(ξ) is Lindelöf [every open cover has a countable
subcover] or, more specifically, if f−1(ξ) is a separable metric space, or if X,Y are
separable metric spaces.

Let Ay = {x|(x, y) ∈ A} and

Ycrit = {y : ξ is a critical value of f(·, y) : Ay 7→ Z}.
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Then Ycrit is a meager set in Y and, if (x,y) 7→ y : f−1(ξ) 7→ Y is proper, Ycrit is
also closed. If ind ∂f

∂x ≤ −m < 0 on f−1(ξ), then (2(α)) implies (2(β)) and

Ycrit = {y : ξ ∈ f(Ay, y)}

has codimension less than or equal to m in Y . [Note Ycrit is meager if and only if
codimYcrit ≥ 1].

Remark 2.9. The usual hypothesis is that ξ is a regular value of f , so (2(α))
holds. If (2(β)) holds at some point then ind(∂f

∂x ) ≤ −m at this point, since
codimR

(
∂f
∂x

)
≥ dim{ R(Df)

R
(

∂f
∂x

)}. If ind
(

∂f
∂x

)
≤ −m and (2(α)) holds, then (2(β)) also

holds. Thus (2(β)) is more general for the case of negative index.

3. Continuous dependence of a finite system of eigenvalues

Let Ω ⊂ Rn be an open, connected, bounded, C4-regular region. It is well known
that the problem (1.1) possesses an enumerable sequence of negative eigenvalues
0 > λ0 > λ1 > · · · → −∞. In this section, we will show the continuous dependence
of the eigenvalues of

(∆2 + λ)v = 0 in h(Ω)

v =
∂v

∂N
= 0 on ∂h(Ω)

(3.1)

with respect to variation of h ∈ Diff4(Ω). More precisely, we show that a part of
spectrum of (3.1) consisting of finite system of eigenvalues changes continuously
with h.

To accomplish that, we use the theory described in section 2.2 rewriting(3.1) as

h∗(∆2 + λ)h∗−1u = 0 in Ω

u =
∂u

∂N
= 0 on ∂Ω

(3.2)

where u = h∗v. Observe that the problem (3.1) is equivalent to (3.2). In fact, v is
a solution of (3.1) if and only if u is a solution of

h∗(∆2 + λ)h∗−1u = 0 in Ω

u = h∗
∂

∂Nh(Ω)
h∗−1u = 0 on ∂Ω

(3.3)

where Nh(Ω) is the normal of the region h(Ω) defined by (2.2). Now,(
h∗

∂

∂Nh(Ω)
h∗−1u

)
(x) =

n∑
i=1

(
h∗

∂

∂yi
h∗−1u

)
(x)(Nh(Ω))i(h(x))

=
n∑

i,j=1

bij(x)
∂u

∂xj
(x)(Nh(Ω))i(h(x))

= Nh(Ω)(h(x))b(x)∇u(x)

where bij(x) = (h−1
x )ji(x) [the i,j-th entry in the transposed inverse of the Jacobian

Matrix of h] and b(x) = (bij)(x) with x ∈ Ω. Since u = 0 on ∂Ω we have

∇u =
∂u

∂N
N on ∂Ω.
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Observe that, for all x ∈ Ω, b(x) is a non singular matrix and b(x)N(x) is in the
direction of Nh(Ω)(h(x)). Thus

h∗
∂

∂Nh(Ω)
h∗−1u = 0 on ∂Ω ⇐⇒ ∂u

∂N
= 0 on ∂Ω,

that is, v is solution of (3.1) if and only if u = h∗v is solution of (3.2).
The next Lemma is essential in the proof of the continuous dependence of a finite

system of eigenvalues of (3.1) with respect to variation of h ∈ Diff4(Ω).

Lemma 3.1. Given h0 ∈ Diff4(Ω), there exists a neighbourhood V0 of h0 in
Diff4(Ω) such that, for all h ∈ V0 and u ∈ H4 ∩H2

0 (Ω)

‖(h∗∆2h∗−1 − h∗0∆
2h∗0

−1)u‖L2(Ω) ≤ ε(h)‖h∗0∆2h∗0
−1u‖L2(Ω)

with ε(h) → 0 as h→ h0 in C4(Ω,Rn).

Proof. It is clearly sufficient to consider the case h0 = iΩ. We have

h∗
∂

∂yi
h∗−1u(x) =

∂

∂yi
(u ◦ h−1)(h(x)) =

n∑
j=1

∂u

∂xj
(x)(h−1

x )ji(x) =
n∑

j=1

bij(x)
∂u

∂xj
(x)

where bij(x) = (h−1
x )ji(x), that is, bij(x) is the i, j-th entry in the transposed

inverse of the Jacobian matrix of hx = ( ∂hi

∂xj
)n
i,j=1. Therefore,

h∗
∂2

∂y2
i

h∗−1u(x) =
n∑

k=1

bik(x)
∂

∂xk

( n∑
j=1

bij(x)
∂u

∂xj
(x)

)
=

n∑
k=1

bik(x)
n∑

j=i

[ ∂

∂xk
(bij(x))

∂u

∂xj
(x) + bij(x)

∂2u

∂xk∂xj
(x)

]
=

n∑
j,k=1

bik(x)bij(x)
∂2u

∂xk∂xj
(x) +

n∑
j,k=1

bik(x)
∂

∂xk
(bij(x))

∂u

∂xj
(x),

h∗
∂3

∂ys∂yi
2h

∗−1u(x)

=
n∑

l=1

bsl(x)
∂

∂xl

( ∂2

∂y2
i

(u ◦ h−1)(h(x))
)

=
n∑

l,j,k=1

bsl(x)bik(x)bij(x)
∂3u

∂xl∂xj∂xk
(x)

+
n∑

l,j,k=1

bsl(x)bik(x)
∂

∂xk
(bij(x))

∂2u

∂xl∂xj
(x)

+
n∑

l,j,k=1

[
bij(x)

∂

∂xk
(bik(x)) + bik(x)

∂

∂xk
(bij(x))

]
bsl(x)

∂2u

∂xk∂xj
(x)

+
n∑

l.j.k=1

[ ∂

∂xl
(bik(x))

∂

∂xk
(bij(x)) + bik(x)

∂2

∂xl∂xk
(bij(x))

]
bsl(x)

∂u

∂xj
(x),
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h∗
∂4

∂ys
2∂yi

2h
∗−1u(x) =

∂

∂ys

∂3

∂ys∂yi
2 (u ◦ h−1)(h(x))

=
n∑

r=1

brs(x)
∂

∂xr

( ∂3

∂ys∂yi
2 (u ◦ h−1)(h(x))

)
=

∂4u

∂xs
2∂xi

2 (x) + Lh
si(u)(x) ,

where

Lh
si(u)(x) =

(
bss(x)

2
bii(x)

2 − 1
) ∂4u

∂xs
2∂xi

2 (x)

+
n∑

r,l,j,k=1

(1− δs,r,lδi,j,k)bsl(x)bsr(x)bik(x)bij(x)
∂4u

∂xr∂xl∂xj∂xk
(x)

+
n∑

r,l,j,k=1

∂

∂xr

[
bsl(x)bik(x)bij(x)

]
bsr(x)

∂3u

∂xl∂xj∂xk
(x)

+
n∑

r,l,j,k=1

∂

∂xl

[
bik(x)bij(x)

]
bsr(x)bsl(x)

∂3u

∂xr∂xk∂xj
(x)

+
n∑

r,l,j,k=1

bsr(x)bsl(x)bik(x)
∂

∂xk
(bij(x))

∂3u

∂xr∂xl∂xj
(x)

+
n∑

r,l,j,k=1

bsr(x)
∂

∂xr

[ ∂

∂xl

(
bij(x)bik(x)

)
bsl(x)

] ∂2u

∂xk∂xj
(x)

+
n∑

r,l,j,k=1

bsr(x)bsl(x)
∂

∂xl

(
bik(x)

∂

∂xk
(bij(x))

) ∂2u

∂xr∂xj
(x)

+
n∑

r,l,j,k=1

bsr(x)
∂

∂xr

[
bsl(x)bik(x)

∂

∂xr
(bij(x))

] ∂2u

∂xl∂xj
(x)

+
n∑

r,l,j,k=1

bsr(x)
∂

∂xr

[ ∂

∂xl

(
bik(x)

∂

∂xk
(bij(x))

)
bsl(x)

] ∂u
∂xj

(x).

Thus
h∗∆2h∗−1u = ∆2u+ Lhu (3.4)

with Lhu =
∑n

s,i=1 L
h
isu. Since bij → δij in C4(Ω,Rn) when h→ iΩ in C4(Ω,Rn),

the coefficients of Lh go to 0 uniformly in x as h → iΩ in C4(Ω,Rn). It follows
that,

‖Lhu‖L2(Ω) ≤ ε(h)‖∆2u‖L2(Ω) (3.5)

where ε(h) goes to 0 as h→ iΩ in C4(Ω,Rn). �

Theorem 3.2. Let λ be an eigenvalue of (3.1) in Ω with multiplicity m and I
an interval such that λ is the unique element of the spectrum in I. Then, for any
η > 0 and any interval J ⊂ I with λ ∈ J , there exists a neighbourhood V of iΩ
in Diffk(Ω) (k ≥ 4) such that if h ∈ V there exist exactly m eigenvalues (counted
with multiplicity) λ1(h), . . . , λm(h) of (3.1) in J depending continuously of h with
λi(iΩ) = λ for all 1 ≤ i ≤ m. Moreover, the projection P (h) of L2(Ω) onto the sum
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of the associated eigenspaces of λ1(h), . . . , λm(h) satisfies ‖P (h) − P (iΩ)‖ < η in
V.

Proof. To prove this Theorem we use the theory of perturbation for unbounded
operators developed in chapter IV of [9]. By Lemma 3.1, proved above, Ah =
h∗∆2h∗−1 −∆2 is ∆2-bounded ( that is, D(Ah) = D(∆2) = H4 ∩H2

0 (Ω) in L2(Ω)
and ‖Ahu‖L2(Ω) ≤ ε(h)‖∆2u‖L2(Ω) for all u ∈ H4∩H2

0 (Ω) with ε(h) → 0 as h→ iΩ).
Moreover, there exists a neighbourhood V of iΩ in Diffk(Ω) such that ε(h) < 1 for
all h ∈ V . Therefore, by Theorem IV 2.14 of [9], we have that Ah+∆2 = h∗∆2h∗−1

is a closed operator in L2(Ω) with

δ̂(h∗∆2h∗−1,∆2) ≤ (1− ε(h))−1ε(h) ∀h ∈ V (3.6)

where δ̂ is the gap between closed operators defined in [9]. If J is an open interval
satisfying the hypotheses above, we can find a closed curve γ in C with int γ∩R = J .
Since δ̄(h∗∆2h∗−1,∆2) → 0 as h → iΩ in Ck, it follows, from Theorem IV 3.16 of
[9] that, if ‖iΩ − h‖Ck(Ω) is small enough, h∗∆2h∗−1 posses exactly m eigenvalues
λ1(h), . . . , λm(h) counted with multiplicity in the interior of γ. Being real, they
must lie in J as required. Furthermore, by the same result, it follows that P (h) →
P (iΩ) in norm as h→ iΩ in Ck as asserted. �

Corollary 3.3. The set

Dm =
{
h ∈ Diff 4(Ω) : −M is not eigenvalue of (1.1) in h(Ω)

and all the eigenvalues λ ∈ (−M, 0) in h(Ω) are simple
}

is open in Diff4(Ω) for all M ∈ N.

Proof. Let h0 ∈ DM and λ1, . . . , λk be the (simple) eigenvalues of ∆2 in h0(Ω)
greater −M . Let also γ be the circle of radius M with center in the origin.

From the previous Theorem, for each 1 ≤ i ≤ k there exists a neighborhood
Vi ⊂ Diff4(Ω) of h0 and continuous functions Λi : Vi → (−M, 0) such that Λi(h) is
a simple eigenvalue of h∗∆2h∗−1 for any h ∈ Vi with Λi(h0) = λi and the sets Λi(Vi)
are pairwise disjoint. Define V =

⋂k
i=0 Vi and observe that ∀h ∈ V , h∗∆2h∗−1 has

k eigenvalues greater −M , which are all simple. Therefore, DM is open. �

4. Perturbation of simple eigenvalues

Let Ω ⊂ Rn be an open, connected, bounded, C4-regular region and λ0 a simple
eigenvalue of the equation

(∆2 + λ)u = 0 in Ω

u =
∂u

∂N
= 0 on ∂Ω

(4.1)

with corresponding eigenvalue u0, with
∫
Ω
u2

0 = 1.
Consider the map F : H4 ∩H2

0 (Ω)× R×Diff4(Ω) → L2(Ω)× R defined by

F (u, λ, h) = (h∗(∆2 + λ)h∗−1u,

∫
Ω

u2 deth′).

Then F is analytic by section 2.2 and F (u, λ, h) = (0, 1) if and only if v = h∗−1u ∈
H4 ∩H2

0 (h(Ω)) is a solution of (3.1) with
∫

h(Ω)
v2 = 1.
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Observe that F (u0, λ0, iΩ) = (0, 1) and the operator
∂F

∂(u, λ)
(u0, λ0, iΩ) : H4 ∩H2

0 (Ω)× R → L2(Ω)× R

(u̇, λ̇) →
(
(∆2 + λ0)u̇+ λ̇u0, 2

∫
Ω

u0u̇
)

is an isomorphism. In fact, since λ0 is a simple eigenvalue of Fredholm operator
with index zero

∆2 : H4 ∩H2
0 (Ω) → L2(Ω),

we have
R(∆2 + λ0)⊕ [u0] = L2(Ω).

So, given (f, α) ∈ L2(Ω)× R there exists a unique

(u̇, λ̇) = (
α

2
u0 + w,

∫
Ω

u0f) ∈ H4 ∩H2
0 (Ω)× R,

where w ∈ H4 ∩H2
0 (Ω) is a solution of

(∆2 + λ0)w = f − λ̇u0

with w⊥u0, such that
∂F

∂(u, λ)
(u0, λ0, iΩ)(u̇, λ̇) = ((∆2 + λ0)u̇+ λ̇u0, 2

∫
Ω

u0u̇) = (f, α).

It follows that ∂F
∂(u,λ) (u0, λ0, iΩ) is a continuous bijection, therefore an isomorphism,

by the Closed Graph Theorem. Thus, by the Implict Function Theorem there ex-
ists a neighbourhood V of iΩ in Diff4(Ω) and analytic functions u(h) and λ(h) in
V such that F (u(h), λ(h), h) = (0, 1) for all h ∈ V . In fact, we can say more,

∂F
∂(u,λ) (u(h), λ(h), h) is an isomorphism for all h ∈ V , that is, λ(h) is simple eigen-
value in V . Therefore, we have the following result.

Proposition 4.1. Let λ0 be a simple eigenvalue of (4.1). Then, there exists a
neighbourhood V of iΩ in Diff4(Ω) and analytic functions u(h) and λ(h) from V
into H4 ∩H2

0 (Ω) and R respectively, satisfying (3.2) for all h ∈ V . Moreover, λ(h)
is a simple eigenvalue for all h ∈ V with λ(iΩ) = λ0.

5. The generic simplicity of the eigenvalues

Let P be a property depending of a parameter x ∈ X, where X is a Baire
topological space. We say that P is generic (in x) if it holds for all x in a residual
set of X.

In our application, X will be the class of regions C4-diffeomorphic to a fixed
region Ω0 of class C4, that is,

X = {h(Ω0) : h ∈ Diff 4(Ω)}.
We introduce a topology in this set by defining a (sub-basis of) the neighborhoods
of a given Ω by

{h(Ω); ‖h− iΩ‖C4(Ω,Rn) < ε, with ε > 0 suficiently small}.
When ‖h− iΩ‖C4(Ω,Rn) is small, h is a C4 imbedding of Ω in Rn, a C4 diffeomor-

phism to its image h(Ω). Michelleti [11] shows this topology is metrizable, and the
set of regions C4-diffeomorphic to Ω may be considered a separable metric space of
Baire.
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In fact, we will prove in our application that the property P holds for all h ∈
Diff4(Ω) except a meager set F ⊂ Diff4(Ω). However, the set F of imbeddings
excluded will be always defined by properties of then image (therefore, it is invariant
by composition with C4-diffeomorphisms of Ω0 into Ω0). This imply that (see [8])
the set of the regions defined by F are also meager in our space X.

In this section, we show that, generically in the set of open, connected, bounded,
C4-regular regions Ω ⊂ Rn, n ≥ 2, all eigenvalues of (1.1) are simple. In order to
apply transversality arguments, we first show that our generic property is equivalent
of zero being a regular value for an appropriate mapping. More precisely, we have

Proposition 5.1. Let Ω ⊂ Rn be an open, connected, bounded, C4-regular region.
Then, all eigenvalues of (1.1) are simple if and only if zero is a regular value of the
mapping φ : H4 ∩H2

0 (Ω)× R → L2(Ω) defined by

φ(u, λ) = (∆2 + λ)u.

Proof. In fact, 0 is a regular value of φ if and only if for all (u, λ) ∈ H4∩H2
0 (Ω)×R

with φ(u, λ) = 0
Dφ(u, λ)(u̇, λ̇) = (∆2 + λ)u̇+ λ̇u

is onto. Now, since the operator (∆2 +λ) : H4 ∩H2
0 (Ω) → L2(Ω) is selfadjoint and

Fredholm with index zero we have

L2(Ω) = R(∆2 + λ)⊕N (∆2 + λ).

Thus, Dφ(u, λ) is onto if and only if

R(∆2 + λ)⊕ [u] = L2(Ω),

that is, if and only if λ is simple eigenvalue of (1.1). �

Consider the map F : H4 ∩H2
0 (Ω)× R×Diff4(Ω) → L2(Ω) defined by

F (u, λ, h) = h∗(∆2 + λ)h∗−1u.

Observe that zero is regular value of the map

(u, λ) → F (u, λ, h) (5.1)

for h ∈ Diff4(Ω) if and only if 0 ∈ L2(h(Ω)) is regular value of

φh : H4 ∩H1
0 (h(Ω))× R → L2(h(Ω))

(In fact, h∗ is an isomorphism.) So, since that the problem (3.1) is equivalent to
(3.2), we have by Proposition 5.1 that all eigenvalues of (1.1) in h(Ω) are simple
if and only if 0 ∈ L2(Ω) is regular value of the map (5.1). Therefore, to prove
the generic simplicity of eigenvalues of the Dirichlet Problem for Bilaplacian it is
sufficient to show zero is regular value of (5.1) for most h ∈ Diff4(Ω), or to show
zero is regular value of F verifying the hypotheses of Theorem Transversality. We
try to do that and fail. For certain h ∈ Diff4(Ω), zero may be a critical value of F .
But the critical point has special properties, namely, if (u, λ, h) is a critical point
of F there must exist another eigenfunction v of (4.1) in h(Ω) such that ∆u∆v ≡ 0
on ∂h(Ω). Then, we have to show that the special properties can only occur in
a “exceptional” set of regions diffeomorphic to Ω. To do this, we consider the
mapping

Q : H4 ∩H1
0 (Ω)

2 × R×Diff 4(Ω)

→ L2(Ω)×H
5
2 (∂Ω)× L2(Ω)×H

5
2 (∂Ω)× L1(∂Ω)
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defined by

Q(u, v, λ, h) =
(
h∗(∆2 + λ)h∗−1u, h∗

∂

∂N
h∗−1u, h∗(∆2 + λ)h∗−1v,

h∗
∂

∂N
h∗−1v,

{
h∗∆h∗−1uh∗∆h∗−1v

}∣∣∣
∂Ω

)
and then we use the condiction 2(β) of Transversality Theorem.
Observe that (u, v, λ, h) ∈ Q−1(0, 0, 0, 0, 0) if and only if u, v are eigenfunctions of
(4.1) in h(Ω) satisfying ∆u∆v ≡ 0 in ∂h(Ω). So, we show there exists an open
dense set in Diff4(Ω) such that the restriction of F on this set has zero as regular
value, proving the result.

Remark 5.2. Without loss of generality, we can work with C5-regular instead of
C4-regular regions. In fact, by Corollary 3.3, given M ∈ N the set DM is open
in Diff4(Ω). If we prove that this set is also dense in Diff4(Ω), the result follows
taking intersection in M ∈ N. Now, to prove density we can work with more regular
regions since C4-regions can be aproximated to Ck-regions with k ≥ 5. This is
necessary because we need to use Theorems of regularity to Elliptical Equations in
ours proofs.

The next Lemma shows that the eigenfunctions u of (4.1) can not have ∆u ≡ 0
genericaly in the set of the C5-regular region with n ≥ 2 in a nonempty open set
of the boundary fixed. This one is necessary in the proof of the Lemma 5.4.

Lemma 5.3. Let Ω ⊂ Rn be an open, connected, bounded, C5-regular region with
n ≥ 2 and J ⊂ ∂Ω a nonempty open set. Consider the analytic map

G : BM × (−M, 0)×Diff 5(Ω) → L2(Ω)×H3/2(J)

defined by
G(u, λ, h) =

(
h∗(∆2 + λ)h∗−1u, h∗∆h∗−1u

∣∣∣
J

)
where BM = {u ∈ H4 ∩H2

0 (Ω)− {0} | ‖u‖ ≤M}. Then the set

CJ
M = {h ∈ Diff 5(Ω) | (0, 0) ∈ G(BM × (−M, 0), h)}

is meager and closed in Diff5(Ω).

Proof. We apply the Transversality Theorem. By section 2.2, we have that the
mapping G is analytic in h. It is clearly also analytic in the other variables. We
verify hypothesis (3) of the Trasversality Theorem showing the mapping (u, λ, h) →
h : G−1(0, 0) → Diff5(Ω) is proper. Let {(un, λn, hn)}n∈N ⊂ G−1(0, 0) with hn →
h0 = iΩ [ the general case is analogous]. Since {un}n∈N ⊂ BM and {λn}n∈N ⊂
(−M, 0), we can suppose, by compactness, that there exist u ∈ H2

0 (Ω) and λ ∈
(−M, 0) such that un → u in H2

0 (Ω) and λn → λ in (−M, 0). During the proof of
Lemma 3.1 we proved that h∗∆2h∗−1u = ∆2u + Lhu for all h ∈ Diff5(Ω) where
Lhu is small when h is closed to iΩ. So, we have, for all v ∈ H2

0 (Ω)

0 = lim
n→∞

∫
Ω

v{h∗n(∆2 + λn)h∗n
−1un}

= lim
n→∞

∫
Ω

v{(∆2 + λn)un + Lhnun}

= lim
n→∞

[ ∫
Ω

∆v∆un +
∫

Ω

v{λnun + Lhnun}
]
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=
∫

Ω

{∆v∆u+ λvu},

since un → u in H2
0 (Ω), λn → λ in (−M, 0), hn → iΩ in Diff5(Ω) and∣∣∣ ∫

Ω

vLhnun

∣∣∣ ≤ ‖v‖L2(Ω)‖Lhnun‖L2(Ω) ≤Mε(hn)‖v‖L2(Ω),

by equation (3.5), where limn→∞ ε(hn) = 0. Thus, u ∈ BM is a weak, therefore
strong solution of (1.1). Now, we will show that {un}n∈N converges in H4 ∩H2

0 (Ω)
to u ∈ H4 ∩H2

0 (Ω). In fact, for all n, m ∈ N

‖∆2(un − um)‖L2(Ω) = ‖Lhn(un − um) + (Lhn − Lhm)um

+ λn(un − um) + (λn − λm)um‖L2(Ω)

following that
‖∆2(un − um)‖L2(Ω) → 0 as n,m→ +∞. (5.2)

Since that there exists c0 > 0 such that

‖∆2(un − um)‖L2(Ω) ≥ c0‖un − um‖H4∩H2
0 (Ω),

we have, by (5.2), that {un}n∈N converges in H4∩H2
0 (Ω) to u ∈ H4∩H2

0 (Ω). This
proves that the mapping (u, λ, h) → h : G−1(0, 0) → Diff5(Ω) is proper.

Let (u, λ, h) ∈ G−1(0, 0). By section 2.3, we can suppose that h = iΩ. The partial
derivative ∂G/∂(u, λ)(u, λ, iΩ) defined from H4 ∩H2

0 (Ω)×R into L2(Ω)×H3/2(J)
is given by

∂G

∂(u, λ)
(u, λ, iΩ)(u̇, λ̇) =

( ∂G1

∂u, λ)
(u, λ, iΩ)(u̇, λ̇),

∂G2

∂(u, λ)
(u, λ, iΩ)(u̇, λ̇)

)
=

(
(∆2 + λ)u̇+ λ̇u,∆u̇

∣∣∣
J

)
.

Now, DG(u, λ, iΩ) defined from H4∩H2
0 (Ω)×R×C5(Ω,Rn) into L2(Ω)×H3/2(J)

can be computed by Theorem 2.4 like the Remark 2.5 and it is given by

DG(u, λ, iΩ)(u̇, λ̇, ḣ) =
(
DG1(u, λ, iΩ)(u̇, λ̇, ḣ), DG2(u, λ, iΩ)(u̇, λ̇, ḣ)

)
where

DG1(u, λ, iΩ)(u̇, λ̇, ḣ) = (∆2 + λ)(u̇− ḣ · ∇u) + ḣ · ∇
[
(∆2 + λ)u

]
+ λ̇u

= (∆2 + λ)(u̇− ḣ · ∇u) + λ̇u ,

DG2(u, λ, iΩ)(u̇, λ̇, ḣ) = {∆(u̇− ḣ · ∇u) + ḣ · ∇(∆u)}
∣∣∣
J

=
{

∆(u̇− ḣ · ∇u) +
∂∆u
∂N

ḣ ·N
}∣∣∣

J

since that (∆2 + λ)u = 0 in Ω and ∆u|∂Ω ≡ 0. By [2], we have that Ω ⊂ Rn,
C5-regular implies that u ∈ H5(Ω), so ḣ · ∇u ∈ H4(Ω).

Now, we can easily see that the hypothesis (1) of the Transversality Theorem is
satisfied. In fact ∂G1

∂(u,λ) (u, λ, iΩ) is a Fredholm map, so we have that ∂G2
∂(u,λ) (u, λ, iΩ)

is a semi-Fredholm map with index < +∞.
We now prove that (2β) also holds, that is, we show that

dim
{ R(DG(u, λ, iΩ))
R( ∂G

∂(u,λ) (u, λ, iΩ))

}
= ∞.
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Suppose this is not true. Then there exist θ1, . . . , θm ∈ L2(Ω)×H3/2(J) such that
for all ḣ ∈ C5(Ω,Rn) there exist u̇, λ̇ and c1, . . . , cm such that

DG(u, λ, iΩ)(u̇, λ̇, ḣ) =
m∑

j=1

cjθj , θj = (θ1j , θ
2
j ),

that is,(
(∆2 + λ)(u̇− ḣ · ∇u) + λ̇u,∆(u̇− ḣ · ∇u) +

∂∆u
∂N

ḣ ·N
)

=
m∑

j=1

cjθj . (5.3)

Consider the operator S∆2+λ : L2(Ω) → H4 ∩H2
0 (Ω) defined by

v = S∆2+λf where (∆2 + λ)v − f ∈ N (∆2 + λ), v⊥N (∆2 + λ).

Observe that operator S∆2+λ is well defined. In fact,

(∆2 + λ) : H4 ∩H2
0 (Ω) → L2(Ω)

is a Fredholm map with index zero. Then, we have that

R(∆2 + λ)⊕N (∆2 + λ) = L2(Ω).

So, given f = f1 + f2 ∈ L2(Ω), f1 ∈ R(∆2 + λ) e f2 ∈ N (∆2 + λ), there exists
unique v ∈ H4 ∩H2

0 (Ω) such that (∆2 + λ)v = f1 with v⊥N (∆2 + λ).
Choosing ḣ ∈ C5(Ω,Rn) with ḣ ≡ 0 on ∂Ω − {J}, we can solve the first com-

ponent of equation (5.3) modulo the finite dimensional subspace N (S∆2+λ) =
N (∆2 + λ), since ∆u|J = 0. In fact,

u̇− ḣ · ∇u =
l∑

j=1

ξjuj +
m∑

j=1

cjS∆2+λθ
1
j , (5.4)

where {u1, . . . , ul} is an orthonormal basis of N (∆2 + λ). Substituting (5.4) in the
second component of (5.3) we obtain that

∂∆u
∂N

ḣ ·N
∣∣
J

belongs to a finite dimensional subspace of H3/2(J) for each ḣ ∈ C5(Ω,Rn) with
ḣ ≡ 0 on ∂Ω− J . But this can only occur, in dim Ω ≥ 2, if

∂∆u
∂N

∣∣
J
≡ 0. (5.5)

So, the solution u satisfies the hypothesis of the Theorem 2.3 which implies u ≡ 0.
Since u ∈ H4 ∩H2

0 (Ω)− {0} we have a contradiction, proving the Lemma. �

Lemma 5.4. Let Ω ⊂ Rn be an open, connected, bounded, C5-regular region with
n ≥ 2. Consider the analytic mapping

Q :BM ×BM × (−M, 0)×DM

→ L2(Ω)×H
5
2 (∂Ω)× L2(Ω)×H

5
2 (∂Ω)× L1(∂Ω)

defined by

Q(u, v, λ, h) =
(
h∗(∆2 + λ)h∗−1u, h∗

∂

∂N
h∗−1u, h∗(∆2 + λ)h∗−1v, h∗

∂

∂N
h∗−1v,{

h∗∆h∗−1uh∗∆h∗−1v
}∣∣∣

∂Ω

)
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where BM = {u ∈ H4 ∩H1
0 (Ω)−{0} | ‖u‖ ≤M} and DM = Diff5(Ω)−C∂Ω

M . [C∂Ω
M

is the meager and closed set that exists by Lemma 5.3]. Then, the set

EM = {h ∈ DM | (0, 0, 0, 0, 0) ∈ Q(BM ×BM × (−M, 0), h)}

is meager and closed in Diff5(Ω).

Proof. We apply the Transversality Theorem. The hypotesis (3) can hold like in
Lemma 5.3. Let (u, v, λ, h) ∈ Q−1(0, 0, 0, 0, 0). By “change of origin”, we can
suppose without loss of generality that h = iΩ.

The partial derivative ∂Q(u, v, λ, iΩ)/∂(u, v, λ) defined from H4 ∩H1
0 (Ω)×H4 ∩

H1
0 (Ω)× R into L2(Ω)×H

5
2 (∂Ω)× L2(Ω)×H

5
2 (∂Ω)× L1(∂Ω) is given by

∂Q

∂(u, v, λ)
(u, v, λ, iΩ)(·)

=
( ∂Q1

∂(u, v, λ)
(u, v, λ, iΩ)(·), ∂Q2

∂(u, v, λ)
(u, v, λ, iΩ)(·),

∂Q3

∂(u, v, λ)
(u, v, λ, iΩ)(·), ∂Q4

∂(u, v, λ)
(u, v, λ, iΩ)(·), ∂Q5

∂(u, v, λ)
(u, v, λ, iΩ)(·)

)
;

∂Q1

∂(u, v, λ)
(u, v, λ, iΩ)(u̇, v̇, λ̇) = (∆2 + λ)u̇+ λ̇u ,

∂Q2

∂(u, v, λ)
(u, v, λ, iΩ)(u̇, v̇, λ̇) =

∂

∂N
u̇ ,

∂Q3

∂(u, v, λ)
(u, v, λ, iΩ)(u̇, v̇, λ̇) = (∆2 + λ)v̇ + λ̇v ,

∂Q4

∂(u, v, λ)
(u, v, λ, iΩ)(u̇, v̇, λ̇) =

∂

∂N
v̇ ,

∂Q5

∂(u, v, λ)
(u, v, λ, iΩ)(u̇, v̇, λ̇) =

{
∆u∆v̇ + ∆v∆u̇

}∣∣∣
∂Ω
.

Now, DQ(u, v, λ, iΩ) defined from H4 ∩H1
0 (Ω)×H4 ∩H1

0 (Ω)×R×C5(Ω,Rn) into
L2(Ω)×H

5
2 (∂Ω)× L2(Ω)×H

5
2 (∂Ω)× L1(∂Ω) can be computed by Theorems 2.4

and 2.7 and is given by

DQ(u, v, λ, iΩ)(·) =
(
DQ1(u, v, λ, iΩ)(·), DQ2(u, v, λ, iΩ)(·),

DQ3(u, v, λ, iΩ)(·), DQ4(u, v, λ, iΩ)(·), DQ5(u, v, λ, iΩ)(·)
)

DQ1(u, v, λ, iΩ)(u̇, v̇, λ̇, ḣ) = (∆2 + λ)(u̇− ḣ · ∇u) + λ̇u

DQ2(u, v, λ, iΩ)(u̇, v̇, λ̇, ḣ) =
∂

∂N
(u̇− ḣ · ∇u) + ḣ · ∇

( ∂u
∂N

)
−∇u · ∇(ḣ ·N)

=
∂

∂N
(u̇− ḣ · ∇u) + ḣ ·N∆u

DQ3(u, v, λ, iΩ)(u̇, v̇, λ̇, ḣ) = (∆2 + λ)(v̇ − ḣ · ∇v) + λ̇v

DQ4(u, v, λ, iΩ)(u̇, v̇, λ̇, ḣ) =
∂

∂N
(v̇ − ḣ · ∇v) + ḣ ·N∆v
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since ∇u = ∂u
∂N = ∇v = ∂v

∂N = 0 on ∂Ω and ∆|∂Ω = ∂2

∂N2 on ∂Ω;

DQ5(u, v, λ, iΩ)(u̇, v̇, λ̇, ḣ)

=
{

∆u
[
∆(v̇ − ḣ · ∇v) + ḣ · ∇(∆v)

]
+ ∆v

[
∆(u̇− ḣ · ∇u) + ḣ · ∇(∆u)

]}∣∣∣
∂Ω
.

Observe that the hypothesis (1) of Transversality Theorem is easy to verify. Now,
we prove (2β), that is, we show that

dim
{ R(DQ(u, v, λ, iΩ))
R( ∂Q

∂(u,v,λ) (u, v, λ, iΩ))

}
= ∞.

Suppose this is not true. Then there exist θ1, . . . , θm ∈ L2(Ω)×H 5
2 (∂Ω)×L2(Ω)×

H
5
2 (∂Ω)×L1(∂Ω) such that, for all ḣ ∈ C5(Ω,Rn) there exist u̇, v̇, λ̇ and c1, . . . , cm

such that

DQ(u, v, λ, iΩ)(u̇, v̇, λ̇, ḣ) =
m∑

j=1

cjθj , θj = (θ1j , θ
2
j , θ

3
j , θ

4
j , θ

5
j ),

that is,

(∆2 + λ)(u̇− ḣ · ∇u) + λ̇u =
m∑

j=1

cjθ
1
j , (5.6)

∂

∂N
(u̇− ḣ · ∇u) + ḣ ·N∆u =

m∑
j=1

cjθ
2
j , (5.7)

(∆2 + λ)(v̇ − ḣ · ∇v) + λ̇v =
m∑

j=1

cjθ
3
j , (5.8)

∂

∂N
(v̇ − ḣ · ∇v) + ḣ ·N∆v =

m∑
j=1

cjθ
4
j , (5.9){

∆u
[
∆(v̇ − ḣ · ∇v) + ḣ · ∇(∆v)

]
+ ∆v

[
∆(u̇− ḣ · ∇u) + ḣ · ∇(∆u)

]}∣∣∣
∂Ω

=
m∑

j=1

cjθ
5
j .

(5.10)

Let {u1, . . . , up} ⊂ L2(Ω) be an orthonormal basis constituted by eigenfunctions of
(1.1) with corresponding eigenvalues λ and consider the linear operators

A∆2+λ : L2(Ω) → H4 ∩H1
0 (Ω) ,

C∆2+λ : H
5
2 (∂Ω) → H4(Ω) ∩H1

0 (Ω)

defined by
w = A∆2+λf + C∆2+λg ∈ H4 ∩H1

0 (Ω)
where

(∆2 + λ)w − f ∈ [u1, . . . , up], w⊥[u1, . . . , up],
∂w

∂N
= g on ∂Ω.

We obtain, by equations (5.6), (5.7), (5.8) and (5.9) that

u̇− ḣ · ∇u =
p∑

j=1

ξjuj +
m∑

j=1

cj{A∆2+λθ
1
j + C∆2+λθ

2
j} − C∆2+λ

(
ḣ ·N∆u

)
, (5.11)
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v̇ − ḣ · ∇v =
l∑

j=1

ηiui +
m∑

j=1

cj{A∆2+λθ
3
j + C∆2+λθ

4
j} − C∆2+λ

(
ḣ ·N∆v

)
. (5.12)

Substituting these equations in (5.10) we have

∆u
[
ḣ · ∇(∆v)−∆

(
C∆2+λ

(
ḣ ·N∆v

))]
+ ∆v

[
ḣ · ∇(∆u)−∆

(
C∆2+λ

(
ḣ ·N∆u

))]∣∣∣
∂Ω

(5.13)
belongs to a finite dimensional subspace for all ḣ ∈ C5(Ω,Rn). Since ∆u∆v ≡ 0
on ∂Ω and iΩ ∈ DM , J = {x ∈ ∂Ω | ∆u 6= 0} is a nonempty open set in ∂Ω and
∆v ≡ 0 on J .

Choose ḣ ∈ C5(Ω,Rn) satisfying ḣ ≡ 0 on ∂Ω− J . Thus, using (5.13), it follows
that {

∆u
(
ḣ · ∇(∆v)

)
−∆v∆

(
C∆2+λ

(
ḣ ·N∆u

))}∣∣∣
∂Ω

(5.14)

belongs to a finite dimensional subspace when ḣ varies. In fact, for these choices of
ḣ we have that

C∆2+λ

(
ḣ ·N∆v

)
= C∆2+λ(0)

belongs to a finite dimensional subspace and ∆v
(
ḣ · ∇(∆u)

)
≡ 0 on ∂Ω.

Now, observe that{
∆u

(
ḣ · ∇(∆v)

)
−∆v∆

(
C∆2+λ

(
ḣ ·N∆u

))}∣∣∣
J

= ∆u
(
ḣ · ∇(∆v)

)∣∣∣
J
.

Thus, by equation (5.14) we obtain that the mapping

Σ : ḣ→ ∆u
(
ḣ · ∇(∆v)

)∣∣
J
,

defined for ḣ ∈ C5(Ω,Rn) with ḣ ≡ 0 on ∂Ω− J , has finite rank. But this can only
occur [in dim Ω ≥ 2] if ∇(∆v) ≡ 0 on J ⊂ ∂Ω. Observe that, in this case

0 = ∆v =
∂2v

∂N2 on J ,

0 = ∇(∆v) = ∇
( ∂2v

∂N2

)
on J.

Thus the eigenfunction v of (1.1) satisfies

∂2v

∂N2 =
∂3v

∂N3 = 0 on J,

that is, v satisfies (2.1) and by the Theorem 2.3 v ≡ 0 in Ω. Then we obtain a
contradiction, proving the result. �

Theorem 5.5. Generically in Diff4(Ω) all eigenvalues of (1.1) are simple.

Proof. By Remark (5.2), we can suppose that region Ω is C5-regular. Consider the
map F : BM × (−M, 0)× UM → L2(Ω) defined by

F (u, λ, h) = h∗(∆2 + λ)h∗−1u

where UM = DM −EM . We will show, using the Transversality Theorem, that the
set

{h ∈ UM : 0 is not a regular value of (u, λ) → F (u, λ, h)}
is meager and closed in UM . From this, Proposition 5.1 and Baire’s Theorem the
result follows taking intersection with M ∈ N.
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We can easily see that the hypotheses (1) and (3) of the Theorem are satisfied.
It remains only (2α) to be proved. We reason by contradiction. Suppose there
exists a critical point with F (u, λ, h) = 0. Without loss generality we can suppose
h = iΩ. Then, there exists ψ ∈ L2(Ω), such that

〈DF (u, λ, iΩ)(u̇, λ̇, ḣ), ψ〉 = 0 (5.15)

for all (u̇, λ̇, ḣ) ∈ H4 ∩H2
0 (Ω)×R×C5(Ω,Rn) where DF (u, λ, iΩ) : H4 ∩H2

0 (Ω)×
R× C5(Ω,Rn) → L2(Ω) is given by

DF (u, λ, iΩ)(u̇, λ̇, ḣ) = (∆2 + λ)(u̇− ḣ · ∇u) + λ̇u.

If λ̇ = ḣ = 0 in (5.15), we have∫
Ω

ψ(∆2 + λ)u̇ = 0 ∀u̇ ∈ H4 ∩H2
0 (Ω),

that is, ψ ∈ R(∆2 + λ)⊥ = N (∆2 +λ). Since ∂Ω is of class C5, we have ψ ∈ H5(Ω)
and satisfies

(∆2 + λ)ψ = 0 in Ω

ψ =
∂ψ

∂N
= 0 on ∂Ω.

If ḣ = u̇ = 0 and λ̇ ∈ R we have
∫
Ω
uψ = 0. If λ̇ = u̇ = 0 and ḣ ∈ C5(Ω,Rn), we

obtain

0 = −
∫

Ω

ψ(∆2 + λ)(ḣ · ∇u)

=
∫

Ω

{(ḣ · ∇u)(∆2 + λ)ψ − ψ(∆2 + λ)(ḣ · ∇u)}

=
∫

∂Ω

{(ḣ · ∇u) ∂

∂N
(∆ψ)−∆ψ

∂

∂N
(ḣ · ∇u)− ψ

∂

∂N
(∆(ḣ · ∇u)) + ∆(ḣ · ∇u) ∂ψ

∂N
}

=
∫

∂Ω

{(ḣ · ∇u) ∂

∂N
(∆ψ)−∆ψ

∂

∂N
(ḣ · ∇u)}

=
∫

∂Ω

{ḣ ·N ∂∆ψ
∂N

∂u

∂N
−∆ψ

∂

∂N

(
ḣ ·N ∂u

∂N

)
}

= −
∫

∂Ω

ḣ ·N∆ψ∆u ∀ḣ ∈ C5(Ω,Rn).

So, ∫
∂Ω

ḣ ·N∆ψ∆u = 0 ∀ḣ ∈ C5(Ω,Rn)

which implies ∆ψ∆u ≡ 0 on ∂Ω. Since iΩ ∈ UM , we obtain a contradiction. �
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Addendum: Posted June 30, 2006.

The author wants to correct some typing mistakes found in Section 5. The open
interval (−M, 0) must be replaced by the closed interval [−M, 0] in the following
definitions: G in Lemma 5.3, Q in Lemma 5.4, and F in Theorem 5.5. This
condition is used in their proofs.
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