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DOUBLE SOLUTIONS OF THREE-POINT BOUNDARY-VALUE
PROBLEMS FOR SECOND-ORDER DIFFERENTIAL

EQUATIONS

JOHNNY HENDERSON

Abstract. A double fixed point theorem is applied to yield the existence of

at least two nonnegative solutions for the three-point boundary-value problem

for a second-order differential equation,

y′′ + f(y) = 0, 0 ≤ t ≤ 1,

y(0) = 0, y(p)− y(1) = 0,

where 0 < p < 1 is fixed, and f : R→ [0,∞) is continuous.

1. Introduction

This paper fits in the rapidly growing literature devoted to applications of mul-
tiple fixed point theorems for boundary value problems for each of ordinary differ-
ential equations, finite difference equations, and dynamic equations on time scales.
Some of these applications can be found in, to mention a few, the papers [2] - [5],
[11] - [13] and [18]. These applications involve in some cases multiple uses of a Guo-
Krasnosel’skii [19] fixed point theorem or uses of the Leggett-Williams [14] triple
fixed point theorem. Other applications have used functional-type cone expansion-
compression fixed point theorems such as found in the above cited papers [2] - [5].
In this paper, we apply the Avery-Henderson [4] double fixed point theorem to
obtain at least two positive solutions of the three-point boundary value problem for
the second order differential equation,

y′′ + f(y) = 0, 0 ≤ t ≤ 1, (1.1)

y(0) = 0, y(p)− y(1) = 0, (1.2)

where 0 < p < 1 is fixed throughout, and f : R → [0,∞) is continuous. Multipoint
problems such as (1.1), (1.2) have received considerable attention, often with (1.2)
replaced by u(1)−

∑n
i=1 αiu(ti) = 0, a < t1 < . . . < tn < 1, and 0 <

∑n
i=1 αi < 1.

For a few such papers, see [1], [6] - [10], [16] and [17]. In Section 2, we provide some
background results and we state the double fixed point theorem. Then, in Section 3,
we impose growth conditions on f which allow us to apply the fixed point theorem in
obtaining double positive solutions of (1.1), (1.2). We remark that Liu and Ge [15]
recently obtained a double fixed point theorem which would be considered as a dual
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theorem to the Avery-Henderson double fixed point theorem. At the conclusion of
this paper, we state a theorem establishing double solutions of (1.1), (1.2) which
arise from an application of the Liu-Ge double fixed point theorem. In addition, we
mention that the term “nonnegative” may better describe than “positive” one of
the solutions of (1.1), (1.2). Yet, if conditions such as f(0) > 0 are satisfied, then
our double solutions are indeed positive.

2. Background preliminaries and a double fixed point theorem

In this section, we provide some background from the theory of cones in Ba-
nach spaces, and we then state a double fixed point theorem for a cone preserving
operator.

Definition 2.1. Let (B, ‖ · ‖) be a real Banach space. A nonempty, closed, convex
set P ⊂ B is said to be a cone provided the following are satisfied:

(a) If y ∈ P and λ ≥ 0 , then λy ∈ P;
(b) If y ∈ P and −y ∈ P , then y = 0.

Every cone P ⊂ B induces a partial ordering, ≤, on B defined by

x ≤ y if and only if y − x ∈ P.

Definition 2.2. Given a cone P in a real Banach space B, a functional ψ : P → R
is said to be increasing on P, provided ψ(x) ≤ ψ(y), for all x, y ∈ P with x ≤ y.

Definition 2.3. Given a nonnegative continuous functional γ on a cone P of a real
Banach space B, (i.e., γ : P → [0,∞) continuous), we define, for each d > 0, the
convex set

P(γ, d) = {x ∈ P : γ(x) < d}.

Our main results concerning multiple positive solutions of (1.1), (1.2) will arise
as applications of the following fixed point theorem due to Avery and Henderson
[4].

Theorem 2.4. Let P be a cone in a real Banach space B. Let α and γ be increasing,
nonnegative, continuous functionals on P, and let θ be a nonnegative continuous
functional on P with θ(0) = 0 such that, for some c > 0 and M > 0,

γ(x) ≤ θ(x) ≤ α(x) and ‖x‖ ≤Mγ(x),

for all x ∈ P(γ, c). Suppose there exist a completely continuous operator A :
P(γ, c) → P and 0 < a < b < c such that

θ(λx) ≤ λθ(x), for 0 ≤ λ ≤ 1 and x ∈ ∂P(θ, b),

and
(i) γ(Ax) > c, for all x ∈ ∂P(γ, c);
(ii) θ(Ax) < b, for all x ∈ ∂P(θ, b);
(iii) P(α, a) 6= ∅, and α(Ax) > a, for all x ∈ ∂P(α, a).

Then A has at least two fixed points, x1 and x2 belonging to P(γ, c) such that

a < α(x1), with θ(x1) < b,

and
b < θ(x2), with γ(x2) < c.
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3. Double positive solutions of (1.1), (1.2)

In this section, we impose growth conditions of f and then apply Theorem 2.4
to establish the existence of double positive solutions of (1.1), (1.2). We note that
from the nonnegativity of f , a solution y of (1.1), (1.2) is both nonnegative and
concave on [0, 1], and in addition, assumes its maximum in the interval (p, 1). We
will apply Theorem 2.4 to a completely continuous operator whose kernel, G(t, s),
is the Green’s function for

−y′′ = 0, (3.1)
satisfying (1.2). In this instance,

G(t, s) =


t, t ≤ s ≤ p,

s, s ≤ t and s ≤ p,
1−s
1−p t, t ≤ s and s ≥ p,

s+ p−s
1−p t, p ≤ s ≤ t.

(3.2)

Properties of G(t, s) for which we will make use include

G(t, s) ≤ G(s, s), 0 ≤ t, s ≤ 1, (3.3)

G(t, s) ≥ G(p, s), p ≤ t ≤ 1, 0 ≤ s ≤ 1. (3.4)

Let the Banach space B = C[0, 1] be equipped with the norm ‖y‖ = max0≤t≤1 |y(t)|,
and choose the cone P ⊂ B defined by

P = {y ∈ B : y is concave and nonnegative-valued on [0, 1], and y(p) = y(1)}.
For the remainder of the paper, fix r ∈ (p, 1), and define the nonnegative, increasing
functionals, γ, θ and α, on P by

γ(y) = min
p≤t≤r

y(t) = y(p) = y(1),

θ(y) = max
0≤t≤p

y(t) = y(p),

α(y) = max
0≤t≤r

y(t).

We observe that, for each y ∈ P,

γ(y) = θ(y) ≤ α(y). (3.5)

In addition, for each y ∈ P,

‖y‖ ≤ 1
p
y(p) ≤ 1

p
γ(y). (3.6)

Finally, we note that

θ(λy) = λθ(y), 0 ≤ λ ≤ 1, and y ∈ ∂P(θ, b). (3.7)

We now state growth conditions on f so that (1.1), (1.2) has at least two positive
solutions.

Theorem 3.1. Let

0 < a <
r[r(1− r) + p(r − p)]

p(1− p)
b <

r[r(1− r) + p(r − p)]
(1− p)

c ,

and suppose that f satisfies the following conditions:
(A) f(w) > 2c

p(1−p) , if c ≤ w ≤ c
p ,

(B) f(w) < 2b
p , if 0 ≤ w ≤ b

p ,
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(C) f(w) > 2(1−p)a
r[r(1−r)+p(r−p)] , if 0 ≤ w ≤ a.

Then, the three point boundary value problem (1.1), (1.2) has at least two positive
solutions, x1 and x2, such that

a < max
0≤t≤r

x1(t), with max
0≤t≤p

x1(t) < b,

and
b < max

0≤t≤p
x2(t), with min

p≤t≤r
x2(t) < c.

Proof. We begin by defining a completely continuous integral operator A : B → B
by

Ax(t) =
∫ 1

0

G(t, s)f(x(s))ds, x ∈ B, 0 ≤ t ≤ 1.

Solutions of (1.1), (1.2) are fixed points of A and conversely. Our proof consists of
showing the conditions of Theorem 2.4 are satisfied. First, we choose x ∈ P(γ, c).
By the nonnegativity of f and G, for 0 ≤ t ≤ 1,

Ax(t) =
∫ 1

0

G(t, s)f(x(s))ds ≥ 0.

Moreover, (Ax)′′(t) = −f(x(t)) ≤ 0, and so (Ax)(t) is concave on [0, 1]. Since
G(t, s) satisfies the boundary conditions (1.2) as a function of t, we have (Ax)(p) =
(Ax)(1). Thus, Ax ∈ P and A : P(γ, c) → P. We now consider property (i) of
Theorem 2.4. If we choose x ∈ ∂P(γ, c), then γ(x) = minp≤t≤r x(t) = x(p) = c.
Since x ∈ P, x(t) ≥ c, p ≤ t ≤ 1. By recalling ‖x‖ ≤ 1

pγ(x) = 1
px(p) = c

p , we have

c ≤ x(t) ≤ c

p
, p ≤ t ≤ 1.

As a consequence of (A),

f(x(s)) >
2c

p(1− p)
, p ≤ s ≤ 1.

Also, Ax ∈ P, and so

γ(Ax) = (Ax)(p)

=
∫ 1

0

G(p, s)f(x(s))ds

≥
∫ 1

p

G(p, s)f(x(s))ds

=
∫ 1

p

(1− s

1− p

)
pf(x(s))ds

>
2c

p(1− p)

∫ 1

p

(1− s

1− p

)
pds

= c.

We conclude that (i) of Theorem 2.4 is satisfied. We next address (ii) of Theorem
2.4. We choose x ∈ ∂P(θ, b). Then θ(x) = max0≤t≤p x(t) = x(p) = b. Then
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0 ≤ x(t) ≤ b, 0 ≤ t ≤ p, and since x ∈ P, we also have b ≤ x(t) ≤ ‖x‖, p ≤ t ≤ 1.
Moreover, ‖x‖ ≤ 1

pγ(x) ≤
1
pθ(x) = b

p . So,

0 ≤ x(t) ≤ b

p
, 0 ≤ t ≤ 1.

From (B),

f(x(s)) <
2b
p
, 0 ≤ s ≤ 1.

Ax ∈ P, and so

θ(Ax) = (Ax)(p)

=
∫ 1

0

G(p, s)f(x(s))ds

<
2b
p

∫ 1

0

G(p, s)ds

=
2b
p

[ ∫ p

0

G(p, s)ds+
∫ 1

p

G(p, s)ds
]

=
2b
p

[ ∫ p

0

sds+
∫ 1

p

(1− s

1− p

)
pds

]
= b.

In particular, (ii) of Theorem 2.4 holds. For the final part, we turn to (iii) of
Theorem 2.4. If we first define y(t) = a

2 , 0 ≤ t ≤ 1, then α(y) = a
2 < a, and

P(α, a) 6= ∅. Now, let us choose x ∈ ∂P(α, a). Then, for some r0 ∈ (p, 1), α(x) =
max0≤t≤r x(t) = x(r0) = a. So, in particular

0 ≤ x(t) ≤ a, 0 ≤ t ≤ r.

From assumption (C),

f(x(s)) >
2(1− p)a

r[r(1− r) + p(r − p)]
, 0 ≤ s ≤ r.

As before, Ax ∈ P, and so for some ρ0 ∈ (p, 1),

α(Ax) = (Ax)(ρ0)

≥ (Ax)(r)

=
∫ 1

0

G(r, s)f(x(s))ds

≥
∫ r

0

G(r, s)f(x(s))ds

>
2(1− p)a

r[r(1− r) + p(r − p)]

[ ∫ p

0

sds+
∫ r

p

s+
(p− s

1− p

)
rds

]
= a.

Thus, (iii) of Theorem 2.4 is also satisfied. Hence, there exist at least two fixed
points of A which are positive solutions x1 and x2, belonging to P(γ, c), of the
boundary value problem (1.1), (1.2) such that

a < α(x1), with θ(x1) < b,
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and

b < θ(x2), with γ(x2) < c.

The proof is complete. �

Example. For 0 < p < r < 1 fixed and

0 < a <
r[r(1− r) + p(r − p)]

p(1− p)
b <

r[r(1− r) + p(r − p)]
(1− p)

c,

if f : R → [0,∞) is defined by

f(w) =


b
p + (1−p)a

r[r(1−r)+p(r−p)] , w ≤ b
p ,

`(w), b
p ≤ w ≤ c,

2c
p(1−p) + 1, c ≤ w,

where `(w) satisfies `′′ = 0, `( b
p ) = b

p + (1−p)a
r[r(1−r)+p(r−p)] and `(c) = 2c

p(1−p) + 1, then
by Theorem 3.1, the boundary value problem (1.1), (1.2) has at least two positive
solutions.

Remark. Liu and Ge recently obtained a double fixed point theorem [15, Lemma
2, p. 553] which could be considered as a type of dual to Theorem 2.4 in that,
conditions are given for the existence of double fixed points when inequalities (i), (ii)
and (iii) of Theorem 2.4 are reversed. We provide in this remark, as an application
of the Liu-Ge double fixed point, a dual result to Theorem 3.1 for double positive
solutions of (1.1), (1.2). Because of close similarity of its proof to that of Theorem
3.1, we will omit the proof. For convenience of notation, we will define

λ = max
0≤t≤r

∫ 1

0

G(t, s)ds.

Theorem 3.2. Let 0 < a < b < c be such that 0 < a < min{pb, 2λb
p(1−p)} <

2λc
p , and

suppose that f satisfies the following conditions:

(A) f(w) < 2c
p , if 0 ≤ w ≤ c

p ,
(B) f(w) > 2b

p(1−p) , if b ≤ w ≤ b
p ,

(C) f(w) < a
λ , if 0 ≤ w ≤ a

p .

Then, the three point boundary value problem (1.1), (1.2) has at least two positive
solutions, x1 and x2, such that

a < max
0≤t≤r

x1(t), with max
0≤t≤p

x1(t) < b,

and

b < max
0≤t≤p

x2(t), with min
p≤t≤r

x2(t) < c.

Acknowledgments. The author expresses his gratitude to the referee for pointing
out that a result such as Theorem 3.2 could be obtained from the Liu-Ge double
fixed point theorem.
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