Electronic Journal of Differential Equations, Vol. 2004(2004), No. 119, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SEMIPOSITONE *m*-POINT BOUNDARY-VALUE PROBLEMS

NICKOLAI KOSMATOV

ABSTRACT. We study the *m*-point nonlinear boundary-value problem

$$\begin{split} -[p(t)u'(t)]' &= \lambda f(t,u(t)), \quad 0 < t < 1, \\ u'(0) &= 0, \quad \sum_{i=1}^{m-2} \alpha_i u(\eta_i) = u(1), \end{split}$$

where $0 < \eta_1 < \eta_2 < \cdots < \eta_{m-2} < 1$, $\alpha_i > 0$ for $1 \le i \le m-2$ and $\sum_{i=1}^{m-2} \alpha_i < 1$, $m \ge 3$. We assume that p(t) is non-increasing continuously differentiable on (0,1) and p(t) > 0 on [0,1]. Using a cone-theoretic approach we provide sufficient conditions on continuous f(t, u) under which the problem admits a positive solution.

1. INTRODUCTION

In this note we consider the nonlinear m-point eigenvalue problem

$$-[p(t)u'(t)]' = \lambda f(t, u(t)), \quad 0 < t < 1,$$
(1.1)

$$u'(0) = 0, \quad \sum_{i=1}^{m-2} \alpha_i u(\eta_i) = u(1),$$
 (1.2)

where $0 < \eta_1 < \eta_2 < \cdots < \eta_{m-2} < 1$, $\alpha_i > 0$ for $1 \le i \le m-2$, $\sum_{i=1}^{m-2} \alpha_i < 1$. We also assume that the function p(t) is non-increasing continuously differentiable on (0,1) and p(t) > 0 on [0,1]. The inhomogeneous term in (1.1) is allowed to change its sign. Other assumptions on f(t, u(t)) will be made later.

The study of multi-point boundary-value problems was initiated by Il'in and Moiseev in [7, 8]. Many authors since then considered nonlinear multi-point boundaryvalue problems (see, e.g., [2, 4, 5, 6, 9, 14, 15, 16, 17] and the references therein). In particular, Ma studied in [15] positive solutions to the three-point nonlinear boundary-value problem

$$-u''(t) = a(t)f(u(t)), \quad 0 < t < 1,$$

$$u(0) = 0, \quad \alpha u(\eta) = u(1),$$

²⁰⁰⁰ Mathematics Subject Classification. 34B10, 34B18.

 $Key\ words\ and\ phrases.$ Green's function; fixed point theorem; positive solutions;

multi-point boundary-value problem.

^{©2004} Texas State University - San Marcos.

Submitted April 23, 2004. Published October 10, 2004.

where $0 < \alpha$, $0 < \eta < 1$ and $\alpha \eta < 1$. The results of [15] were complemented in the works of Webb [17], Kaufmann [9], Kaufmann and Kosmatov [10], and Kaufmann and Raffoul [11].

Among the studies dealing with semipositone multi-point boundary-value problems, we mention the papers by Cao and Ma [3] and Liu [13]. Cao and Ma considered the boundary-value problem

$$-u''(t) = \lambda a(t) f(u(t), u'(t)), \quad 0 < t < 1,$$
$$u(0) = 0, \quad \sum_{i=1}^{m-2} \alpha_i u(\eta_i) = u(1).$$

The authors applied the Leray-Schauder fixed point theorem to obtain an interval of eigenvalues for which at least one positive solution exists. Liu applied a fixed point index method to obtain such an interval for

$$-u''(t) = \lambda a(t) f(u(t)), \quad 0 < t < 1,$$

$$u'(0) = 0, \quad \alpha u(\eta) = u(1).$$

Our approach is based on Krasnosel'skii's cone-theoretic theorem [12] and enables us to show the existence of a positive solution for the semipositone problem (1.1), (1.2). Other applications of Krasnosel'skii's fixed point theorem to semipositone problems can, for example, be found in [1].

2. Preliminaries

We now proceed with the auxiliaries. Consider the equation

$$-[p(t)u'(t)]' = g(t), \quad 0 < t < 1,$$
(2.1)

with the boundary conditions (1.2). For convenience we set $\alpha = \sum_{i=1}^{m-2} \alpha_i$. Recall that $\alpha < 1$.

Lemma 2.1. If $g \in C[0,1]$ and $g(t) \ge 0$ on [0,1], then

$$u(t) = -\int_0^t \left(\int_s^t \frac{d\tau}{p(\tau)}\right) g(s) \, ds + \frac{1}{1-\alpha} \int_0^1 \left(\int_s^1 \frac{d\tau}{p(\tau)}\right) g(s) \, ds$$
$$-\frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_i \int_0^{\eta_i} \left(\int_s^{\eta_i} \frac{d\tau}{p(\tau)}\right) g(s) \, ds \tag{2.2}$$

is the unique nonnegative solution on [0,1] of the problem (2.1), (1.2).

Proof. Integration of (2.1) from 0 to t with the use of the boundary condition (1.2)at 0 yields

$$u'(t) = -\frac{1}{p(t)} \int_0^t g(s) \, ds \le 0.$$

Integrating again we get

$$u(t) = -\int_0^t \frac{1}{p(s)} \left(\int_0^s g(\tau) \, d\tau \right) ds + A = -\int_0^t \left(\int_s^t \frac{d\tau}{p(\tau)} \right) g(s) \, ds + A.$$

EJDE-2004/119

Using the multi-point condition in (1.2) we determine A and obtain (2.2). Since $u'(t) \le 0,$

$$\begin{split} u(t) &\geq u(1) \\ &= \frac{\alpha}{1-\alpha} \int_0^1 \Big(\int_s^1 \frac{d\tau}{p(\tau)} \Big) g(s) \, ds - \frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_i \int_0^{\eta_i} \Big(\int_s^{\eta_i} \frac{d\tau}{p(\tau)} \Big) g(s) \, ds \\ &= \frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_i \Big[\int_0^1 \Big(\int_s^1 \frac{d\tau}{p(\tau)} \Big) g(s) \, ds - \int_0^{\eta_i} \Big(\int_s^{\eta_i} \frac{d\tau}{p(\tau)} \Big) g(s) \, ds \Big] \geq 0 \\ & \text{a [0, 1] and the proof is complete.} \end{split}$$

on [0,1] and the proof is complete.

For g(t) = 1 on [0, 1], we denote by $u_0(t)$ the unique solution (2.2). Then we have

$$C = \max_{t \in [0,1]} u_0(t) = u_0(0)$$

= $\frac{1}{1-\alpha} \int_0^1 \left(\int_s^1 \frac{d\tau}{p(\tau)} \right) g(s) ds - \frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_i \int_0^{\eta_i} \left(\int_s^{\eta_i} \frac{d\tau}{p(\tau)} \right) g(s) ds.$

The Green's function for -[p(t)u'(t)]' = 0 with (1.2) is given by

$$G(t,s) = \frac{1}{1-\alpha} \int_{s}^{1} \frac{d\tau}{p(\tau)} - \begin{cases} \int_{s}^{t} \frac{d\tau}{p(\tau)}, & s \le t \\ 0, & s > t \end{cases} - \begin{cases} \frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_{i} \chi_{i}(s) \int_{s}^{\eta_{i}} \frac{d\tau}{p(\tau)}, & s \le \eta_{m-2} \\ 0, & s > \eta_{m-2}, \end{cases}$$

where

$$\chi_i(s) = \begin{cases} 1, & s \le \eta_i \\ 0, & s > \eta_i. \end{cases}$$

Note that

$$\max_{t \in [0,1]} \int_0^1 G(t,s) \, ds = C. \tag{2.3}$$

The integral operator $T: \mathcal{B} \to \mathcal{B}$ associated with (1.1), (1.2) is defined by

$$Tu(t) = \int_0^1 G(t,s)f(s,u(s))\,ds$$

A routine argument shows that T is completely continuous.

Definition 2.2. Let \mathcal{B} be a Banach space and let $\mathcal{C} \subset \mathcal{B}$ be closed and nonempty. Then \mathcal{C} is said to be a cone if

- (1) $\alpha u + \beta v \in \mathcal{C}$ for all $u, v \in \mathcal{C}$ and for all $\alpha, \beta \geq 0$, and
- (2) $u, -u \in \mathcal{C}$ implies $u \equiv 0$.

Our Banach space, \mathcal{B} , is the space C[0, 1] with the norm $||u|| = \max_{t \in [0, 1]} |u(t)|$. We will show now that the unique solution (2.2) satisfies

$$\min_{t \in [0,1]} u(t) \ge \gamma \|u\|, \tag{2.4}$$

where

$$\gamma = \max_{1 \le i \le m-2} \frac{\alpha_i (1 - \eta_i)}{1 - \alpha_i \eta_i}.$$

To this end, note that the solution (2.2) is concave, since $g(t) \ge 0$ and $u'(t), p'(t) \le 0$ on [0, 1]. By concavity and since $u(1) > \alpha_i u(\eta_i)$ for each $1 \le i \le m - 2$,

$$\begin{split} \|u\| &= u(0) \\ &\leq u(1) + \frac{u(1) - u(\eta_i)}{1 - \eta_i} (0 - 1) \\ &< u(1) \frac{1 - \alpha_i \eta_i}{\alpha_i (1 - \eta_i)} \\ &= \frac{1 - \alpha_i \eta_i}{\alpha_i (1 - \eta_i)} \min_{t \in [0, 1]} u(t) \end{split}$$

and hence (2.4) holds.

The estimate (2.4) is used for defining our cone $\mathcal{C} \subset \mathcal{B}$ by

$$\mathcal{C} = \{ u(t) \in \mathcal{B} : u(t) \ge 0 \text{ on } [0,1], \min_{t \in [0,1]} u(t) \ge \gamma \|u\| \}.$$
(2.5)

It turns out that our operator T is cone-preserving. Fixed points of T are solutions of (1.1), (1.2). The existence of a fixed point of T follows from a fixed point theorem due to Krasnosel'skiĭ [12], which we now state.

Theorem 2.3. Let \mathcal{B} be a Banach space and let $\mathcal{C} \subset \mathcal{B}$ be a cone in \mathcal{B} . Assume that Ω_1, Ω_2 are open with $0 \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2$, and let

$$T\colon \mathcal{C}\cap(\overline{\Omega}_2\setminus\Omega_1)\to\mathcal{C}$$

be a completely continuous operator such that either

- (i) $||Tu|| \leq ||u||$, $u \in \mathcal{C} \cap \partial \Omega_1$, and $||Tu|| \geq ||u||$, $u \in \mathcal{C} \cap \partial \Omega_2$, or
- (ii) $||Tu|| \ge ||u||, u \in \mathcal{C} \cap \partial\Omega_1$, and $||Tu|| \le ||u||, u \in \mathcal{C} \cap \partial\Omega_2$.

Then T has a fixed point in $\mathcal{C} \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

The following assumptions will stand throughout the remainder of this note:

- (A1) f(t,z) is a continuous function on $[0,1] \times [0,\infty)$
- (A2) There exists M > 0 such that $f(t, z) + M \ge 0$ on $[0, 1] \times [0, \infty)$
- (A3) There exist continuous nonnegative nondecreasing on $[0, \infty)$ functions $\psi_a(z)$ and $\psi_b(z)$ with $\psi_b(z) \le f(t, z) + M \le \psi_a(z)$ on $[0, 1] \times [0, \infty)$.

3. Positive solutions

We now state our main results.

Theorem 3.1. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition, that

$$\lim_{z \to 0^+} \frac{\psi_a(z)}{z} = 0 \quad and \quad \lim_{z \to \infty} \frac{\psi_b(z)}{z} = \infty.$$

Then, for a sufficiently small $\lambda > 0$, the problem (1.1), (1.2) has a positive solution.

Proof. Consider the equation

$$-[p(t)u'(t)]' = \lambda f_p(t, u(t) - u_\lambda(t)), \quad 0 < t < 1,$$
(3.1)

with the boundary conditions (1.2), where

$$f_p(t,z) = \begin{cases} f(t,z) + M, & z \ge 0\\ f(t,0) + M, & z \le 0 \end{cases}$$

EJDE-2004/119

and $u_{\lambda}(t) = \lambda M u_0(t)$ ($u_0(t)$ is given by (2.2) for $g \equiv 1$). Our objective is to show that the problem (3.1), (1.2) has a positive solution.

Our completely continuous and cone-preserving operator associated with (3.1), (1.2) is defined by

$$T_{\lambda}u(t) = \lambda \int_0^1 G(t,s) f_p(s,u(s) - u_{\lambda}(s)) \, ds$$

Since $\lim_{z\to 0^+} \frac{\psi_a(z)}{z} = 0$, there exists $R_1 > 0$ such that

$$\psi_a(z) \le \frac{1}{\lambda C} z$$

for all $z \leq R_1$.

Define $\Omega_1 = \{ u \in \mathcal{B} : ||u|| < R_1 \}$, then for $u \in \mathcal{C} \cap \partial \Omega_1$ we have

$$\psi_a(u(s)) \le \psi_a(\|u\|) \le \frac{1}{\lambda C} R_1 \tag{3.2}$$

for all $s \in [0,1]$, since $\psi_a(z)$ is nondecreasing. Now, if $u(s) \ge u_\lambda(s)$ for $s \in [0,1]$, then

$$f_p(s, u(s) - u_\lambda(s)) = f(s, u(s) - u_\lambda(s)) + M \le \psi_a(u(s) - u_\lambda(s)) \le \psi_a(u(s)).$$

If $u(s) \leq u_{\lambda}(s)$, then

$$f_p(s, u(s) - u_\lambda(s)) = f(s, 0) + M \le \psi_a(0) \le \psi_a(u(s))$$

(we know that $u(s) \ge 0$ as an element of C). Combining both cases and using (3.2) and (2.3), we get

$$\begin{aligned} |T_{\lambda}u|| &= \max_{t \in [0,1]} \lambda \int_0^1 G(t,s) f_p(s,u(s) - u_{\lambda}(s)) \, ds \\ &\leq \max_{t \in [0,1]} \lambda \int_0^1 G(t,s) \psi_a(u(s)) \, ds \\ &\leq \lambda \max_{t \in [0,1]} \int_0^1 G(t,s) \, ds \, \frac{1}{\lambda C} R_1 = R_1, \end{aligned}$$

that is, $||T_{\lambda}u|| \leq ||u||$ on $\mathcal{C} \cap \partial \Omega_1$.

Since $\lim_{z\to\infty} \frac{\psi_b(z)}{z} = \infty$, then also $\lim_{z\to\infty} \frac{\psi_b(\gamma z - \lambda MC)}{z} = \infty$. Thus, there exists $R_2 > 0$ large enough (so that $R_2 > \frac{\lambda MC}{\gamma}$ and $R_2 > R_1$) such that

$$\psi_b(\gamma z - \lambda MC) \ge \frac{1}{\lambda C} z$$

for all $z \geq R_2$. In fact,

$$\psi_b(\gamma R_2 - \lambda MC) \ge \frac{1}{\lambda C} R_2. \tag{3.3}$$

Define $\Omega_2 = \{ u \in \mathcal{B} : ||u|| < R_2 \}$, then for $u \in \mathcal{C} \cap \partial \Omega_2$ we have

$$u(s) - u_{\lambda}(s) \ge \gamma \|u\| - \lambda M u_0(s) \ge \gamma R_2 - \lambda M C > 0$$

Now, for all $s \in [0, 1]$,

$$f_p(s, u(s) - u_{\lambda}(s)) = f(s, u(s) - u_{\lambda}(s)) + M \ge \psi_b(u(s) - u_{\lambda}(s)) \ge \psi_b(\gamma R_2 - \lambda MC),$$

since $\psi_b(z)$ is nondecreasing. Therefore, by (3.3) and (2.3),

$$\begin{aligned} \|T_{\lambda}u\| &= \max_{t \in [0,1]} \lambda \int_0^1 G(t,s) f_p(s,u(s) - u_{\lambda}(s)) \, ds \\ &\geq \max_{t \in [0,1]} \lambda \int_0^1 G(t,s) \psi_b(\gamma R_2 - \lambda MC) \, ds \\ &\geq \lambda \max_{t \in [0,1]} \int_0^1 G(t,s) \, ds \, \frac{1}{\lambda C} R_2 = R_2, \end{aligned}$$

that is, $||T_{\lambda}u|| \leq ||u||$ on $\mathcal{C} \cap \partial \Omega_2$.

Since the assumptions of Theorem 2.3 are satisfied, we conclude that the problem (3.1), (1.2) has a positive solution in $\mathcal{C} \cap (\overline{\Omega}_2 \setminus \Omega_1)$, which we denote by u_p .

Let λ be small enough so that $R_1 > \frac{\lambda MC}{\gamma}$. Now we have $u_p(t) \ge \gamma ||u_p|| \ge \gamma R_1 > \lambda MC \ge u_{\lambda}(t)$ for all $t \in [0, 1]$. Set $u(t) = u_p(t) - u_{\lambda}(t)$, then

$$-[p(t)u'(t)]' = -[p(t)u'_p(t)]' - \lambda M$$

= $\lambda f_p(t, u_p(t) - u_\lambda(t)) - \lambda M$
= $\lambda (f(t, u_p(t) - u_\lambda(t)) + M) - \lambda M$
= $\lambda f(t, u(t)),$

which shows that u(t) is a positive solution of (1.1), (1.2). The proof is complete.

Example. To illustrate our main result, we consider the inhomogeneous term in the form of the function

$$f(t,z) = -1 + z^2 (2 + \sin(4\pi z(1+t^3))).$$

The function f(t, z) is continuous and, setting M = 1, we get $f(t, z) + M \ge 0$ on $[0, 1] \times [0, \infty)$. In addition, for $\psi_b(z) = z^2$ and $\psi_a(z) = 3z^2$, we have $\psi_b(z) \le f(t, z) + M \le \psi_a(z)$ and

$$\lim_{z \to 0^+} \frac{\psi_a(z)}{z} = 0 \quad \text{and} \quad \lim_{z \to \infty} \frac{\psi_b(z)}{z} = \infty.$$

Thus, Theorem 3.1 applies.

With only minor adjustments to the argument above one can prove our next theorem.

Theorem 3.2. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition, that

$$\lim_{z \to 0^+} \frac{\psi_a(z)}{z} = \infty \quad and \quad \lim_{z \to \infty} \frac{\psi_b(z)}{z} = 0.$$

Then, for a sufficiently small $\lambda > 0$, the problem (1.1), (1.2) has a positive solution.

Remark. If problem (1.1), (1.2) has a positive solution for some $\lambda_1 > 0$, there is also a positive solution for each $\lambda \in (0, \lambda_1]$.

We say that a function $\psi(z)$ is sublinear if

$$\lim_{z \to 0^+} \frac{\psi(z)}{z} = \infty \quad \text{and} \quad \lim_{z \to \infty} \frac{\psi(z)}{z} = 0.$$

On the other hand, if

$$\lim_{z \to 0^+} \frac{\psi(z)}{z} = 0 \quad \text{and} \quad \lim_{z \to \infty} \frac{\psi(z)}{z} = \infty,$$

then the function ψ is called superlinear.

If in the assumption (A3) we take $\psi_a(z) = \psi_b(z)$, then the following corollary to Theorems 3.1 and 3.2 becomes immediate.

Corollary 3.3. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition, that $\psi_a(z) = \psi_b(z)$ is either sublinear or superlinear. Then, for a sufficiently small $\lambda > 0$, the problem (1.1), (1.2) has a positive solution.

References

- R. P. Agarwal, S. R. Grace and D. O'Regan, Semipositone higher-order differential equations, Appl. Math. Lett. 17 (2004), 201-207
- [2] D. Anderson, Solutions to second-order three-point problems on time scales, J. Difference Equ. Appl. 8 (2002), 673-688.
- [3] D. Cao and R. Ma, Positive solutions to a second order multi-point boundary-value problem, Electron. J. of Differential Equations 2000 (2000), No. 65, 1-8.
- [4] W. Feng, Solutions and positive solutions for some three-point boundary-value problems, in Proc. of the 4th International Conference on Dynamical Systems and Differential Equations, 263-272.
- [5] W. Feng and J. R. L. Webb, Solvability of a m-point boundary-value problem with nonlinear growth, J. Math. Anal. Appl. 212 (1997), 467-480.
- [6] M. Garsía-Huidobro and R. Manásevich, A three-point boundary-value problem containing the operator $-(\phi(u'))'$, in Proc. of the 4th International Conference on Dynamical Systems and Differential Equations, 313-319.
- [7] V. A. Il'in and E. I. Moiseev, Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, J. Differential Equations, 23(7) (1987), 803-810.
- [8] V. A. Il'in and E. I. Moiseev, Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator, J. Differential Equations 23(8) (1987), 979-987.
- [9] E. R. Kaufmann, Positive solutions of a three-point boundary value on a time scale, Electron. J. of Differential Equations, 2003 (2003), No. 82, 1-11.
- [10] E. R. Kaufmann and N. Kosmatov, A singular three-point boundary-value problem, preprint.
- [11] E. R. Kaufmann and Y. N. Raffoul, Eigenvalue problems for a three-point boundary-value problem on a time scale, Electron. J. Qual. Theory Differ. Equ. 2004 (2004), No.15, 1 - 10.
- [12] M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, (English) Translated by A. H. Armstrong; A Pergamon Press Book, MacMillan, New York, 1964.
- [13] B. Liu, Nontrivial solutions of second-order three-point boundary-value problems, preprint.
- [14] R. Ma, Existence theorems for a second order three-point boundary-value problem, J. Math. Anal. Appl. 211 (1997), 545-555.
- [15] R. Ma, Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. of Differential Equations 1999 (1999), No. 34, 1-8.
- [16] J. R. L. Webb, Positive solutions of some three point boundary-value problems via fixed point index theory, Nonlinear Anal. 47(2001), 4319-4332.
- [17] J. R. L. Webb, Remarks on positive solutions of some three point boundary-value problems, in Proc. of the 4th International Conference on Dynamical Systems and Differential Equations, 905-915.

Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204-1099, USA

E-mail address: nxkosmatov@ualr.edu