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SEMIPOSITONE m-POINT BOUNDARY-VALUE PROBLEMS

NICKOLAI KOSMATOV

Abstract. We study the m-point nonlinear boundary-value problem

−[p(t)u′(t)]′ = λf(t, u(t)), 0 < t < 1,

u′(0) = 0,

m−2∑
i=1

αiu(ηi) = u(1),

where 0 < η1 < η2 < · · · < ηm−2 < 1, αi > 0 for 1 ≤ i ≤ m − 2 and∑m−2
i=1 αi < 1, m ≥ 3. We assume that p(t) is non-increasing continuously

differentiable on (0, 1) and p(t) > 0 on [0, 1]. Using a cone-theoretic approach
we provide sufficient conditions on continuous f(t, u) under which the problem
admits a positive solution.

1. Introduction

In this note we consider the nonlinear m-point eigenvalue problem

−[p(t)u′(t)]′ = λf(t, u(t)), 0 < t < 1, (1.1)

u′(0) = 0,
m−2∑
i=1

αiu(ηi) = u(1), (1.2)

where 0 < η1 < η2 < · · · < ηm−2 < 1, αi > 0 for 1 ≤ i ≤ m− 2,
∑m−2
i=1 αi < 1. We

also assume that the function p(t) is non-increasing continuously differentiable on
(0, 1) and p(t) > 0 on [0, 1]. The inhomogeneous term in (1.1) is allowed to change
its sign. Other assumptions on f(t, u(t)) will be made later.

The study of multi-point boundary-value problems was initiated by Il’in and Moi-
seev in [7, 8]. Many authors since then considered nonlinear multi-point boundary-
value problems (see, e.g., [2, 4, 5, 6, 9, 14, 15, 16, 17] and the references therein).
In particular, Ma studied in [15] positive solutions to the three-point nonlinear
boundary-value problem

−u′′(t) = a(t)f(u(t)), 0 < t < 1,

u(0) = 0, αu(η) = u(1),

2000 Mathematics Subject Classification. 34B10, 34B18.
Key words and phrases. Green’s function; fixed point theorem; positive solutions;

multi-point boundary-value problem.
c©2004 Texas State University - San Marcos.

Submitted April 23, 2004. Published October 10, 2004.

1



2 NICKOLAI KOSMATOV EJDE-2004/119

where 0 < α, 0 < η < 1 and αη < 1. The results of [15] were complemented in the
works of Webb [17], Kaufmann [9], Kaufmann and Kosmatov [10], and Kaufmann
and Raffoul [11].

Among the studies dealing with semipositone multi-point boundary-value prob-
lems, we mention the papers by Cao and Ma [3] and Liu [13]. Cao and Ma considered
the boundary-value problem

−u′′(t) = λa(t)f(u(t), u′(t)), 0 < t < 1,

u(0) = 0,
m−2∑
i=1

αiu(ηi) = u(1).

The authors applied the Leray-Schauder fixed point theorem to obtain an interval
of eigenvalues for which at least one positive solution exists. Liu applied a fixed
point index method to obtain such an interval for

−u′′(t) = λa(t)f(u(t)), 0 < t < 1,

u′(0) = 0, αu(η) = u(1).

Our approach is based on Krasnosel’skĭı’s cone-theoretic theorem [12] and enables
us to show the existence of a positive solution for the semipositone problem (1.1),
(1.2). Other applications of Krasnosel’skĭı’s fixed point theorem to semipositone
problems can, for example, be found in [1].

2. Preliminaries

We now proceed with the auxiliaries. Consider the equation

−[p(t)u′(t)]′ = g(t), 0 < t < 1, (2.1)

with the boundary conditions (1.2).
For convenience we set α =

∑m−2
i=1 αi. Recall that α < 1.

Lemma 2.1. If g ∈ C[0, 1] and g(t) ≥ 0 on [0, 1], then

u(t) = −
∫ t

0

( ∫ t

s

dτ

p(τ)

)
g(s) ds+

1
1− α

∫ 1

0

( ∫ 1

s

dτ

p(τ)

)
g(s) ds

− 1
1− α

m−2∑
i=1

αi

∫ ηi

0

(∫ ηi

s

dτ

p(τ)

)
g(s) ds

(2.2)

is the unique nonnegative solution on [0, 1] of the problem (2.1), (1.2).

Proof. Integration of (2.1) from 0 to t with the use of the boundary condition (1.2)
at 0 yields

u′(t) = − 1
p(t)

∫ t

0

g(s) ds ≤ 0.

Integrating again we get

u(t) = −
∫ t

0

1
p(s)

( ∫ s

0

g(τ) dτ
)
ds+A = −

∫ t

0

( ∫ t

s

dτ

p(τ)

)
g(s) ds+A.
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Using the multi-point condition in (1.2) we determine A and obtain (2.2). Since
u′(t) ≤ 0,

u(t) ≥ u(1)

=
α

1− α

∫ 1

0

( ∫ 1

s

dτ

p(τ)

)
g(s) ds− 1

1− α

m−2∑
i=1

αi

∫ ηi

0

( ∫ ηi

s

dτ

p(τ)

)
g(s) ds

=
1

1− α

m−2∑
i=1

αi

[ ∫ 1

0

( ∫ 1

s

dτ

p(τ)

)
g(s) ds−

∫ ηi

0

( ∫ ηi

s

dτ

p(τ)

)
g(s) ds

]
≥ 0

on [0, 1] and the proof is complete. �

For g(t) = 1 on [0, 1], we denote by u0(t) the unique solution (2.2). Then we
have

C = max
t∈[0,1]

u0(t) = u0(0)

=
1

1− α

∫ 1

0

( ∫ 1

s

dτ

p(τ)

)
g(s)ds− 1

1− α

m−2∑
i=1

αi

∫ ηi

0

( ∫ ηi

s

dτ

p(τ)

)
g(s)ds.

The Green’s function for −[p(t)u′(t)]′ = 0 with (1.2) is given by

G(t, s) =
1

1− α

∫ 1

s

dτ

p(τ)

−

{∫ t
s

dτ
p(τ) , s ≤ t

0, s > t
−

{
1

1−α
∑m−2
i=1 αiχi(s)

∫ ηi

s
dτ
p(τ) , s ≤ ηm−2

0, s > ηm−2,

where

χi(s) =

{
1, s ≤ ηi

0, s > ηi.

Note that

max
t∈[0,1]

∫ 1

0

G(t, s) ds = C. (2.3)

The integral operator T : B → B associated with (1.1), (1.2) is defined by

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds

A routine argument shows that T is completely continuous.

Definition 2.2. Let B be a Banach space and let C ⊂ B be closed and nonempty.
Then C is said to be a cone if

(1) αu+ βv ∈ C for all u, v ∈ C and for all α, β ≥ 0, and
(2) u,−u ∈ C implies u ≡ 0.

Our Banach space, B, is the space C[0, 1] with the norm ‖u‖ = maxt∈[0,1] |u(t)|.
We will show now that the unique solution (2.2) satisfies

min
t∈[0,1]

u(t) ≥ γ‖u‖, (2.4)

where

γ = max
1≤i≤m−2

αi(1− ηi)
1− αiηi

.
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To this end, note that the solution (2.2) is concave, since g(t) ≥ 0 and u′(t), p′(t) ≤ 0
on [0, 1]. By concavity and since u(1) > αiu(ηi) for each 1 ≤ i ≤ m− 2,

‖u‖ = u(0)

≤ u(1) +
u(1)− u(ηi)

1− ηi
(0− 1)

< u(1)
1− αiηi
αi(1− ηi)

=
1− αiηi
αi(1− ηi)

min
t∈[0,1]

u(t)

and hence (2.4) holds.
The estimate (2.4) is used for defining our cone C ⊂ B by

C = {u(t) ∈ B : u(t) ≥ 0 on [0, 1], min
t∈[0,1]

u(t) ≥ γ‖u‖}. (2.5)

It turns out that our operator T is cone-preserving. Fixed points of T are solutions
of (1.1), (1.2). The existence of a fixed point of T follows from a fixed point theorem
due to Krasnosel’skĭı [12], which we now state.

Theorem 2.3. Let B be a Banach space and let C ⊂ B be a cone in B. Assume
that Ω1, Ω2 are open with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : C ∩ (Ω2 \ Ω1) → C

be a completely continuous operator such that either
(i) ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then T has a fixed point in C ∩ (Ω2 \ Ω1).

The following assumptions will stand throughout the remainder of this note:
(A1) f(t, z) is a continuous function on [0, 1]× [0,∞)
(A2) There exists M > 0 such that f(t, z) +M ≥ 0 on [0, 1]× [0,∞)
(A3) There exist continuous nonnegative nondecreasing on [0,∞) functions ψa(z)

and ψb(z) with ψb(z) ≤ f(t, z) +M ≤ ψa(z) on [0, 1]× [0,∞).

3. Positive solutions

We now state our main results.

Theorem 3.1. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition,
that

lim
z→0+

ψa(z)
z

= 0 and lim
z→∞

ψb(z)
z

= ∞.

Then, for a sufficiently small λ > 0, the problem (1.1), (1.2) has a positive solution.

Proof. Consider the equation

−[p(t)u′(t)]′ = λfp(t, u(t)− uλ(t)), 0 < t < 1, (3.1)

with the boundary conditions (1.2), where

fp(t, z) =

{
f(t, z) +M, z ≥ 0
f(t, 0) +M, z ≤ 0
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and uλ(t) = λMu0(t) (u0(t) is given by (2.2) for g ≡ 1). Our objective is to show
that the problem (3.1), (1.2) has a positive solution.

Our completely continuous and cone-preserving operator associated with (3.1),
(1.2) is defined by

Tλu(t) = λ

∫ 1

0

G(t, s)fp(s, u(s)− uλ(s)) ds

Since limz→0+
ψa(z)
z = 0, there exists R1 > 0 such that

ψa(z) ≤
1
λC

z

for all z ≤ R1.
Define Ω1 = {u ∈ B : ‖u‖ < R1}, then for u ∈ C ∩ ∂Ω1 we have

ψa(u(s)) ≤ ψa(‖u‖) ≤
1
λC

R1 (3.2)

for all s ∈ [0, 1], since ψa(z) is nondecreasing. Now, if u(s) ≥ uλ(s) for s ∈ [0, 1],
then

fp(s, u(s)− uλ(s)) = f(s, u(s)− uλ(s)) +M ≤ ψa(u(s)− uλ(s)) ≤ ψa(u(s)).

If u(s) ≤ uλ(s), then

fp(s, u(s)− uλ(s)) = f(s, 0) +M ≤ ψa(0) ≤ ψa(u(s))

(we know that u(s) ≥ 0 as an element of C). Combining both cases and using (3.2)
and (2.3), we get

‖Tλu‖ = max
t∈[0,1]

λ

∫ 1

0

G(t, s)fp(s, u(s)− uλ(s)) ds

≤ max
t∈[0,1]

λ

∫ 1

0

G(t, s)ψa(u(s)) ds

≤ λ max
t∈[0,1]

∫ 1

0

G(t, s) ds
1
λC

R1 = R1,

that is, ‖Tλu‖ ≤ ‖u‖ on C ∩ ∂Ω1.
Since limz→∞

ψb(z)
z = ∞, then also limz→∞

ψb(γz−λMC)
z = ∞. Thus, there exists

R2 > 0 large enough (so that R2 >
λMC
γ and R2 > R1) such that

ψb(γz − λMC) ≥ 1
λC

z

for all z ≥ R2. In fact,

ψb(γR2 − λMC) ≥ 1
λC

R2. (3.3)

Define Ω2 = {u ∈ B : ‖u‖ < R2}, then for u ∈ C ∩ ∂Ω2 we have

u(s)− uλ(s) ≥ γ‖u‖ − λMu0(s) ≥ γR2 − λMC > 0.

Now, for all s ∈ [0, 1],

fp(s, u(s)−uλ(s)) = f(s, u(s)−uλ(s))+M ≥ ψb(u(s)−uλ(s)) ≥ ψb(γR2−λMC),
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since ψb(z) is nondecreasing. Therefore, by (3.3) and (2.3),

‖Tλu‖ = max
t∈[0,1]

λ

∫ 1

0

G(t, s)fp(s, u(s)− uλ(s)) ds

≥ max
t∈[0,1]

λ

∫ 1

0

G(t, s)ψb(γR2 − λMC) ds

≥ λ max
t∈[0,1]

∫ 1

0

G(t, s) ds
1
λC

R2 = R2,

that is, ‖Tλu‖ ≤ ‖u‖ on C ∩ ∂Ω2.
Since the assumptions of Theorem 2.3 are satisfied, we conclude that the problem

(3.1), (1.2) has a positive solution in C ∩ (Ω2 \ Ω1), which we denote by up.
Let λ be small enough so that R1 >

λMC
γ . Now we have up(t) ≥ γ‖up‖ ≥ γR1 >

λMC ≥ uλ(t) for all t ∈ [0, 1]. Set u(t) = up(t)− uλ(t), then

−[p(t)u′(t)]′ = −[p(t)u′p(t)]
′ − λM

= λfp(t, up(t)− uλ(t))− λM

= λ(f(t, up(t)− uλ(t)) +M)− λM

= λf(t, u(t)),

which shows that u(t) is a positive solution of (1.1), (1.2). The proof is complete.
�

Example. To illustrate our main result, we consider the inhomogeneous term in
the form of the function

f(t, z) = −1 + z2(2 + sin (4πz(1 + t3))).

The function f(t, z) is continuous and, setting M = 1, we get f(t, z) + M ≥ 0
on [0, 1] × [0,∞). In addition, for ψb(z) = z2 and ψa(z) = 3z2, we have ψb(z) ≤
f(t, z) +M ≤ ψa(z) and

lim
z→0+

ψa(z)
z

= 0 and lim
z→∞

ψb(z)
z

= ∞.

Thus, Theorem 3.1 applies.
With only minor adjustments to the argument above one can prove our next

theorem.

Theorem 3.2. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition,
that

lim
z→0+

ψa(z)
z

= ∞ and lim
z→∞

ψb(z)
z

= 0.

Then, for a sufficiently small λ > 0, the problem (1.1), (1.2) has a positive solution.

Remark. If problem (1.1), (1.2) has a positive solution for some λ1 > 0, there is
also a positive solution for each λ ∈ (0, λ1].

We say that a function ψ(z) is sublinear if

lim
z→0+

ψ(z)
z

= ∞ and lim
z→∞

ψ(z)
z

= 0.

On the other hand, if

lim
z→0+

ψ(z)
z

= 0 and lim
z→∞

ψ(z)
z

= ∞,



EJDE-2004/119 SEMIPOSITONE m-POINT BOUNDARY-VALUE PROBLEMS 7

then the function ψ is called superlinear.
If in the assumption (A3) we take ψa(z) = ψb(z), then the following corollary to

Theorems 3.1 and 3.2 becomes immediate.

Corollary 3.3. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition,
that ψa(z) = ψb(z) is either sublinear or superlinear. Then, for a sufficiently small
λ > 0, the problem (1.1), (1.2) has a positive solution.
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