Electronic Journal of Differential Equations, Vol. 2004(2004), No. 119, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SEMIPOSITONE m-POINT BOUNDARY-VALUE PROBLEMS

NICKOLAI KOSMATOV

Abstract. We study the m-point nonlinear boundary-value problem

$$
\begin{gathered}
-\left[p(t) u^{\prime}(t)\right]^{\prime}=\lambda f(t, u(t)), \quad 0<t<1 \\
u^{\prime}(0)=0, \quad \sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)=u(1)
\end{gathered}
$$

where $0<\eta_{1}<\eta_{2}<\cdots<\eta_{m-2}<1, \alpha_{i}>0$ for $1 \leq i \leq m-2$ and $\sum_{i=1}^{m-2} \alpha_{i}<1, m \geq 3$. We assume that $p(t)$ is non-increasing continuously differentiable on $(0,1)$ and $p(t)>0$ on $[0,1]$. Using a cone-theoretic approach we provide sufficient conditions on continuous $f(t, u)$ under which the problem admits a positive solution.

1. Introduction

In this note we consider the nonlinear m-point eigenvalue problem

$$
\begin{gather*}
-\left[p(t) u^{\prime}(t)\right]^{\prime}=\lambda f(t, u(t)), \quad 0<t<1, \tag{1.1}\\
u^{\prime}(0)=0, \quad \sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)=u(1) \tag{1.2}
\end{gather*}
$$

where $0<\eta_{1}<\eta_{2}<\cdots<\eta_{m-2}<1, \alpha_{i}>0$ for $1 \leq i \leq m-2, \sum_{i=1}^{m-2} \alpha_{i}<1$. We also assume that the function $p(t)$ is non-increasing continuously differentiable on $(0,1)$ and $p(t)>0$ on $[0,1]$. The inhomogeneous term in 1.1 is allowed to change its sign. Other assumptions on $f(t, u(t))$ will be made later.

The study of multi-point boundary-value problems was initiated by Il'in and Moiseev in [7, 8]. Many authors since then considered nonlinear multi-point boundaryvalue problems (see, e.g., [2, 4, 5, 6, 9, 14, 15, 16, 17] and the references therein). In particular, Ma studied in [15] positive solutions to the three-point nonlinear boundary-value problem

$$
\begin{gathered}
-u^{\prime \prime}(t)=a(t) f(u(t)), \quad 0<t<1 \\
u(0)=0, \quad \alpha u(\eta)=u(1)
\end{gathered}
$$

[^0]where $0<\alpha, 0<\eta<1$ and $\alpha \eta<1$. The results of [15] were complemented in the works of Webb [17], Kaufmann [9, Kaufmann and Kosmatov [10], and Kaufmann and Raffoul [11].

Among the studies dealing with semipositone multi-point boundary-value problems, we mention the papers by Cao and Ma 3] and Liu [13. Cao and Ma considered the boundary-value problem

$$
\begin{gathered}
-u^{\prime \prime}(t)=\lambda a(t) f\left(u(t), u^{\prime}(t)\right), \quad 0<t<1, \\
u(0)=0, \quad \sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)=u(1)
\end{gathered}
$$

The authors applied the Leray-Schauder fixed point theorem to obtain an interval of eigenvalues for which at least one positive solution exists. Liu applied a fixed point index method to obtain such an interval for

$$
\begin{gathered}
-u^{\prime \prime}(t)=\lambda a(t) f(u(t)), \quad 0<t<1 \\
u^{\prime}(0)=0, \quad \alpha u(\eta)=u(1)
\end{gathered}
$$

Our approach is based on Krasnosel'skiu's cone-theoretic theorem 12 and enables us to show the existence of a positive solution for the semipositone problem (1.1), (1.2). Other applications of Krasnosel'skiu's fixed point theorem to semipositone problems can, for example, be found in [1].

2. Preliminaries

We now proceed with the auxiliaries. Consider the equation

$$
\begin{equation*}
-\left[p(t) u^{\prime}(t)\right]^{\prime}=g(t), \quad 0<t<1 \tag{2.1}
\end{equation*}
$$

with the boundary conditions 1.2 .
For convenience we set $\alpha=\sum_{i=1}^{m-2} \alpha_{i}$. Recall that $\alpha<1$.
Lemma 2.1. If $g \in C[0,1]$ and $g(t) \geq 0$ on $[0,1]$, then

$$
\begin{align*}
u(t)= & -\int_{0}^{t}\left(\int_{s}^{t} \frac{d \tau}{p(\tau)}\right) g(s) d s+\frac{1}{1-\alpha} \int_{0}^{1}\left(\int_{s}^{1} \frac{d \tau}{p(\tau)}\right) g(s) d s \\
& -\frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\int_{s}^{\eta_{i}} \frac{d \tau}{p(\tau)}\right) g(s) d s \tag{2.2}
\end{align*}
$$

is the unique nonnegative solution on $[0,1]$ of the problem (2.1), (1.2).
Proof. Integration of 2.1 from 0 to t with the use of the boundary condition 1.2 at 0 yields

$$
u^{\prime}(t)=-\frac{1}{p(t)} \int_{0}^{t} g(s) d s \leq 0
$$

Integrating again we get

$$
u(t)=-\int_{0}^{t} \frac{1}{p(s)}\left(\int_{0}^{s} g(\tau) d \tau\right) d s+A=-\int_{0}^{t}\left(\int_{s}^{t} \frac{d \tau}{p(\tau)}\right) g(s) d s+A
$$

Using the multi-point condition in 1.2 we determine A and obtain 2.2 . Since $u^{\prime}(t) \leq 0$,

$$
\begin{aligned}
u(t) & \geq u(1) \\
& =\frac{\alpha}{1-\alpha} \int_{0}^{1}\left(\int_{s}^{1} \frac{d \tau}{p(\tau)}\right) g(s) d s-\frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\int_{s}^{\eta_{i}} \frac{d \tau}{p(\tau)}\right) g(s) d s \\
& =\frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_{i}\left[\int_{0}^{1}\left(\int_{s}^{1} \frac{d \tau}{p(\tau)}\right) g(s) d s-\int_{0}^{\eta_{i}}\left(\int_{s}^{\eta_{i}} \frac{d \tau}{p(\tau)}\right) g(s) d s\right] \geq 0
\end{aligned}
$$

on $[0,1]$ and the proof is complete.
For $g(t)=1$ on $[0,1]$, we denote by $u_{0}(t)$ the unique solution 2.2 . Then we have

$$
\begin{aligned}
C & =\max _{t \in[0,1]} u_{0}(t)=u_{0}(0) \\
& =\frac{1}{1-\alpha} \int_{0}^{1}\left(\int_{s}^{1} \frac{d \tau}{p(\tau)}\right) g(s) d s-\frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\int_{s}^{\eta_{i}} \frac{d \tau}{p(\tau)}\right) g(s) d s
\end{aligned}
$$

The Green's function for $-\left[p(t) u^{\prime}(t)\right]^{\prime}=0$ with 1.2 is given by

$$
\begin{aligned}
G(t, s)= & \frac{1}{1-\alpha} \int_{s}^{1} \frac{d \tau}{p(\tau)} \\
& -\left\{\begin{array}{ll}
\int_{s}^{t} \frac{d \tau}{p(\tau)}, & s \leq t \\
0, & s>t
\end{array}- \begin{cases}\frac{1}{1-\alpha} \sum_{i=1}^{m-2} \alpha_{i} \chi_{i}(s) \int_{s}^{\eta_{i}} \frac{d \tau}{p(\tau)}, & s \leq \eta_{m-2} \\
0, & s>\eta_{m-2}\end{cases} \right.
\end{aligned}
$$

where

$$
\chi_{i}(s)= \begin{cases}1, & s \leq \eta_{i} \\ 0, & s>\eta_{i}\end{cases}
$$

Note that

$$
\begin{equation*}
\max _{t \in[0,1]} \int_{0}^{1} G(t, s) d s=C \tag{2.3}
\end{equation*}
$$

The integral operator $T: \mathcal{B} \rightarrow \mathcal{B}$ associated with 1.1 , 1.2 is defined by

$$
T u(t)=\int_{0}^{1} G(t, s) f(s, u(s)) d s
$$

A routine argument shows that T is completely continuous.
Definition 2.2. Let \mathcal{B} be a Banach space and let $\mathcal{C} \subset \mathcal{B}$ be closed and nonempty. Then \mathcal{C} is said to be a cone if
(1) $\alpha u+\beta v \in \mathcal{C}$ for all $u, v \in \mathcal{C}$ and for all $\alpha, \beta \geq 0$, and
(2) $u,-u \in \mathcal{C}$ implies $u \equiv 0$.

Our Banach space, \mathcal{B}, is the space $C[0,1]$ with the norm $\|u\|=\max _{t \in[0,1]}|u(t)|$. We will show now that the unique solution 2.2 satisfies

$$
\begin{equation*}
\min _{t \in[0,1]} u(t) \geq \gamma\|u\|, \tag{2.4}
\end{equation*}
$$

where

$$
\gamma=\max _{1 \leq i \leq m-2} \frac{\alpha_{i}\left(1-\eta_{i}\right)}{1-\alpha_{i} \eta_{i}}
$$

To this end, note that the solution (2.2) is concave, since $g(t) \geq 0$ and $u^{\prime}(t), p^{\prime}(t) \leq 0$ on $[0,1]$. By concavity and since $u(1)>\alpha_{i} u\left(\eta_{i}\right)$ for each $1 \leq i \leq m-2$,

$$
\begin{aligned}
\|u\| & =u(0) \\
& \leq u(1)+\frac{u(1)-u\left(\eta_{i}\right)}{1-\eta_{i}}(0-1) \\
& <u(1) \frac{1-\alpha_{i} \eta_{i}}{\alpha_{i}\left(1-\eta_{i}\right)} \\
& =\frac{1-\alpha_{i} \eta_{i}}{\alpha_{i}\left(1-\eta_{i}\right)} \min _{t \in[0,1]} u(t)
\end{aligned}
$$

and hence (2.4) holds.
The estimate 2.4 is used for defining our cone $\mathcal{C} \subset \mathcal{B}$ by

$$
\begin{equation*}
\mathcal{C}=\left\{u(t) \in \mathcal{B}: u(t) \geq 0 \text { on }[0,1], \min _{t \in[0,1]} u(t) \geq \gamma\|u\|\right\} \tag{2.5}
\end{equation*}
$$

It turns out that our operator T is cone-preserving. Fixed points of T are solutions of (1.1), $\sqrt{1.2)}$. The existence of a fixed point of T follows from a fixed point theorem due to Krasnosel'skiĭ [12], which we now state.

Theorem 2.3. Let \mathcal{B} be a Banach space and let $\mathcal{C} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume that Ω_{1}, Ω_{2} are open with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: \mathcal{C} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{C}
$$

be a completely continuous operator such that either
(i) $\|T u\| \leq\|u\|, u \in \mathcal{C} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|$, $u \in \mathcal{C} \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geq\|u\|$, $u \in \mathcal{C} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in \mathcal{C} \cap \partial \Omega_{2}$.

Then T has a fixed point in $\mathcal{C} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
The following assumptions will stand throughout the remainder of this note:
(A1) $f(t, z)$ is a continuous function on $[0,1] \times[0, \infty)$
(A2) There exists $M>0$ such that $f(t, z)+M \geq 0$ on $[0,1] \times[0, \infty)$
(A3) There exist continuous nonnegative nondecreasing on [0, ∞) functions $\psi_{a}(z)$ and $\psi_{b}(z)$ with $\psi_{b}(z) \leq f(t, z)+M \leq \psi_{a}(z)$ on $[0,1] \times[0, \infty)$.

3. Positive solutions

We now state our main results.
Theorem 3.1. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition, that

$$
\lim _{z \rightarrow 0^{+}} \frac{\psi_{a}(z)}{z}=0 \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{\psi_{b}(z)}{z}=\infty
$$

Then, for a sufficiently small $\lambda>0$, the problem 1.1, (1.2) has a positive solution.
Proof. Consider the equation

$$
\begin{equation*}
-\left[p(t) u^{\prime}(t)\right]^{\prime}=\lambda f_{p}\left(t, u(t)-u_{\lambda}(t)\right), \quad 0<t<1 \tag{3.1}
\end{equation*}
$$

with the boundary conditions $\sqrt{1.2}$, where

$$
f_{p}(t, z)= \begin{cases}f(t, z)+M, & z \geq 0 \\ f(t, 0)+M, & z \leq 0\end{cases}
$$

and $u_{\lambda}(t)=\lambda M u_{0}(t)\left(u_{0}(t)\right.$ is given by 2.2 for $\left.g \equiv 1\right)$. Our objective is to show that the problem (3.1), 1.2) has a positive solution.

Our completely continuous and cone-preserving operator associated with (3.1), (1.2) is defined by

$$
T_{\lambda} u(t)=\lambda \int_{0}^{1} G(t, s) f_{p}\left(s, u(s)-u_{\lambda}(s)\right) d s
$$

Since $\lim _{z \rightarrow 0^{+}} \frac{\psi_{a}(z)}{z}=0$, there exists $R_{1}>0$ such that

$$
\psi_{a}(z) \leq \frac{1}{\lambda C} z
$$

for all $z \leq R_{1}$.
Define $\Omega_{1}=\left\{u \in \mathcal{B}:\|u\|<R_{1}\right\}$, then for $u \in \mathcal{C} \cap \partial \Omega_{1}$ we have

$$
\begin{equation*}
\psi_{a}(u(s)) \leq \psi_{a}(\|u\|) \leq \frac{1}{\lambda C} R_{1} \tag{3.2}
\end{equation*}
$$

for all $s \in[0,1]$, since $\psi_{a}(z)$ is nondecreasing. Now, if $u(s) \geq u_{\lambda}(s)$ for $s \in[0,1]$, then

$$
f_{p}\left(s, u(s)-u_{\lambda}(s)\right)=f\left(s, u(s)-u_{\lambda}(s)\right)+M \leq \psi_{a}\left(u(s)-u_{\lambda}(s)\right) \leq \psi_{a}(u(s))
$$

If $u(s) \leq u_{\lambda}(s)$, then

$$
f_{p}\left(s, u(s)-u_{\lambda}(s)\right)=f(s, 0)+M \leq \psi_{a}(0) \leq \psi_{a}(u(s))
$$

(we know that $u(s) \geq 0$ as an element of \mathcal{C}). Combining both cases and using (3.2) and 2.3 , we get

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & =\max _{t \in[0,1]} \lambda \int_{0}^{1} G(t, s) f_{p}\left(s, u(s)-u_{\lambda}(s)\right) d s \\
& \leq \max _{t \in[0,1]} \lambda \int_{0}^{1} G(t, s) \psi_{a}(u(s)) d s \\
& \leq \lambda \max _{t \in[0,1]} \int_{0}^{1} G(t, s) d s \frac{1}{\lambda C} R_{1}=R_{1}
\end{aligned}
$$

that is, $\left\|T_{\lambda} u\right\| \leq\|u\|$ on $\mathcal{C} \cap \partial \Omega_{1}$.
Since $\lim _{z \rightarrow \infty} \frac{\psi_{b}(z)}{z}=\infty$, then also $\lim _{z \rightarrow \infty} \frac{\psi_{b}(\gamma z-\lambda M C)}{z}=\infty$. Thus, there exists $R_{2}>0$ large enough (so that $R_{2}>\frac{\lambda M C}{\gamma}$ and $R_{2}>R_{1}$) such that

$$
\psi_{b}(\gamma z-\lambda M C) \geq \frac{1}{\lambda C} z
$$

for all $z \geq R_{2}$. In fact,

$$
\begin{equation*}
\psi_{b}\left(\gamma R_{2}-\lambda M C\right) \geq \frac{1}{\lambda C} R_{2} \tag{3.3}
\end{equation*}
$$

Define $\Omega_{2}=\left\{u \in \mathcal{B}:\|u\|<R_{2}\right\}$, then for $u \in \mathcal{C} \cap \partial \Omega_{2}$ we have

$$
u(s)-u_{\lambda}(s) \geq \gamma\|u\|-\lambda M u_{0}(s) \geq \gamma R_{2}-\lambda M C>0
$$

Now, for all $s \in[0,1]$,
$f_{p}\left(s, u(s)-u_{\lambda}(s)\right)=f\left(s, u(s)-u_{\lambda}(s)\right)+M \geq \psi_{b}\left(u(s)-u_{\lambda}(s)\right) \geq \psi_{b}\left(\gamma R_{2}-\lambda M C\right)$,
since $\psi_{b}(z)$ is nondecreasing. Therefore, by 3.3 and 2.3,

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & =\max _{t \in[0,1]} \lambda \int_{0}^{1} G(t, s) f_{p}\left(s, u(s)-u_{\lambda}(s)\right) d s \\
& \geq \max _{t \in[0,1]} \lambda \int_{0}^{1} G(t, s) \psi_{b}\left(\gamma R_{2}-\lambda M C\right) d s \\
& \geq \lambda \max _{t \in[0,1]} \int_{0}^{1} G(t, s) d s \frac{1}{\lambda C} R_{2}=R_{2},
\end{aligned}
$$

that is, $\left\|T_{\lambda} u\right\| \leq\|u\|$ on $\mathcal{C} \cap \partial \Omega_{2}$.
Since the assumptions of Theorem 2.3 are satisfied, we conclude that the problem (3.1), 1.2 has a positive solution in $\mathcal{C} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, which we denote by u_{p}.

Let λ be small enough so that $R_{1}>\frac{\lambda M C}{\gamma}$. Now we have $u_{p}(t) \geq \gamma\left\|u_{p}\right\| \geq \gamma R_{1}>$ $\lambda M C \geq u_{\lambda}(t)$ for all $t \in[0,1]$. Set $u(t)=u_{p}(t)-u_{\lambda}(t)$, then

$$
\begin{aligned}
-\left[p(t) u^{\prime}(t)\right]^{\prime} & =-\left[p(t) u_{p}^{\prime}(t)\right]^{\prime}-\lambda M \\
& =\lambda f_{p}\left(t, u_{p}(t)-u_{\lambda}(t)\right)-\lambda M \\
& =\lambda\left(f\left(t, u_{p}(t)-u_{\lambda}(t)\right)+M\right)-\lambda M \\
& =\lambda f(t, u(t))
\end{aligned}
$$

which shows that $u(t)$ is a positive solution of 1.1$), 1.2$. The proof is complete.

Example. To illustrate our main result, we consider the inhomogeneous term in the form of the function

$$
f(t, z)=-1+z^{2}\left(2+\sin \left(4 \pi z\left(1+t^{3}\right)\right)\right)
$$

The function $f(t, z)$ is continuous and, setting $M=1$, we get $f(t, z)+M \geq 0$ on $[0,1] \times[0, \infty)$. In addition, for $\psi_{b}(z)=z^{2}$ and $\psi_{a}(z)=3 z^{2}$, we have $\psi_{b}(z) \leq$ $f(t, z)+M \leq \psi_{a}(z)$ and

$$
\lim _{z \rightarrow 0^{+}} \frac{\psi_{a}(z)}{z}=0 \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{\psi_{b}(z)}{z}=\infty
$$

Thus, Theorem 3.1 applies.
With only minor adjustments to the argument above one can prove our next theorem.

Theorem 3.2. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition, that

$$
\lim _{z \rightarrow 0^{+}} \frac{\psi_{a}(z)}{z}=\infty \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{\psi_{b}(z)}{z}=0
$$

Then, for a sufficiently small $\lambda>0$, the problem (1.1), 1.2) has a positive solution.
Remark. If problem 1.1, 1.2 has a positive solution for some $\lambda_{1}>0$, there is also a positive solution for each $\lambda \in\left(0, \lambda_{1}\right]$.

We say that a function $\psi(z)$ is sublinear if

$$
\lim _{z \rightarrow 0^{+}} \frac{\psi(z)}{z}=\infty \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{\psi(z)}{z}=0
$$

On the other hand, if

$$
\lim _{z \rightarrow 0^{+}} \frac{\psi(z)}{z}=0 \quad \text { and } \quad \lim _{z \rightarrow \infty} \frac{\psi(z)}{z}=\infty
$$

then the function ψ is called superlinear.
If in the assumption (A3) we take $\psi_{a}(z)=\psi_{b}(z)$, then the following corollary to Theorems 3.1 and 3.2 becomes immediate.

Corollary 3.3. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition, that $\psi_{a}(z)=\psi_{b}(z)$ is either sublinear or superlinear. Then, for a sufficiently small $\lambda>0$, the problem (1.1), (1.2) has a positive solution.

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan, Semipositone higher-order differential equations, Appl. Math. Lett. 17 (2004), 201-207
[2] D. Anderson, Solutions to second-order three-point problems on time scales, J. Difference Equ. Appl. 8 (2002), 673-688.
[3] D. Cao and R. Ma, Positive solutions to a second order multi-point boundary-value problem, Electron. J. of Differential Equations 2000 (2000), No. 65, 1-8.
[4] W. Feng, Solutions and positive solutions for some three-point boundary-value problems, in Proc. of the 4th International Conference on Dynamical Systems and Differential Equations, 263-272.
[5] W. Feng and J. R. L. Webb, Solvability of a m-point boundary-value problem with nonlinear growth, J. Math. Anal. Appl. 212 (1997), 467-480.
[6] M. Garsía-Huidobro and R. Manásevich, A three-point boundary-value problem containing the operator $-\left(\phi\left(u^{\prime}\right)\right)^{\prime}$, in Proc. of the 4th International Conference on Dynamical Systems and Differential Equations, 313-319.
[7] V. A. Il'in and E. I. Moiseev, Nonlocal boundary-value problem of the first kind for a SturmLiouville operator in its differential and finite difference aspects, J. Differential Equations, 23(7) (1987), 803-810.
[8] V. A. Il'in and E. I. Moiseev, Nonlocal boundary-value problem of the first kind for a SturmLiouville operator, J. Differential Equations 23(8) (1987), 979-987.
[9] E. R. Kaufmann, Positive solutions of a three-point boundary value on a time scale, Electron. J. of Differential Equations, 2003 (2003), No. 82, 1-11.
[10] E. R. Kaufmann and N. Kosmatov, A singular three-point boundary-value problem, preprint.
[11] E. R. Kaufmann and Y. N. Raffoul, Eigenvalue problems for a three-point boundary-value problem on a time scale, Electron. J. Qual. Theory Differ. Equ. 2004 (2004), No.15, 1 - 10.
[12] M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, (English) Translated by A. H. Armstrong; A Pergamon Press Book, MacMillan, New York, 1964.
[13] B. Liu, Nontrivial solutions of second-order three-point boundary-value problems, preprint.
[14] R. Ma, Existence theorems for a second order three-point boundary-value problem, J. Math. Anal. Appl. 211 (1997), 545-555.
[15] R. Ma, Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. of Differential Equations 1999 (1999), No. 34, 1-8.
[16] J. R. L. Webb, Positive solutions of some three point boundary-value problems via fixed point index theory, Nonlinear Anal. 47(2001), 4319-4332.
[17] J. R. L. Webb, Remarks on positive solutions of some three point boundary-value problems, in Proc. of the 4th International Conference on Dynamical Systems and Differential Equations, 905-915.

Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204-1099, USA

E-mail address: nxkosmatov@ualr.edu

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B18.
 Key words and phrases. Green's function; fixed point theorem; positive solutions; multi-point boundary-value problem.
 (C) 2004 Texas State University - San Marcos.

 Submitted April 23, 2004. Published October 10, 2004.

