Electronic Journal of Differential Equations, Vol. 2004(2004), No. 12, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON THE SECOND EIGENVALUE OF A HARDY-SOBOLEV OPERATOR

K. SREENADH

Abstract

In this note, we study the variational characterization and some properties of the second smallest eigenvalue of the Hardy-Sobolev operator $L_{\mu}:=-\Delta_{p}-\frac{\mu}{|x|^{p}}$ with respect to an indefinite weight $V(x)$.

1. Introduction

Let Ω be a domain in \mathbb{R}^{N} containing 0 . We recall the classical Hardy-Sobolev inequality which states that, for $1<p<N$,

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} d x \geq\left(\frac{N-p}{p}\right)^{p} \int_{\Omega} \frac{|u|^{p}}{|x|^{p}} d x, \quad \forall u \in C_{c}^{\infty}(\Omega) . \tag{1.1}
\end{equation*}
$$

Let $D_{0}^{1, p}(\Omega)$ be the closure of $C_{c}^{\infty}(\Omega)$ with respect to the norm $\|u\|_{1, p}=\|\nabla u\|_{L^{p}(\Omega)}$. The Hardy-Sobolev operator L_{μ} on $D_{0}^{1, p}(\Omega)$ is defined as

$$
L_{\mu} u:=-\Delta_{p} u-\frac{\mu}{|x|^{p}}|u|^{p-2} u, \quad 0<\mu<\left(\frac{N-p}{p}\right)^{p}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$, is the p-Laplacian.
We are interested in the variational characterization and some properties of the second smallest eigenvalue of the problem

$$
\begin{gather*}
L_{\mu} u=\lambda V(x)|u|^{p-2} u \quad \text { in } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

On the weight on $V(x)$, we assume the following:
(H1) $V \in L_{\mathrm{loc}}^{1}(\Omega), V^{+}=V_{1}+V_{2} \not \equiv 0$ with $V_{1} \in L^{N / p}(\Omega)$ and V_{2} is such that $\lim _{x \rightarrow y, x \in \Omega}|x-y|^{p} V_{2}(x)=0$ for all $y \in \bar{\Omega}, \lim _{|x| \rightarrow \infty, x \in \Omega}|x|^{p} V_{2}(x)=0$, where $V^{+}(x)=\max \{V(x), 0\}$.
(H2) There exists $r>N / p$ and a closed subset S of measure zero in \mathbb{R}^{N} such that $\Omega \backslash S$ is connected and $V \in L_{\text {loc }}^{r}(\Omega \backslash S)$.
Here we note that there is no global integrability condition assumed on V^{-}.
This work is motivated by the work in [8]. The eigenvalue problem with indefinite weights has been studied for the case $\mu=0$ by Szulkin-Willem [8]. However, some important properties, of the smallest eigenvalue λ_{1}, such as simplicity and

[^0]being isolated were shown only for $p=2$. Recently the author in [6] proved the simplicity of λ_{1} and sign changing nature of eigenfunctions corresponding to other eigenvalues when Ω is bounded. Infact in [6] the author studied these properties for L_{μ}. Following the same arguments, one can prove these results in the present case. However, showing that λ_{1} is isolated and characterization of the second smallest eigenvalue, were open questions. To prove these properties, we follow the ideas in [5] and in [3]. Here we should mention that our results are new even for the case $\mu=0$. We use the following results in later sections.
Propositioin 1.1 (Boccardo-Murat [1]). Let Ω be a bounded domain in \mathbb{R}^{N} and let $u_{n} \in W^{1, p}(\Omega)$ satisfy
$$
-\Delta_{p} u_{n}=f_{n}+g_{n} \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$
and
(i) $u_{n} \rightarrow u$ weakly in $W^{1, p}(\Omega)$
(ii) $u_{n} \rightarrow u$ in $L^{p}(\Omega)$
(iii) $f_{n} \rightarrow f$ in $W^{-1, p^{\prime}}$
(iv) g_{n} is a bounded sequence of Radon measures.

Then there exists a subsequence $\left\{u_{n}\right\}$ of $\left\{u_{n}\right\}$ such that $\nabla u_{n} \rightarrow \nabla u$ a.e. in Ω.
Propositioin 1.2 (Brezis-Lieb [2]). Let $f_{n} \rightarrow f$ a.e in Ω as $n \rightarrow \infty$ and f_{n} be bounded in $L^{p}(\Omega)$, for some $p>1$. Then

$$
\lim _{n \rightarrow \infty}\left\{\left\|f_{n}\right\|_{p}-\left\|f_{n}-f\right\|_{p}\right\}=\|f\|_{p}
$$

Let X be a Banach space and let $M=\{u \in X \mid g(u)=0\}$ with $g \in C^{1}$. Also let $f: X \rightarrow \mathbb{R}$ be a C^{1} functional and let \tilde{f} be the restriction of f to M. Then we have the following form of the Mountain pass Theorem [7].

Propositioin 1.3. Let $u, v \in M$ with $u \not \equiv v$ and suppose that

$$
c:=\inf _{h \in \Gamma} \max _{w \in h(t)} f(w)>\max \{f(u), f(v)\}
$$

where

$$
\Gamma:=\{h \in C([-1,+1], M) \mid h(-1)=u \quad \text { and } \quad h(1)=v\} \neq \emptyset
$$

Also suppose that \tilde{f} satisfies Pailse-Smale (PS) condition on M. Then c is a critical value of \tilde{f}.

We define the norm

$$
\left\|\tilde{f}^{\prime}\right\|_{*}=\inf \left\{\left\|f^{\prime}(u)-t g^{\prime}(u)\right\|_{X^{*}}: t \in \mathbb{R}\right\}
$$

The variational characterization of the smallest eigenvalue is given by

$$
\lambda_{1}=\inf _{0 \neq u \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega} \frac{|u|^{p}}{|x|^{p}} d x}{\int_{\Omega}|u|^{p} V(x) d x}
$$

and the corresponding eigenfunction is denoted by ϕ_{1}, which is unique under the condition $\int_{\Omega}|\phi|^{p} V(x) d x=1$ (see [6]). We will prove the following property.

Theorem 1.4. The eigenvalue λ_{1} is isolated in the spectrum of L_{μ}.

We will establish the following variational characterisation of the second smallest eigenvalue:

$$
\lambda_{2}=\inf _{\gamma \in \Gamma} \sup _{u \in \gamma} \frac{\int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega} \frac{|u|^{p}}{|x|^{p}} d x}{\int_{\Omega}|u|^{p} V(x) d x}
$$

where $\Gamma=\left\{\gamma \in C([-1,1]: M) \mid \gamma(-1)=-\phi_{1}, \gamma(1)=\phi_{1}\right\}$ and M is defined as in the next section. We show also the following property of λ_{2}.

Theorem 1.5. If $V_{a} \leq V_{b}$, then $\lambda_{2}\left(V_{a}\right) \geq \lambda_{2}\left(V_{b}\right)$.

2. Proofs of results

In this section we show that λ_{1} is siolated and give a variational characterization for second smallest eigenvalue of L_{μ}.
Lemma 2.1. The mapping $u \longmapsto \int_{\Omega} V^{+}|u|^{p} d x$ is weakly continuous.
The proof of this lemma follows from (1.1) and (H1). We refer the reader to [8] for more details.
Now, we consider the set

$$
M=\left\{\left.u \in D_{0}^{1, p}(\Omega)\left|\int_{\Omega}\right| u\right|^{p} V(x)=1\right\} .
$$

Since M is not a manifold in $D_{0}^{1, p}(\Omega)$, we define $X=\left\{u \in D_{0}^{1, p}(\Omega) \mid\|u\|_{X}<\infty\right\}$, where

$$
\|u\|_{X}^{p}:=\int_{\Omega}|\nabla u|^{p} d x+\int_{\Omega}|u|^{p} V^{-} d x .
$$

Then M is a C^{1}-manifold as a subset of the space X. On this space, we define the functional

$$
J_{\mu}(u)=\frac{\int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega} \frac{\mu}{|x|^{p}}|u|^{p} d x}{\int_{\Omega}|u|^{p} V d x} .
$$

Let \tilde{J}_{μ} denote the restriction of J_{μ} to M. and let $\|u\|_{L^{p}(V)}^{p}=\int_{\Omega}|u|^{p} V(x) d x$.
Lemma 2.2. The functional \tilde{J}_{μ} satisfies the Palais-Smale condition at any positive level.

Proof. Let $\left\{u_{n}\right\}$ be a sequence in M such that $J_{\mu}\left(u_{n}\right) \rightarrow \lambda>0$ and

$$
\begin{equation*}
\left\langle J_{\mu}\left(u_{n}\right), \phi\right\rangle-J_{\mu}\left(u_{n}\right) \int_{\Omega}\left|u_{n}\right|^{p-2} u_{n} \phi V d x=o(1) . \tag{2.1}
\end{equation*}
$$

Using Hardy-Sobolev inequality and $u_{n} \in M$, it follows that u_{n} is bounded in X which gives the existence of a subsequence $\left\{u_{n}\right\}$ of $\left\{u_{n}\right\}$ and u such that $u_{n} \rightarrow u$ weakly in $D_{0}^{1, p}(\Omega)$. Since $\lambda>0$ we may assume that $J_{\mu}\left(u_{n}\right) \geq 0$. Using Lemma 2.1 and (2.1), we get
$\left\langle J_{\mu}^{\prime}\left(u_{n}\right)-J_{\mu}^{\prime}(u), u_{n}-u\right\rangle+J_{\mu}\left(u_{n}\right) \int_{\Omega}\left[\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right]\left(u_{n}-u\right) V^{-} d x=o(1)$.
By Fatou's Lemma,

$$
\begin{aligned}
0 & =\int_{\Omega} \lim _{n \rightarrow \infty}\left[\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right]\left[u_{n}-u\right] V^{-} \\
& \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left[\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right]\left[u_{n}-u\right] V^{-} d x .
\end{aligned}
$$

Also, u_{n} satisfies

$$
-\Delta_{p} u_{n}-\frac{\mu}{|x|^{p}}\left|u_{n}\right|^{p-2} u_{n}-J_{\mu}\left(u_{n}\right)\left|u_{n}\right|^{p-2} u_{n} V(x)=o(1) \quad \text { in } \quad \mathcal{D}^{\prime}\left(\Omega_{m}\right),
$$

where Ω_{m} is a bounded domain such that $\Omega=\cup_{m=1}^{\infty} \Omega_{m}$. By Proposition 1.1, noting that $\frac{\mu}{|x|^{p}}\left|u_{n}\right|^{p-2} u_{n}+J_{\mu}\left(u_{n}\right)\left|u_{n}\right|^{p-2} u_{n} V^{-}$is a bounded sequence of Radon measures, there exists a subsequence $\left\{u_{n}^{m}\right\}$ of $\left\{u_{n}\right\}$ an u such that $\nabla u_{n}^{m} \rightarrow \nabla u$ a.e., in Ω_{m}. By the process of diagonalization we can choose a subsequence $\left\{u_{n}\right\}$ such that $\nabla u_{n} \rightarrow \nabla u$ a.e. in Ω. By Proposition 1.2, we have

$$
\begin{gather*}
\left\|u_{n}-u\right\|_{1, p}^{p}=\left\|u_{n}\right\|_{1, p}^{p}-\|u\|_{1, p}^{p}+o(1) \tag{2.2}\\
\left\|\frac{u_{n}-u}{|x|}\right\|_{L^{p}(1)}^{p}=\left\|\frac{u_{n}}{|x|}\right\|_{L^{p}(1)}^{p}-\left\|\frac{u}{|x|}\right\|_{L^{p}(1)}^{p}+o(1) . \tag{2.3}
\end{gather*}
$$

We also have, by Fatau's lemma,

$$
\begin{aligned}
& \int_{\Omega} V^{-}\left(\left|u_{n}\right|^{p}+|u|^{p}-\left|u_{n}\right|^{p-2} u_{n} u-|u|^{p-2} u u_{n}\right) d x \\
& \geq \int_{\Omega} V^{-}\left(\left|u_{n}\right|^{p}+|u|^{p}\right)-\left(\int_{\Omega} V^{-}\left|u_{n}\right|^{p}\right)^{(p-1) / p}\left(\int_{\Omega} V^{-}|u|^{p}\right)^{1 / p} \\
& \quad-\left(\int_{\Omega} V^{-}|u|^{p}\right)^{(p-1) / p}\left(\int_{\Omega} V^{-}\left|u_{n}\right|^{p}\right)^{1 / p} \\
& =\left[\left(\int_{\Omega} V^{-}\left|u_{n}\right|^{p}\right)^{(p-1) / p}-\left(\int_{\Omega} V^{-}|u|^{p}\right)^{(p-1) / p}\right] \\
& \quad \times\left[\left(\int_{\Omega} V^{-}\left|u_{n}\right|^{p}\right)^{1 / p}-\left(\int_{\Omega} V^{-}|u|^{p}\right)^{\frac{1}{p}}\right] \geq 0
\end{aligned}
$$

Now using (2.2) and (2.3),

$$
\begin{aligned}
o(1) & =\left\langle J_{\mu}\left(u_{n}\right)-J_{\mu}(u),\left(u_{n}-u\right)\right\rangle+J_{\mu}\left(u_{n}\right) \int_{\Omega}\left[\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right]\left(u_{n}-u\right) V^{-} d x \\
& \geq \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{p}-\int_{\Omega} \frac{\mu}{|x|^{p}}\left|u_{n}-u\right|^{p}+o(1) \\
& \geq\left(1-\frac{\mu}{\lambda_{N}}\right)\left\|u_{n}-u\right\|_{1, p}+o(1) .
\end{aligned}
$$

i.e., $u_{n} \rightarrow u$ in $D_{0}^{1, p}(\Omega)$. Notice that

$$
\begin{aligned}
o(1) & =\left\langle J_{\mu}\left(u_{n}\right)-J_{\mu}(u), u_{n}-u\right\rangle \\
& =\int_{\Omega} V^{-}\left(\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right)\left(u_{n}-u\right) d x+o(1) \geq 0 .
\end{aligned}
$$

Therefore, $\int_{\Omega} V^{-}\left|u_{n}\right|^{p} d x \rightarrow \int_{\Omega} V^{-}|u|^{p} d x$ and hence $\left\|u_{n}\right\|_{X} \rightarrow\|u\|_{X}$.
Observe that $\tilde{J}_{\mu}(u) \geq \lambda_{1}$ and $\tilde{J}_{\mu}\left(\pm \phi_{1}\right)=\lambda_{1}$. So $+\phi_{1}$ and $-\phi_{1}$ are two global minima of \tilde{J}_{μ}. Now consider

$$
\Gamma=\left\{\gamma \in C([-1,1] ; M) \mid \gamma(-1)=-\phi_{1}, \gamma(1)=\phi_{1}\right\} .
$$

By Proposition 1.3, there exists $u \in X$ such that $\tilde{J}_{\mu}^{\prime}(u)=0$ and $J_{\mu}(u)=\mathcal{C}$, where

$$
\begin{equation*}
\mathcal{C}=\inf _{\gamma \in \Gamma} \sup _{u \in \gamma} \tilde{J}_{\mu}(u) \tag{2.4}
\end{equation*}
$$

Lemma 2.3. (i) M is locally arc wise connected
(ii) Any connected open subset B of M is arcwise connected
(iii) if B^{\prime} is a component of an open set A, then $\partial B^{\prime} \cap B$ is empty.

The proof of this lemma follows from the fact that M is a Banach Manifold. For a proof we refer the reader to [3]. Define $\mathcal{O}=\left\{u \in M \mid \tilde{J}_{\mu}(u)<r\right\}$

Lemma 2.4. Each component of \mathcal{O} contains a critical point of \tilde{J}_{μ}.
Proof. Let \mathcal{O}_{1} be a component of \mathcal{O} and let $d=\inf \left\{\tilde{J}_{\mu}(u), u \in \mathcal{O}_{1}\right\}$, where $\overline{\mathcal{O}_{1}}$ is X-closure of \mathcal{O}. Suppose this infimum is achieved by $v \in \overline{\mathcal{O}_{1}}$. Then by Lemma 2.3 this cannot be in $\partial \mathcal{O}_{1}$ and hence v is in \mathcal{O}_{1} and is a critical point of \tilde{J}_{μ}.

Now we show that d is achieved. Let $u_{n} \in \mathcal{O}_{1}$ be a minimizing sequence with $\tilde{J}_{\mu}\left(u_{n}\right) \leq d+\frac{1}{n^{2}}$. By Ekeland Variational Principle, we get $v_{n} \in \mathcal{O}_{1}$ such that

$$
\begin{array}{r}
\tilde{J}_{\mu}\left(v_{n}\right) \leq \tilde{J}_{\mu}\left(u_{n}\right), \\
\left\|v_{n}-u_{n}\right\|_{X} \leq \frac{1}{n} \\
\tilde{J}_{\mu}\left(v_{n}\right) \leq \tilde{J}_{\mu}(v)+\frac{1}{n}\left\|v_{n}-v\right\|_{X}, \quad \forall v \in \mathcal{O}_{1} . \tag{2.7}
\end{array}
$$

From (2.5) it follows that $\tilde{J}_{\mu}\left(v_{n}\right)$ is bounded. Now we claim that $\left\|\tilde{J}_{\mu}{ }^{\prime}\left(v_{n}\right)\right\|_{*} \rightarrow 0$. We fix n and choose $w \in X$ tangent to M at v_{n}, i.e., $\int_{\Omega}\left|v_{n}\right|^{p-2} v_{n} w V=0$. Now we consider the path

$$
u_{t}=\frac{v_{n}+t w}{\left\|v_{n}+t w\right\|_{L^{p}(V)}}
$$

Since $\tilde{J}_{\mu}\left(v_{n}\right) \leq d+\frac{1}{n}<r$ for n large, we have $v_{n} \in \overline{\mathcal{O}}_{1}$ and by Lemma 2.3 (iii), $v_{n} \notin \partial \mathcal{O}_{1}$. So $u_{t} \in \mathcal{O}_{1}$ for $|t|$ small. Taking $v=u_{t}$ in (2.7) we obtain

$$
\begin{align*}
& \frac{\tilde{J}_{\mu}\left(v_{n}\right)-\tilde{J}_{\mu}\left(v_{n}+t w\right)}{t} \\
& \leq \frac{1}{n t}\left\|v_{n}\left(\frac{1}{r(t)}-1\right)\right\|_{X}+\frac{1}{n}\|w\|+\frac{1}{t}\left(\frac{1}{r(t)^{p}}-1\right) \tilde{J}_{\mu}\left(v_{n}+t w\right), \tag{2.8}
\end{align*}
$$

where $r(t)=\left\|v_{n}+t w\right\|_{L^{p}(V)}$. The last term in (2.8) involves $\frac{r(t)^{p}-1}{t}$ which can be calculated as

$$
\left.\frac{d}{d t} r(s)^{p}\right|_{s=0}=\lim _{t \rightarrow 0} \frac{r(t)^{p}-1}{t} .
$$

On the other hand since w is tangent to M at v_{n},

$$
\left.\frac{d}{d t} r(s)^{p}\right|_{s=0}=p \int_{\Omega}\left|v_{n}\right|^{p-2} v_{n} w V(x) d x=0
$$

Therefore, we have $\frac{r(t)^{p}-1}{t} \rightarrow 0$ as $t \rightarrow 0$ and that the second term goes to 0 . Similarly, the first term also goes to zero as $t \rightarrow 0$. Taking limit $t \rightarrow 0$ in (2.8) we get

$$
\left\langle J_{\mu}^{\prime}\left(v_{n}\right), w\right\rangle \leq \frac{1}{n}\|w\|_{X}, \quad \text { for all } w \in X \text { tangent to } M \text { at } v_{n} .
$$

Now if w is arbitrary in X. We choose α_{n} so that $\left(w-\alpha_{n} v_{n}\right)$ is tangent to M at v_{n}. i.e., $\alpha_{n}=\int_{\Omega}\left|v_{n}\right|^{p-2} v_{n} w V(x) d x$. So (2.8) gives,

$$
\left.\left|\left\langle J_{\mu}^{\prime}\left(v_{n}\right), w\right\rangle-\left\langle J_{\mu}^{\prime}\left(v_{n}\right), v_{n}\right\rangle \int_{\Omega}\right| v_{n}\right|^{p-2} v_{n} w \left\lvert\, \leq \frac{1}{n}\left\|w-\alpha_{n} v_{n}\right\|_{X}\right.
$$

Since $\left\|\alpha_{n} v_{n}\right\|_{X} \leq C .\|w\|_{X}$, we have

$$
\left.\left|\left\langle J_{\mu}^{\prime}\left(v_{n}\right), w\right\rangle-t_{n} \int_{\Omega}\right| v_{n}\right|^{p-2} v_{n} w V(x) d x \mid \leq \epsilon_{n}\|w\|_{X}
$$

where $t_{n}=\left\langle J_{\mu}^{\prime}\left(v_{n}\right), v_{n}\right\rangle$ and $\epsilon_{n} \rightarrow 0$. Therefore, $\left\|\tilde{J}_{\mu}{ }^{\prime}\left(v_{n}\right)\right\|_{*} \rightarrow 0$ and v_{n} is a PalaisSmale sequence. Hence by Lemma 2.2, $\left\{v_{n}\right\}$ has a convergent subsequence with limit, say, v. Then d is achieved at v.
Lemma 2.5. The number \mathcal{C} defined by (2.4) is the second smallest eigenvalue of L_{μ}

Proof. We follow the proof in [3]. Assume by contradiction that there exists an eigenvalue δ such that $\lambda_{1}<\delta<\mathcal{C}$. In other words, \tilde{J}_{μ} has a critical value δ with $\lambda_{1}<\delta<\mathcal{C}$. We will construct a path in Γ on which \tilde{J}_{μ} remains $\leq \delta$, which yields a contradiction with the definition of \mathcal{C}. Let $u \in \mathrm{M}$ satisfies the equation

$$
-\Delta_{p} u-\frac{\mu}{|x|^{p}}|u|^{p-2} u=\delta V(x)|u|^{p-2} u \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

and u changes sign in Ω. Taking u^{+}and u^{-}as test function we get

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u^{+}\right|^{p} d x-\int_{\Omega} \frac{\mu}{|x|^{p}}\left|u^{+}\right|^{p} d x=\delta \int_{\Omega}\left(u^{+}\right)^{p} V(x) d x \\
& \int_{\Omega}\left|\nabla u^{-}\right|^{p} d x-\int_{\Omega} \frac{\mu}{|x|^{p}}\left(u^{-}\right)^{p} d x=\delta \int_{\Omega}\left(u^{-}\right)^{p} V(x) d x
\end{aligned}
$$

Consequently

$$
\tilde{J}_{\mu}(u)=\tilde{J}_{\mu}\left(\frac{u^{+}}{\left\|u^{+}\right\|_{L^{p}(V)}}\right)=\tilde{J}_{\mu}\left(\frac{-u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}\right)=\tilde{J}_{\mu}\left(\frac{u^{-}}{\left\|u_{-}\right\|_{L^{p}(V)}}\right)=\delta
$$

We will consider the following three paths in M, which go respectively from u to $\frac{u^{+}}{\left\|u^{+}\right\|_{L^{p}(V)}}$, from $\frac{u^{+}}{\left\|u^{+}\right\|_{L^{p}(V)}}$ to $\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ and $\frac{-u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ to u :

$$
\begin{aligned}
u_{1}(t) & =\frac{t u+(1-t) u^{+}}{\left\|t u+(1-t) u^{+}\right\|_{L^{p}(V)}}, \\
u_{2}(t) & =\frac{t u^{+}+(1-t) u^{-}}{\left\|t u+(1-t) u^{-}\right\|_{L^{p}(V)}}, \\
u_{3}(t) & =\frac{-t u^{-}+(1-t) u}{\left\|-t u^{-}+(1-t) u\right\|_{L^{p}(V)}} .
\end{aligned}
$$

Also we have

$$
\tilde{J}_{\mu}\left(u_{1}(t)\right)=\tilde{J}_{\mu}\left(u_{2}(t)\right)=\tilde{J}_{\mu}\left(u_{3}(t)\right)=\delta
$$

By joining the paths $u_{1}(t)$ and $u_{2}(t)$ we get a new path which connects u and $\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ and stays at levels $\leq \delta$. Call this path as $u_{4}(t)$. Now we define $O=\{v \in$ $\left.M \mid \tilde{J}_{\mu}(v)<\delta\right\}$. Clearly $\phi_{1},-\phi_{1} \in O$. Since $\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ does not change sign and vanishes on a set of positive measure it is not a critical point of \tilde{J}_{μ}. So $\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ is a regular value of \tilde{J}_{μ}, and consequently there exists a C^{1} path $\eta:[-\epsilon, \epsilon] \rightarrow M$ with $\eta(0)=\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ and $\frac{d}{d t}\left(\left.\tilde{J}_{\mu}(\eta(t))\right|_{t=0} \neq 0\right.$. choose a point $v \in O$ on this path (this is possible because $\left.\tilde{J}_{\mu}{ }^{\prime}(\eta(t))\right|_{t=0} \neq 0$) we can thus move from $\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ to v through this path which lies at levels $<\delta$. Taking the component of O which
contains v and applying Lemma 2.3 together with Lemma 2.4, we can connect v to $+\phi_{1}$ (or to $-\phi_{1}$) with a path in M at levels $<\delta$. Let us assume that this is $+\phi_{1}$ which is reached in this way. Now call this path connecting $\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ and ϕ_{1} as $u_{5}(t)$, and consider the symmetric path $-u_{5}(t)$, which goes from $-\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ to $-\phi_{1}$. We evaluate the functional \tilde{J}_{μ} along $-u_{5}(t)$. Since \tilde{J}_{μ} is even,

$$
\tilde{J}_{\mu}\left(-u_{5}(t)\right)=\tilde{J}_{\mu}\left(u_{5}(t)\right) \leq \delta
$$

Finally with $u_{3}(t)$ we can connect $-\frac{u^{-}}{\left\|u^{-}\right\|_{L^{p}(V)}}$ with u by a path which stays at level δ. Putting every thing together we get a path connecting $-\phi_{1}$ and ϕ_{1} staying at levels $\leq \delta$. This concludes the proof.

Note that Theorem 1.4 is an immediate consequence of Lemma 2.5. So we have the following characterization of λ_{2}, the second smallest eigenvalue of L_{μ},

$$
\lambda_{2}=\inf _{\gamma \in \Gamma} \sup _{u \in \gamma} \int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega} \frac{|u|^{p}}{|x|^{p}} d x .
$$

Now let μ_{k} be the sequence of eigenvalues obtained in [6] which are characterized as

$$
\mu_{k}=\inf _{\mathcal{A} \in \mathcal{F}} \sup _{u \in \mathcal{A}} \int_{\Omega}|\nabla u|^{p}-\int_{\Omega} \frac{\mu}{|x|^{p}}|u|^{p},
$$

where $\mathcal{F}=\{\mathcal{A} \subset M \mid$ the genus of $\mathcal{A} \geq k\}$.
Corollary 2.6. With the notation above, $\mu_{2}=\lambda_{2}$.
Proof. Let γ be a curve in Γ. By joining this with its symmetric path $-\gamma(t)$ we can get a set of genus ≥ 2 where J_{μ} does not increase its values. Therefore, $\lambda_{2} \geq \mu_{2}$. But by Theorem 1.4, there is no eigenvalue between λ_{1} and λ_{2}. Hence $\lambda_{2}=\mu_{2}$.

Lemma 2.7. Let $u \in X$ be a solution of (1.2) and let \mathcal{O} be a component of $\{x \in$ $\Omega \mid u(x)>0\}$. Then $\left.u\right|_{\mathcal{O}} \in D_{0}^{1, p}(\mathcal{O})$

Proof. Let $u_{n} \in C_{c}(\Omega) \cap D_{0}^{1, p}(\Omega)$ such that $u_{n} \rightarrow u$ in $D_{0}^{1, p}(\Omega)$. Then $u_{n}^{+} \rightarrow u^{+}$in $D_{0}^{1, p}(\Omega)$. Let $v_{n}=\min \left(u_{n}, u\right)$ and let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{1} function such that

$$
\phi(t)= \begin{cases}0 & \text { for } t \leq 1 / 2 \\ 1 & \text { for } t \geq 1\end{cases}
$$

and $\left|\phi^{\prime}\right| \leq 1$. Let $\psi_{r}(x)=\phi(d(x, S) / r)$ where $d(x, S)=\operatorname{dist}(x, S)$. Then

$$
\psi_{r}(x) \begin{cases}0 & \text { for } d(x, S) \leq r / 2 \\ 1 & \text { for } d(x, S) \geq r\end{cases}
$$

and $\left|\nabla \psi_{r}(x)\right| \leq C / r$ for some constant C. Now we define $w_{n, r}(x)=\left.\psi_{r} v_{n}(x)\right|_{\mathcal{O}}$. Since $\psi_{r} v_{n} \in C(\bar{\Omega})$, we have $w_{n, r} \in C(\overline{\mathcal{O}})$ and vanishes on the boundary $\partial \mathcal{O}$. Indeed for $x \in \partial \mathcal{O} \cap S$ then $\psi_{r}(x)=0$ and so $w_{n, r}(x)=0$. If $x \in \partial \mathcal{O} \cap \Omega$ and $x \notin S$ then $u(x)=0$ (since u is continuous except at 0) and so $v_{n}(x)=0$. If $x \in \partial \Omega$ then $u_{n}(x)=0$ and hence $v_{n}(x)=0$. So in all the cases $w_{n, r}(x)=0$ for $x \in \partial \mathcal{O}$.

Therefore, $w_{n, r} \in D_{0}^{1, p}(\mathcal{O})$.

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(w_{n, r}\right)-\nabla\left(\psi_{r} u\right)\right|^{p} & =\int_{\mathcal{O}}\left|\left(\nabla \psi_{r}\right) v_{n}+\psi_{r} \nabla v_{n}-\left(\nabla \psi_{r}\right) u-\psi_{r} \nabla u\right|^{p} d x \\
& \leq\left\|\nabla \psi_{r} v_{n}-\nabla \psi_{r} u\right\|_{L^{p}(\mathcal{O})}^{p}+\left\|\psi_{r} \nabla v_{n}-\psi_{r} \nabla u\right\|_{L^{p}(\mathcal{O})}^{p}
\end{aligned}
$$

which goes to 0 as $n \rightarrow \infty$. i.e., $\left.w_{n, r} \rightarrow \psi_{r} u\right|_{\mathcal{O}}$ in $D_{0}^{1, p}(\mathcal{O})$. Now

$$
\int_{\mathcal{O}}\left|\nabla \psi_{r} u+\psi_{r} \nabla u-u\right|^{p} \leq \int_{\mathcal{O}}\left|\psi_{r} \nabla u-\nabla u\right|^{p}+\int_{\mathcal{O} \cap\{r / 2<|x|<r\}}\left|\nabla \psi_{r}\right|^{p} u
$$

$\rightarrow 0$ as $r \rightarrow 0$ by (1.1). Therefore, $\left.u\right|_{\mathcal{O}} \in D_{0}^{1, p}(\mathcal{O})$.
Proof of Theorem 1.5. We denote \tilde{J}_{μ} corresponding to V_{b} with $\tilde{J}_{\mu, b}$. Let u_{a} be a solution to

$$
-\Delta_{p} u-\frac{\mu}{|x|^{p}}|u|^{p-2} u=\lambda_{2} V_{a}(x)|u|^{p-2} u \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

Assuming that the claim below is true, we have

$$
\tilde{J}_{\mu, b}\left(\frac{v^{+}}{\left\|v^{+}\right\|_{L^{p}\left(V_{b}\right)}}\right)<\lambda_{2}\left(V_{a}\right), \tilde{J}_{\mu, b}\left(\frac{v^{-}}{\left\|v^{-}\right\|_{L^{p}\left(V_{b}\right)}}\right)<\lambda_{2}\left(V_{a}\right), \tilde{J}_{\mu, b}(v)<\lambda_{2}\left(V_{a}\right)
$$

Define $\mathcal{O}_{b}=\left\{u \in X, \int_{\Omega}|u|^{p} V_{b}=1, \tilde{J}_{\mu, b}(v)<\lambda_{2}\left(V_{a}\right).\right\}$ Now we proceed as in Lemma 2.5, to define the paths $v_{i}(t), i=1, \ldots, 5$ on which $\tilde{J}_{\mu, b}<\lambda_{2}\left(V_{a}\right)$. We join these paths in a way described in Lemma 2.5 to obtain a path $\gamma(t)$ in Γ_{b} (the family of paths corresponds to V_{b}) such that $\tilde{J}_{\mu, b}(\gamma(t))<\lambda_{2}\left(V_{a}\right)$. This completes the proof.
Claim: There exists $v \in X$, which changes sign and

$$
\begin{gather*}
\frac{\int_{\Omega}\left|\nabla v^{+}\right|^{p} d x-\int_{\Omega} \frac{\mu}{|x|^{p}}\left|v^{+}\right|^{p} d x}{\int_{\Omega}\left(v^{+}\right)^{p} V_{b} d x}<\lambda_{2}\left(V_{a}\right), \\
\frac{\int_{\Omega}\left|\nabla v^{-}\right|^{p} d x-\frac{\mu}{|x|^{p}}\left|v^{-}\right|^{p} d x}{\int_{\Omega}\left(v^{-}\right)^{p} V_{b} d x}<\lambda_{2}\left(V_{a}\right) . \tag{2.9}
\end{gather*}
$$

Proof of Claim: Since u_{a} is an eigenfunction corresponding to $\lambda_{2}>\lambda_{1}$, it has to change sign in Ω (see [6]). Let O_{1} and O_{2} be positive and negative nodal domains of u_{a} respectively such that

$$
\int_{O_{1}} V_{a}\left(u_{a}^{+}\right)^{p} d x<\int_{O_{1}} V_{b}\left(u_{a}^{+}\right)^{p} d x \text { and } \int_{O_{2}} V_{a}\left(u_{a}^{-}\right)^{p} d x \leq \int_{O_{2}} V_{b}\left(u_{a}^{-}\right)^{p} d x
$$

By Lemma 2.7, $\left.u_{a}\right|_{O_{1}} \in D_{0}^{1, p}\left(O_{1}\right)$ and also in $L^{p}\left(O_{1}, V^{-}\right)$. We have

$$
\lambda_{1}\left(O_{1}, V_{b}\right) \leq \frac{\int_{O_{1}}\left|\nabla u_{a}\right|^{p}-\frac{\mu}{|x|^{p}}\left|u_{a}\right|^{p}}{\int_{O_{1}}\left|u_{a}\right|^{p} V_{b}}<\lambda_{2}\left(V_{a}\right)
$$

Therefore, $\lambda_{1}\left(O_{1}, V_{b}\right)<\lambda_{2}\left(V_{a}\right)$. Simillarily $\lambda_{1}\left(O_{2}, V_{b}\right) \leq \lambda_{2}\left(V_{a}\right)$. Now we modify O_{1} and O_{2} to get $\tilde{O_{1}}$ and $\tilde{O_{2}}$ with empty intersection and $\lambda_{1}\left(\tilde{O}_{1}, V_{b}\right)<\lambda_{2}\left(V_{a}\right)$ and $\lambda_{1}\left(\tilde{O}_{2}, V_{b}\right)<\lambda_{2}$. For $\eta>0$, let $O_{1}(\eta)=\left\{x \in O_{1} \mid \operatorname{dist}\left(x, O_{1}^{c}\right)>\eta\right\}$. Then $\lambda_{1}\left(O_{1}(\eta), V_{b}\right) \geq \lambda_{1}\left(O_{1}, V_{b}\right)$ and $\lambda_{1}\left(O_{1}(\eta), V_{b}\right) \rightarrow \lambda_{1}\left(O_{1}, V_{b}\right)$ as $\eta \rightarrow 0$. Therefore, there exists $\eta_{0}>0$ such that $\lambda_{1}\left(O_{1}(\eta), V_{b}\right)<\lambda_{2}\left(V_{a}\right)$ for $0<\eta<\eta_{0}$. Let $x \in \partial O_{2} \cap \Omega$ and $0<\eta<\min \left\{\eta_{0}, \operatorname{dist}\left(x_{0}, \Omega^{c}\right)\right\}$. Now define $\tilde{O}_{2}=O_{2} \cup B\left(x_{0}, \eta / 2\right)$. Then $\tilde{O_{2}} \cap O_{1}(\eta)=\emptyset, \lambda_{1}\left(\tilde{O_{2}}, V_{b}\right)<\lambda_{1}\left(O_{2}, V_{b}\right)<\lambda_{2}\left(V_{a}\right)$. Now we consider the function
$v=v_{1}-v_{2}$, where v_{i} are the extensions by zero outside \tilde{O}_{i} of the eigenfunctions associated to $\lambda_{1}\left(\tilde{O}_{i}, V_{b}\right)$. Then v satisfies (2.9).
Acknowledgements. The Author was supported by grant 40/1/2002-R\&D-II/165 from the National Board for Higher Mathematics(NBHM), DAE, Govt. of India.

References

[1] L. Boccardo and F. Murat, Almost everywhere convergence of gradients of solutions to elliptic and parabolic equations, Nonlinear Analysis TMA Vol. 19, no.6, 581-597, 1992.
[2] H. Brezis and E. Lieb, A Relation between Point Convergence of Functions and Convergence of Functionals, Proc. AMS, Vol. 88, 486-490, 1983.
[3] M. Cuesta, D. de figueiredo and J.P. Gossez, The beginning of Fučik spectrum for p-Laplacian, Journal of Differential Equations, Vol. 159, 212-238, 1999.
[4] E. Dibendetto, $C^{1, \alpha}$ local regularity of weak solutionsof degenerate elliptic equations, Nonlinear Analysis TMA, Vol. 7, 827-850, 1983.
[5] K. Sreenadh, On the Fučik spectrum of Hardy-Sobolev Operator, Nonlinear Analysis TMA, Vol.51, 1167-1185, 2002
[6] K. Sreenadh, On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights, Electronic Journal of Differential equations, Vol.2002, no.33, 1-12, 2002.
[7] M. Struwe, Variational Methods, Springer, Newyork 2000
[8] A. Szulkin and M. Willem, Eigenvalue problems with indefinite weights, Stud. Math., Vol. 135, No. 2, 191-201, 1999.
[9] M. Willem, Minimax methods, Birkhauser, Boston, 1996.
Konijeti Sreenadh
T.I.F.R. Centre, Post Box No.1234, Bangalore-560012, India

E-mail address: srinadh@math.tifrbng.res.in

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J70, 35P05, 35P30.
 Key words and phrases. p-Laplacian, Hardy-Sobolev operator, unbounded domain. © 2004 Texas State University - San Marcos.
 Submitted August 12, 2003. Published Janaury 22, 2004.

