Electronic Journal of Differential Equations, Vol. 2004(2004), No. 12, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON THE SECOND EIGENVALUE OF A HARDY-SOBOLEV OPERATOR

K. SREENADH

ABSTRACT. In this note, we study the variational characterization and some properties of the second smallest eigenvalue of the Hardy-Sobolev operator $L_{\mu} := -\Delta_p - \frac{\mu}{|x|^p}$ with respect to an indefinite weight V(x).

1. INTRODUCTION

Let Ω be a domain in \mathbb{R}^N containing 0. We recall the classical Hardy-Sobolev inequality which states that, for 1 ,

$$\int_{\Omega} |\nabla u|^p dx \ge \left(\frac{N-p}{p}\right)^p \int_{\Omega} \frac{|u|^p}{|x|^p} dx, \quad \forall u \in C_c^{\infty}(\Omega).$$
(1.1)

Let $D_0^{1,p}(\Omega)$ be the closure of $C_c^{\infty}(\Omega)$ with respect to the norm $||u||_{1,p} = ||\nabla u||_{L^p(\Omega)}$. The Hardy-Sobolev operator L_{μ} on $D_0^{1,p}(\Omega)$ is defined as

$$L_{\mu}u := -\Delta_{p}u - \frac{\mu}{|x|^{p}}|u|^{p-2}u, \quad 0 < \mu < \left(\frac{N-p}{p}\right)^{p},$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, is the *p*-Laplacian.

We are interested in the variational characterization and some properties of the second smallest eigenvalue of the problem

$$L_{\mu}u = \lambda V(x)|u|^{p-2}u \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial\Omega.$$
 (1.2)

On the weight on V(x), we assume the following:

- (H1) $V \in L^1_{\text{loc}}(\Omega), V^+ = V_1 + V_2 \neq 0$ with $V_1 \in L^{N/p}(\Omega)$ and V_2 is such that $\lim_{x \to y, x \in \Omega} |x y|^p V_2(x) = 0$ for all $y \in \overline{\Omega}, \lim_{|x| \to \infty, x \in \Omega} |x|^p V_2(x) = 0$, where $V^+(x) = \max\{V(x), 0\}$.
- (H2) There exists r > N/p and a closed subset S of measure zero in \mathbb{R}^N such that $\Omega \setminus S$ is connected and $V \in L^r_{loc}(\Omega \setminus S)$.

Here we note that there is no global integrability condition assumed on V^- .

This work is motivated by the work in [8]. The eigenvalue problem with indefinite weights has been studied for the case $\mu = 0$ by Szulkin-Willem [8]. However, some important properties, of the smallest eigenvalue λ_1 , such as simplicity and

²⁰⁰⁰ Mathematics Subject Classification. 35J20, 35J70, 35P05, 35P30.

Key words and phrases. p-Laplacian, Hardy-Sobolev operator, unbounded domain.

^{©2004} Texas State University - San Marcos.

Submitted August 12, 2003. Published Janaury 22, 2004.

K. SREENADH

being isolated were shown only for p = 2. Recently the author in [6] proved the simplicity of λ_1 and sign changing nature of eigenfunctions corresponding to other eigenvalues when Ω is bounded. Infact in [6] the author studied these properties for L_{μ} . Following the same arguments, one can prove these results in the present case. However, showing that λ_1 is isolated and characterization of the second smallest eigenvalue, were open questions. To prove these properties, we follow the ideas in [5] and in [3]. Here we should mention that our results are new even for the case $\mu = 0$. We use the following results in later sections.

Proposition 1.1 (Boccardo-Murat [1]). Let Ω be a bounded domain in \mathbb{R}^N and let $u_n \in W^{1,p}(\Omega)$ satisfy

$$-\Delta_p u_n = f_n + g_n \quad in \ \mathcal{D}'(\Omega)$$

and

- (i) $u_n \to u$ weakly in $W^{1,p}(\Omega)$
- (ii) $u_n \to u$ in $L^p(\Omega)$
- (iii) $f_n \to f$ in $W^{-1,p'}$
- (iv) g_n is a bounded sequence of Radon measures.

Then there exists a subsequence $\{u_n\}$ of $\{u_n\}$ such that $\nabla u_n \to \nabla u$ a.e. in Ω .

Propositioin 1.2 (Brezis-Lieb [2]). Let $f_n \to f$ a.e in Ω as $n \to \infty$ and f_n be bounded in $L^p(\Omega)$, for some p > 1. Then

$$\lim_{n \to \infty} \{ \|f_n\|_p - \|f_n - f\|_p \} = \|f\|_p.$$

Let X be a Banach space and let $M = \{u \in X \mid g(u) = 0\}$ with $g \in C^1$. Also let $f: X \to \mathbb{R}$ be a C^1 functional and let \tilde{f} be the restriction of f to M. Then we have the following form of the Mountain pass Theorem [7].

Propositioin 1.3. Let $u, v \in M$ with $u \not\equiv v$ and suppose that

$$c:=\inf_{h\in\Gamma}\max_{w\in h(t)}f(w)>\max\{f(u),f(v)\}$$

where

$$\Gamma:=\{h\in C([-1,+1],M)\,|h(-1)=u\quad and\quad h(1)=v\}\neq \emptyset$$

Also suppose that \tilde{f} satisfies Pailse-Smale (PS) condition on M. Then c is a critical value of \tilde{f} .

We define the norm

$$\|\tilde{f}'\|_* = \inf\{\|f'(u) - tg'(u)\|_{X^*} : t \in \mathbb{R}\}.$$

The variational characterization of the smallest eigenvalue is given by

$$\lambda_1 = \inf_{0 \neq u \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p dx - \int_{\Omega} \frac{|u|^r}{|x|^p} dx}{\int_{\Omega} |u|^p V(x) dx}$$

1 120

and the corresponding eigenfunction is denoted by ϕ_1 , which is unique under the condition $\int_{\Omega} |\phi|^p V(x) dx = 1$ (see [6]). We will prove the following property.

Theorem 1.4. The eigenvalue λ_1 is isolated in the spectrum of L_{μ} .

We will establish the following variational characterisation of the second smallest eigenvalue:

$$\lambda_2 = \inf_{\gamma \in \Gamma} \sup_{u \in \gamma} \frac{\int_{\Omega} |\nabla u|^p dx - \int_{\Omega} \frac{|u|^p}{|x|^p} dx}{\int_{\Omega} |u|^p V(x) dx}.$$

where $\Gamma = \{\gamma \in C([-1,1]: M) | \gamma(-1) = -\phi_1, \gamma(1) = \phi_1 \}$ and M is defined as in the next section. We show also the following property of λ_2 .

Theorem 1.5. If $V_a \leq V_b$, then $\lambda_2(V_a) \geq \lambda_2(V_b)$.

2. Proofs of results

In this section we show that λ_1 is solated and give a variational characterization for second smallest eigenvalue of L_{μ} .

Lemma 2.1. The mapping $u \mapsto \int_{\Omega} V^+ |u|^p dx$ is weakly continuous.

The proof of this lemma follows from (1.1) and (H1). We refer the reader to [8] for more details.

Now, we consider the set

$$M = \left\{ u \in D_0^{1,p}(\Omega) \, \middle| \, \int_{\Omega} |u|^p V(x) = 1 \right\}$$

Since M is not a manifold in $D_0^{1,p}(\Omega)$, we define $X = \{u \in D_0^{1,p}(\Omega) \mid ||u||_X < \infty\}$, where

$$\|u\|_X^p := \int_{\Omega} |\nabla u|^p dx + \int_{\Omega} |u|^p V^- dx.$$

Then M is a C^1 -manifold as a subset of the space X. On this space, we define the functional

$$J_{\mu}(u) = \frac{\int_{\Omega} |\nabla u|^p \, dx - \int_{\Omega} \frac{\mu}{|x|^p} |u|^p \, dx}{\int_{\Omega} |u|^p V \, dx}$$

Let \tilde{J}_{μ} denote the restriction of J_{μ} to M. and let $||u||_{L^{p}(V)}^{p} = \int_{\Omega} |u|^{p} V(x) dx$.

Lemma 2.2. The functional \tilde{J}_{μ} satisfies the Palais-Smale condition at any positive level.

Proof. Let $\{u_n\}$ be a sequence in M such that $J_{\mu}(u_n) \to \lambda > 0$ and

$$\langle J_{\mu}(u_n), \phi \rangle - J_{\mu}(u_n) \int_{\Omega} |u_n|^{p-2} u_n \phi V dx = o(1).$$

$$(2.1)$$

Using Hardy-Sobolev inequality and $u_n \in M$, it follows that u_n is bounded in X which gives the existence of a subsequence $\{u_n\}$ of $\{u_n\}$ and u such that $u_n \to u$ weakly in $D_0^{1,p}(\Omega)$. Since $\lambda > 0$ we may assume that $J_{\mu}(u_n) \ge 0$. Using Lemma 2.1 and (2.1), we get

$$\langle J'_{\mu}(u_n) - J'_{\mu}(u), u_n - u \rangle + J_{\mu}(u_n) \int_{\Omega} \left[|u_n|^{p-2} u_n - |u|^{p-2} u \right] (u_n - u) V^- dx = o(1).$$

By Fatou's Lemma,

$$0 = \int_{\Omega} \lim_{n \to \infty} \left[|u_n|^{p-2} u_n - |u|^{p-2} u \right] [u_n - u] V^-$$

$$\leq \liminf_{n \to \infty} \int_{\Omega} \left[|u_n|^{p-2} u_n - |u|^{p-2} u \right] [u_n - u] V^- dx.$$

Also, u_n satisfies

$$-\Delta_p u_n - \frac{\mu}{|x|^p} |u_n|^{p-2} u_n - J_\mu(u_n) |u_n|^{p-2} u_n V(x) = o(1) \quad \text{in} \quad \mathcal{D}'(\Omega_m),$$

where Ω_m is a bounded domain such that $\Omega = \bigcup_{m=1}^{\infty} \Omega_m$. By Proposition 1.1, noting that $\frac{\mu}{|x|^p} |u_n|^{p-2} u_n + J_{\mu}(u_n) |u_n|^{p-2} u_n V^-$ is a bounded sequence of Radon measures, there exists a subsequence $\{u_n^m\}$ of $\{u_n\}$ an u such that $\nabla u_n^m \to \nabla u$ a.e., in Ω_m . By the process of diagonalization we can choose a subsequence $\{u_n\}$ such that $\nabla u_n \to \nabla u$ a.e. in Ω . By Proposition 1.2, we have

$$||u_n - u||_{1,p}^p = ||u_n||_{1,p}^p - ||u||_{1,p}^p + o(1)$$
(2.2)

$$\left\|\frac{u_n - u}{|x|}\right\|_{L^p(1)}^p = \left\|\frac{u_n}{|x|}\right\|_{L^p(1)}^p - \left\|\frac{u}{|x|}\right\|_{L^p(1)}^p + o(1).$$
(2.3)

We also have, by Fatau's lemma,

$$\int_{\Omega} V^{-}(|u_{n}|^{p} + |u|^{p} - |u_{n}|^{p-2}u_{n}u - |u|^{p-2}uu_{n})dx$$

$$\geq \int_{\Omega} V^{-}(|u_{n}|^{p} + |u|^{p}) - \left(\int_{\Omega} V^{-}|u_{n}|^{p}\right)^{(p-1)/p} \left(\int_{\Omega} V^{-}|u|^{p}\right)^{1/p}$$

$$- \left(\int_{\Omega} V^{-}|u|^{p}\right)^{(p-1)/p} \left(\int_{\Omega} V^{-}|u_{n}|^{p}\right)^{1/p}$$

$$= \left[\left(\int_{\Omega} V^{-}|u_{n}|^{p}\right)^{(p-1)/p} - \left(\int_{\Omega} V^{-}|u|^{p}\right)^{(p-1)/p}\right]$$

$$\times \left[\left(\int_{\Omega} V^{-}|u_{n}|^{p}\right)^{1/p} - \left(\int_{\Omega} V^{-}|u|^{p}\right)^{\frac{1}{p}}\right] \geq 0.$$

Now using (2.2) and (2.3),

$$\begin{split} o(1) &= \langle J_{\mu}(u_n) - J_{\mu}(u), (u_n - u) \rangle + J_{\mu}(u_n) \int_{\Omega} [|u_n|^{p-2} u_n - |u|^{p-2} u] (u_n - u) V^- dx \\ &\geq \int_{\Omega} |\nabla u_n - \nabla u|^p - \int_{\Omega} \frac{\mu}{|x|^p} |u_n - u|^p + o(1) \\ &\geq \left(1 - \frac{\mu}{\lambda_N}\right) \|u_n - u\|_{1,p} + o(1). \end{split}$$

i.e., $u_n \to u$ in $D_0^{1,p}(\Omega)$. Notice that

$$\begin{split} o(1) &= \langle J_{\mu}(u_n) - J_{\mu}(u), u_n - u \rangle \\ &= \int_{\Omega} V^{-} \left(|u_n|^{p-2} u_n - |u|^{p-2} u \right) (u_n - u) dx + o(1) \ge 0 \,. \\ \int_{\Omega} V^{-} |u_n|^p dx \to \int_{\Omega} V^{-} |u|^p dx \text{ and hence } \|u_n\|_X \to \|u\|_X. \end{split}$$

Therefore, $\int_{\Omega} V^{-} |u_{n}|^{p} dx \to \int_{\Omega} V^{-} |u|^{p} dx$ and hence $||u_{n}||_{X} \to ||u||_{X}$.

Observe that $\tilde{J}_{\mu}(u) \geq \lambda_1$ and $\tilde{J}_{\mu}(\pm \phi_1) = \lambda_1$. So $+\phi_1$ and $-\phi_1$ are two global minima of \tilde{J}_{μ} . Now consider

$$\Gamma = \{\gamma \in C([-1,1];M) \,|\, \gamma(-1) = -\phi_1, \gamma(1) = \phi_1\}$$

By Proposition 1.3, there exists $u \in X$ such that $\tilde{J}'_{\mu}(u) = 0$ and $J_{\mu}(u) = \mathcal{C}$, where

$$\mathcal{C} = \inf_{\gamma \in \Gamma} \sup_{u \in \gamma} \tilde{J}_{\mu}(u).$$
(2.4)

Lemma 2.3. (i) M is locally arc wise connected

- (ii) Any connected open subset B of M is arcwise connected
- (iii) if B' is a component of an open set A, then $\partial B' \cap B$ is empty.

The proof of this lemma follows from the fact that M is a Banach Manifold. For a proof we refer the reader to [3]. Define $\mathcal{O} = \{u \in M \mid \tilde{J}_{\mu}(u) < r\}$

Lemma 2.4. Each component of \mathcal{O} contains a critical point of \tilde{J}_{μ} .

Proof. Let \mathcal{O}_1 be a component of \mathcal{O} and let $d = \inf\{\tilde{J}_{\mu}(u), u \in \mathcal{O}_1\}$, where $\overline{\mathcal{O}_1}$ is X-closure of \mathcal{O} . Suppose this infimum is achieved by $v \in \overline{\mathcal{O}_1}$. Then by Lemma 2.3 this cannot be in $\partial \mathcal{O}_1$ and hence v is in \mathcal{O}_1 and is a critical point of \tilde{J}_{μ} .

Now we show that d is achieved. Let $u_n \in \mathcal{O}_1$ be a minimizing sequence with $\tilde{J}_{\mu}(u_n) \leq d + \frac{1}{n^2}$. By Ekeland Variational Principle, we get $v_n \in \mathcal{O}_1$ such that

$$\tilde{J}_{\mu}(v_n) \le \tilde{J}_{\mu}(u_n), \tag{2.5}$$

$$\|v_n - u_n\|_X \le \frac{1}{n},\tag{2.6}$$

$$\tilde{J}_{\mu}(v_n) \le \tilde{J}_{\mu}(v) + \frac{1}{n} \|v_n - v\|_X, \quad \forall v \in \mathcal{O}_1.$$

$$(2.7)$$

From (2.5) it follows that $\tilde{J}_{\mu}(v_n)$ is bounded. Now we claim that $\|\tilde{J}_{\mu}'(v_n)\|_* \to 0$. We fix *n* and choose $w \in X$ tangent to *M* at v_n , i.e., $\int_{\Omega} |v_n|^{p-2} v_n w V = 0$. Now we consider the path

$$u_t = \frac{v_n + tw}{\|v_n + tw\|_{L^p(V)}}.$$

Since $\tilde{J}_{\mu}(v_n) \leq d + \frac{1}{n} < r$ for n large, we have $v_n \in \overline{\mathcal{O}}_1$ and by Lemma 2.3 (iii), $v_n \notin \partial \mathcal{O}_1$. So $u_t \in \mathcal{O}_1$ for |t| small. Taking $v = u_t$ in (2.7) we obtain

$$\frac{\tilde{J}_{\mu}(v_n) - \tilde{J}_{\mu}(v_n + tw)}{t} \\
\leq \frac{1}{nt} \|v_n(\frac{1}{r(t)} - 1)\|_X + \frac{1}{n} \|w\| + \frac{1}{t} (\frac{1}{r(t)^p} - 1) \tilde{J}_{\mu}(v_n + tw),$$
(2.8)

where $r(t) = ||v_n + tw||_{L^p(V)}$. The last term in (2.8) involves $\frac{r(t)^p - 1}{t}$ which can be calculated as

$$\frac{d}{dt}r(s)^p\big|_{s=0} = \lim_{t\to 0}\frac{r(t)^p - 1}{t}$$

On the other hand since w is tangent to M at v_n ,

$$\frac{d}{dt}r(s)^p\big|_{s=0} = p\int_\Omega |v_n|^{p-2}v_n w V(x) dx = 0.$$

Therefore, we have $\frac{r(t)^p-1}{t} \to 0$ as $t \to 0$ and that the second term goes to 0. Similarly, the first term also goes to zero as $t \to 0$. Taking limit $t \to 0$ in (2.8) we get

$$\langle J'_{\mu}(v_n), w \rangle \leq \frac{1}{n} ||w||_X$$
, for all $w \in X$ tangent to M at v_n .

Now if w is arbitrary in X. We choose α_n so that $(w - \alpha_n v_n)$ is tangent to M at v_n . i.e., $\alpha_n = \int_{\Omega} |v_n|^{p-2} v_n w V(x) dx$. So (2.8) gives,

$$|\langle J'_{\mu}(v_n), w \rangle - \langle J'_{\mu}(v_n), v_n \rangle \int_{\Omega} |v_n|^{p-2} v_n w| \le \frac{1}{n} ||w - \alpha_n v_n||_X$$

Since $\|\alpha_n v_n\|_X \leq C \cdot \|w\|_X$, we have

$$|\langle J'_{\mu}(v_n), w \rangle - t_n \int_{\Omega} |v_n|^{p-2} v_n w V(x) dx| \le \epsilon_n ||w||_X$$

where $t_n = \langle J'_{\mu}(v_n), v_n \rangle$ and $\epsilon_n \to 0$. Therefore, $\|\tilde{J}'_{\mu}(v_n)\|_* \to 0$ and v_n is a Palais-Smale sequence. Hence by Lemma 2.2, $\{v_n\}$ has a convergent subsequence with limit, say, v. Then d is achieved at v.

Lemma 2.5. The number C defined by (2.4) is the second smallest eigenvalue of L_{μ}

Proof. We follow the proof in [3]. Assume by contradiction that there exists an eigenvalue δ such that $\lambda_1 < \delta < C$. In other words, \tilde{J}_{μ} has a critical value δ with $\lambda_1 < \delta < C$. We will construct a path in Γ on which \tilde{J}_{μ} remains $\leq \delta$, which yields a contradiction with the definition of C. Let $u \in M$ satisfies the equation

$$-\Delta_p u - \frac{\mu}{|x|^p} |u|^{p-2} u = \delta V(x) |u|^{p-2} u \quad \text{in } \mathcal{D}'(\Omega),$$

and u changes sign in Ω . Taking u^+ and u^- as test function we get

$$\int_{\Omega} |\nabla u^+|^p \, dx - \int_{\Omega} \frac{\mu}{|x|^p} |u^+|^p \, dx = \delta \int_{\Omega} (u^+)^p V(x) \, dx$$
$$\int_{\Omega} |\nabla u^-|^p \, dx - \int_{\Omega} \frac{\mu}{|x|^p} (u^-)^p \, dx = \delta \int_{\Omega} (u^-)^p V(x) \, dx$$

Consequently

$$\tilde{J}_{\mu}(u) = \tilde{J}_{\mu}(\frac{u^{+}}{\|u^{+}\|_{L^{p}(V)}}) = \tilde{J}_{\mu}(\frac{-u^{-}}{\|u^{-}\|_{L^{p}(V)}}) = \tilde{J}_{\mu}(\frac{u^{-}}{\|u_{-}\|_{L^{p}(V)}}) = \delta.$$

We will consider the following three paths in M, which go respectively from u to $\frac{u^+}{\|u^+\|_{L^p(V)}}$, from $\frac{u^+}{\|u^+\|_{L^p(V)}}$ to $\frac{u^-}{\|u^-\|_{L^p(V)}}$ and $\frac{-u^-}{\|u^-\|_{L^p(V)}}$ to u:

$$u_{1}(t) = \frac{tu + (1-t)u^{+}}{\|tu + (1-t)u^{+}\|_{L^{p}(V)}},$$
$$u_{2}(t) = \frac{tu^{+} + (1-t)u^{-}}{\|tu + (1-t)u^{-}\|_{L^{p}(V)}},$$
$$u_{3}(t) = \frac{-tu^{-} + (1-t)u}{\|-tu^{-} + (1-t)u\|_{L^{p}(V)}}.$$

Also we have

$$\tilde{J}_{\mu}(u_1(t)) = \tilde{J}_{\mu}(u_2(t)) = \tilde{J}_{\mu}(u_3(t)) = \delta.$$

By joining the paths $u_1(t)$ and $u_2(t)$ we get a new path which connects u and $\frac{u^-}{\|u^-\|_{L^p(V)}}$ and stays at levels $\leq \delta$. Call this path as $u_4(t)$. Now we define $O = \{v \in M \mid \tilde{J}_{\mu}(v) < \delta\}$. Clearly $\phi_1, -\phi_1 \in O$. Since $\frac{u^-}{\|u^-\|_{L^p(V)}}$ does not change sign and vanishes on a set of positive measure it is not a critical point of \tilde{J}_{μ} . So $\frac{u^-}{\|u^-\|_{L^p(V)}}$ is a regular value of \tilde{J}_{μ} , and consequently there exists a C^1 path $\eta : [-\epsilon, \epsilon] \to M$ with $\eta(0) = \frac{u^-}{\|u^-\|_{L^p(V)}}$ and $\frac{d}{dt}(\tilde{J}_{\mu}(\eta(t))|_{t=0} \neq 0$. choose a point $v \in O$ on this path (this is possible because $\tilde{J}_{\mu}'(\eta(t))|_{t=0} \neq 0$) we can thus move from $\frac{u^-}{\|u^-\|_{L^p(V)}}$ to v through this path which lies at levels $< \delta$. Taking the component of O which

contains v and applying Lemma 2.3 together with Lemma 2.4, we can connect v to $+\phi_1$ (or to $-\phi_1$) with a path in M at levels $< \delta$. Let us assume that this is $+\phi_1$ which is reached in this way. Now call this path connecting $\frac{u^-}{\|u^-\|_{L^p(V)}}$ and ϕ_1 as $u_5(t)$, and consider the symmetric path $-u_5(t)$, which goes from $-\frac{u^-}{\|u^-\|_{L^p(V)}}$ to $-\phi_1$. We evaluate the functional \tilde{J}_{μ} along $-u_5(t)$. Since \tilde{J}_{μ} is even,

$$\tilde{J}_{\mu}(-u_5(t)) = \tilde{J}_{\mu}(u_5(t)) \le \delta.$$

Finally with $u_3(t)$ we can connect $-\frac{u^-}{\|u^-\|_{L^p(V)}}$ with u by a path which stays at level δ . Putting every thing together we get a path connecting $-\phi_1$ and ϕ_1 staying at levels $\leq \delta$. This concludes the proof.

Note that Theorem 1.4 is an immediate consequence of Lemma 2.5. So we have the following characterization of λ_2 , the second smallest eigenvalue of L_{μ} ,

$$\lambda_2 = \inf_{\gamma \in \Gamma} \sup_{u \in \gamma} \int_{\Omega} |\nabla u|^p dx - \int_{\Omega} \frac{|u|^p}{|x|^p} dx.$$

Now let μ_k be the sequence of eigenvalues obtained in [6] which are characterized as

$$\mu_k = \inf_{\mathcal{A} \in \mathcal{F}} \sup_{u \in \mathcal{A}} \int_{\Omega} |\nabla u|^p - \int_{\Omega} \frac{\mu}{|x|^p} |u|^p,$$

where $\mathcal{F} = \{\mathcal{A} \subset M \mid \text{ the genus of } \mathcal{A} \ge k\}.$

Corollary 2.6. With the notation above, $\mu_2 = \lambda_2$.

Proof. Let γ be a curve in Γ . By joining this with its symmetric path $-\gamma(t)$ we can get a set of genus ≥ 2 where J_{μ} does not increase its values. Therefore, $\lambda_2 \geq \mu_2$. But by Theorem 1.4, there is no eigenvalue between λ_1 and λ_2 . Hence $\lambda_2 = \mu_2$. \Box

Lemma 2.7. Let $u \in X$ be a solution of (1.2) and let \mathcal{O} be a component of $\{x \in \Omega \mid u(x) > 0\}$. Then $u|_{\mathcal{O}} \in D_0^{1,p}(\mathcal{O})$

Proof. Let $u_n \in C_c(\Omega) \cap D_0^{1,p}(\Omega)$ such that $u_n \to u$ in $D_0^{1,p}(\Omega)$. Then $u_n^+ \to u^+$ in $D_0^{1,p}(\Omega)$. Let $v_n = \min(u_n, u)$ and let $\phi : \mathbb{R} \to \mathbb{R}$ be a C^1 function such that

$$\phi(t) = \begin{cases} 0 & \text{for } t \le 1/2\\ 1 & \text{for } t \ge 1 \end{cases}$$

and $|\phi'| \leq 1$. Let $\psi_r(x) = \phi(d(x,S)/r)$ where $d(x,S) = \operatorname{dist}(x,S)$. Then

$$\psi_r(x) \begin{cases} 0 & \text{for } d(x,S) \le r/2\\ 1 & \text{for } d(x,S) \ge r \end{cases}$$

and $|\nabla \psi_r(x)| \leq C/r$ for some constant *C*. Now we define $w_{n,r}(x) = \psi_r v_n(x)|_{\mathcal{O}}$. Since $\psi_r v_n \in C(\overline{\Omega})$, we have $w_{n,r} \in C(\overline{\mathcal{O}})$ and vanishes on the boundary $\partial \mathcal{O}$. Indeed for $x \in \partial \mathcal{O} \cap S$ then $\psi_r(x) = 0$ and so $w_{n,r}(x) = 0$. If $x \in \partial \mathcal{O} \cap \Omega$ and $x \notin S$ then u(x) = 0 (since *u* is continuous except at 0) and so $v_n(x) = 0$. If $x \in \partial \Omega$ then $u_n(x) = 0$ and hence $v_n(x) = 0$. So in all the cases $w_{n,r}(x) = 0$ for $x \in \partial \mathcal{O}$. Therefore, $w_{n,r} \in D_0^{1,p}(\mathcal{O}).$

$$\int_{\Omega} |\nabla(w_{n,r}) - \nabla(\psi_r u)|^p = \int_{\mathcal{O}} |(\nabla\psi_r)v_n + \psi_r \nabla v_n - (\nabla\psi_r)u - \psi_r \nabla u|^p dx$$
$$\leq \|\nabla\psi_r v_n - \nabla\psi_r u\|_{L^p(\mathcal{O})}^p + \|\psi_r \nabla v_n - \psi_r \nabla u\|_{L^p(\mathcal{O})}^p$$

which goes to 0 as $n \to \infty$. i.e., $w_{n,r} \to \psi_r u \Big|_{\mathcal{O}}$ in $D_0^{1,p}(\mathcal{O})$. Now

$$\int_{\mathcal{O}} |\nabla \psi_r u + \psi_r \nabla u - u|^p \le \int_{\mathcal{O}} |\psi_r \nabla u - \nabla u|^p + \int_{\mathcal{O} \cap \{r/2 < |x| < r\}} |\nabla \psi_r|^p u$$

as $r \to 0$ by (1.1). Therefore, $u| \in D^{1,p}(\mathcal{O})$.

 $\rightarrow 0$ as $r \rightarrow 0$ by (1.1). Therefore, $u|_{\mathcal{O}} \in D_0^{1,p}(\mathcal{O})$.

Proof of Theorem 1.5. We denote \tilde{J}_{μ} corresponding to V_b with $\tilde{J}_{\mu,b}$. Let u_a be a solution to

$$-\Delta_p u - \frac{\mu}{|x|^p} |u|^{p-2} u = \lambda_2 V_a(x) |u|^{p-2} u \quad \text{in } \mathcal{D}'(\Omega).$$

Assuming that the claim below is true, we have

$$\tilde{J}_{\mu,b}\left(\frac{v^{+}}{\|v^{+}\|_{L^{p}(V_{b})}}\right) < \lambda_{2}(V_{a}), \tilde{J}_{\mu,b}\left(\frac{v^{-}}{\|v^{-}\|_{L^{p}(V_{b})}}\right) < \lambda_{2}(V_{a}), \tilde{J}_{\mu,b}\left(v\right) < \lambda_{2}(V_{a}).$$

Define $\mathcal{O}_b = \{ u \in X, \int_{\Omega} |u|^p V_b = 1, \tilde{J}_{\mu,b}(v) < \lambda_2(V_a). \}$ Now we proceed as in Lemma 2.5, to define the paths $v_i(t), i = 1, ..., 5$ on which $\tilde{J}_{\mu,b} < \lambda_2(V_a)$. We join these paths in a way described in Lemma 2.5 to obtain a path $\gamma(t)$ in Γ_b (the family of paths corresponds to V_b such that $J_{\mu,b}(\gamma(t)) < \lambda_2(V_a)$. This completes the proof.

Claim: There exists $v \in X$, which changes sign and

$$\frac{\int_{\Omega} |\nabla v^{+}|^{p} dx - \int_{\Omega} \frac{|\mu|^{p}}{|x|^{p}} |v^{+}|^{p} dx}{\int_{\Omega} (v^{+})^{p} V_{b} dx} < \lambda_{2}(V_{a}),
\frac{\int_{\Omega} |\nabla v^{-}|^{p} dx - \frac{\mu}{|x|^{p}} |v^{-}|^{p} dx}{\int_{\Omega} (v^{-})^{p} V_{b} dx} < \lambda_{2}(V_{a}).$$
(2.9)

Proof of Claim: Since u_a is an eigenfunction corresponding to $\lambda_2 > \lambda_1$, it has to change sign in Ω (see [6]). Let O_1 and O_2 be positive and negative nodal domains of u_a respectively such that

$$\int_{O_1} V_a \, (u_a^+)^p \, dx < \int_{O_1} V_b \, (u_a^+)^p \, dx \quad \text{and} \quad \int_{O_2} V_a \, (u_a^-)^p \, dx \le \int_{O_2} V_b \, (u_a^-)^p \, dx.$$

By Lemma 2.7, $u_a|_{O_1} \in D_0^{1,p}(O_1)$ and also in $L^p(O_1, V^-)$. We have

$$\lambda_1(O_1, V_b) \le \frac{\int_{O_1} |\nabla u_a|^p - \frac{\mu}{|x|^p} |u_a|^p}{\int_{O_1} |u_a|^p V_b} < \lambda_2(V_a).$$

Therefore, $\lambda_1(O_1, V_b) < \lambda_2(V_a)$. Similarly $\lambda_1(O_2, V_b) \leq \lambda_2(V_a)$. Now we modify O_1 and O_2 to get \tilde{O}_1 and \tilde{O}_2 with empty intersection and $\lambda_1(\tilde{O}_1, V_b) < \lambda_2(V_a)$ and $\lambda_1(O_2, V_b) < \lambda_2$. For $\eta > 0$, let $O_1(\eta) = \{x \in O_1 \mid dist(x, O_1^c) > \eta\}$. Then $\lambda_1(O_1(\eta), V_b) \geq \lambda_1(O_1, V_b)$ and $\lambda_1(O_1(\eta), V_b) \to \lambda_1(O_1, V_b)$ as $\eta \to 0$. Therefore, there exists $\eta_0 > 0$ such that $\lambda_1(O_1(\eta), V_b) < \lambda_2(V_a)$ for $0 < \eta < \eta_0$. Let $x \in \partial O_2 \cap \Omega$ and $0 < \eta < \min\{\eta_0, \operatorname{dist}(x_0, \Omega^c)\}$. Now define $O_2 = O_2 \cup B(x_0, \eta/2)$. Then $\tilde{O}_2 \cap O_1(\eta) = \emptyset, \ \lambda_1(\tilde{O}_2, V_b) < \lambda_1(O_2, V_b) < \lambda_2(V_a).$ Now we consider the function

 $v = v_1 - v_2$, where v_i are the extensions by zero outside \tilde{O}_i of the eigenfunctions associated to $\lambda_1(\tilde{O}_i, V_b)$. Then v satisfies (2.9).

Acknowledgements. The Author was supported by grant 40/1/2002-R&D-II/165 from the National Board for Higher Mathematics(NBHM), DAE, Govt. of India.

References

- L. Boccardo and F. Murat, Almost everywhere convergence of gradients of solutions to elliptic and parabolic equations, Nonlinear Analysis TMA Vol. 19, no.6, 581-597, 1992.
- H. Brezis and E. Lieb, A Relation between Point Convergence of Functions and Convergence of Functionals, Proc. AMS, Vol. 88, 486-490, 1983.
- M. Cuesta, D. de figueiredo and J.P. Gossez, The beginning of Fučik spectrum for p-Laplacian, Journal of Differential Equations, Vol. 159, 212-238, 1999.
- [4] E. Dibendetto, C^{1,α} local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis TMA, Vol. 7, 827-850, 1983.
- [5] K. Sreenadh, On the Fučik spectrum of Hardy-Sobolev Operator, Nonlinear Analysis TMA, Vol.51, 1167-1185, 2002.
- [6] K. Sreenadh, On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights, Electronic Journal of Differential equations, Vol.2002, no.33, 1-12, 2002.
- [7] M. Struwe, Variational Methods, Springer, Newyork 2000
- [8] A. Szulkin and M. Willem, Eigenvalue problems with indefinite weights, Stud. Math., Vol. 135, No. 2, 191-201, 1999.
- [9] M. Willem, Minimax methods, Birkhauser, Boston, 1996.

Konijeti Sreenadh

T.I.F.R. CENTRE, POST BOX NO.1234, BANGALORE-560012, INDIA *E-mail address:* srinadh@math.tifrbng.res.in