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MULTIPLE POSITIVE SOLUTIONS TO FOURTH-ORDER
SINGULAR BOUNDARY-VALUE PROBLEMS IN ABSTRACT

SPACES

YANSHENG LIU

Abstract. We prove the existence of multiple positive solutions to singular
boundary-value problems for fourth-order equations in abstract spaces. Our
results improve and extend that obtained in [14, 15, 16], even in the scalar
case.

1. Introduction

In this paper, we consider the following singular boundary-value problem (BVP)
for fourth-order differential equations in a Banach space E:

x(4)(t) = f(t, x(t)), 0 < t < 1 (1.1)

subject to the boundary conditions

x(0) = x(1) = x′′(0) = x′′(1) = 0, (1.2)

where f ∈ C[(0, 1)× P \ {θ}, P ] which may be singular at t = 0, t = 1, and x = θ;
P is a cone of Banach space E, which will be stated in detail in section 2; θ is the
zero element of E.

Boundary-value problems arise from applied mathematical sciences, and they
have received a great deal of attention in the literature. Problems of the form (1.1)
subject to (1.2), for example, are used to model such phenomena as the deflection
of an elastic beam supported at the endpoints. Most of the available literature on
fourth order boundary value problems, for instance [1, 2, 4, 5, 8, 9, 11], discuss
the case where f is either continuous or a Caratheodory function. Recently some
papers such as [14, 15, 16], by using approximating method or upper-lower solution
approach, investigate (1.1) with suitable boundary conditions in the case where f
may be singular at t = 0, t = 1, or x = 0. However, all of the above-mentioned
references consider (1.1) only in scalar space; and especially in the singular case,
[14, 15, 16] concentrate on the solvability of (1.1) subject to some suitable boundary
conditions, not the existence of multiple solutions for such problems. On the other
hand, the theory of ordinary differential equations (ODE) in abstract spaces is
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becoming an important branch of mathematics in last thirty years because of its
application in partial differential equations and ODE’s in appropriately infinite
dimensional spaces (see, for example [3, 10, 12]). As a result the goal of this paper
is to fill up the gap in this area, that is, to investigate the existence of multiple
positive solutions of (1.1) with (1.2) in a Banach space E.

The technique used in this paper are the well-known Krein-Rutman theorem,
a specially constructed cone, and the fixed point theorem of cone expansion and
compression. It is remarkable that neither approximating method nor upper-lower
solution approach is applied in present paper.

This paper is organized as follows. Section 2 gives some preliminaries and some
lemmas. Section 3 is devoted to the main result and its proof. Some examples are
worked out in Section 4 to indicate the application of our main result.

2. Preliminaries

Let E be a real Banach space with norm ‖·‖, and P ⊂ E be a cone which defines
a partial order relation ≤ by x ≤ y if and only if y − x ∈ P , x < y if and only if
x ≤ y and x 6= y, where x, y ∈ E. Also suppose P is a normal cone, that is, there
exists N > 0 such that ‖u‖ ≤ N‖v‖ if θ ≤ u ≤ v, where θ denotes the zero element
of E.

Evidently, C[I, E] is a Banach space with norm ‖x‖c := maxt∈I ‖x(t)‖. More-
over,

C[I, P ] := {x ∈ C[I, E] : x(t) ∈ P, t ∈ I}
is a normal cone of C[I, E] with the same normal constant N as P in E.

A function x is said to be a solution of (1.1) subject to (1.2) if x ∈ C2[I, E] ∩
C4[(0, 1), E] satisfies (1.1) and boundary conditions (1.2); in addition, x is said to
be a positive solution if x(t) > θ for t ∈ (0, 1) and x is a solution of (1.1) with (1.2).

Let u : (0, 1] → E be continuous. The abstract generalized integral
∫ 1

0
u(t)dt

is said to be convergent if the limit limε→0+

∫ 1

ε
u(t)dt exists. The convergency or

divergency of other kinds of generalized integrals can be defined similarly.
For a bounded subset V of Banach space E, by α(V ) we denote the Kuratowskii

measure of noncompactness of V (for details, see [3, 10]). In this paper, the Kura-
towskii measure of noncompactness of bounded set in E and C[I, E] are denoted
by α(·) and αc(·), respectively.

To conclude this section, we list three lemmas which will be used in Section 3.

Lemma 2.1 ([7]). If V ⊂ C[J,E] is bounded and equicontinuous, then α(V (t)) is
continuous on J and αc(V ) = max{α(V (t))|t ∈ J}, where V (t) = {x(t)|x ∈ V }.

Lemma 2.2 ([13]). Let K be a cone of a real Banach space E and B: K → K a
completely continuous operator. Assume that B is order-preserving and positively
homogeneous of degree 1 and that there exist v ∈ K \{θ}, λ > 0 such that Bv ≥ λv.
Then r(B) ≥ λ, where r(B) denotes the spectral radius of B.

Lemma 2.3 (Fixed point theorem of cone expansion and compression [7]). Let
P be a cone of a real Banach space E and Pr,s = {x ∈ P : r ≤ ‖x‖ ≤ s} with
s > r > 0. Suppose that A: Pr,s → P is a strict contraction such that one of the
following two conditions is satisfied:

(i) Ax 6≤ x for x ∈ P , ‖x‖ = r and Ax 6≥ x for x ∈ P , ‖x‖ = s.
(ii) Ax 6≥ x for x ∈ P , ‖x‖ = r and Ax 6≤ x for x ∈ P , ‖x‖ = s.
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Then, the operator A has a fixed point x ∈ P such that r < ‖x‖ < s.

3. Main Result

For convenience, we list the following assumptions:
(H0) f ∈ C[(0, 1)× P \ {θ}, P ] and satisfies

0 <
∫ 1

0

t(1− t)fr,R(t)dt < +∞, ∀R ≥ r > 0,

where for t ∈ (0, 1), z(t) := min{t, 1− t} and

fr,R(t) := sup{‖f(t, x)‖ :
z(t)
N

r ≤ ‖x‖ ≤ R, x ∈ P}.

(H1) For every [c, d] ⊂ (0, 1), and positive numbers R2 > R1 > 0, f(t, x) is
uniformly continuous on [c, d] × PR2 \ PR1 with respect to t. Here Pr =:
{x ∈ P : ‖x‖ < r} for each r > 0.

(H2) For every t ∈ (0, 1) and every bounded subsetD ⊂ PR2\PR1 (R2 > R1 > 0),
we have α(f(t,D)) ≤ lα(D), where l is a constant with l < 15.

(H3) There exist ϕ ∈ L[I,R+], [c, d] ⊂ [0, 1], and ϕ∗ ∈ P ∗ (here P ∗ denotes the
dual cone of P ) with ‖ϕ∗‖ = 1 such that

lim inf
x→θ, x∈P

ϕ∗(f(t, x)) ≥ ϕ(t)

uniformly with respect to t ∈ [c, d] and
∫ d

c
s(1− s)ϕ(s)ds > 0.

(H4) There exist functions a ∈ C[I,R+] and b ∈ C[I, P ] with a(t) 6≡ 0 on every
subinterval of I such that

f(t, x) ≥ a(t)x− b(t) for t ∈ (0, 1) and x ∈ P \ {θ}.

(H5) There exists a positive number R such that

N

∫ 1

0

s(1− s)fR,R(s)ds < 8R,

where fR,R(s) is the same as in (H0).
Note that assumption (H3) is reasonable since f(t, x) is singular at x = θ.
We assume that (H0) holds throughout the remainder of the paper. To overcome

the difficulties arising from singularities, we define

Q := {x ∈ C[I, P ] : x(t) ≥ z(t)x(s) ≥ θ, ∀t, s ∈ I}. (3.1)

It is easy to see that Q is a nonempty (notice t(1 − t) ∈ Q), convex, and closed
subset of C[I, E]. Furthermore, Q is a cone of the Banach space C[I, E] and for
every x ∈ Q \ {θ}, by (3.1) and the normality of the cone P , we have

‖x(t)‖ ≥ z(t)
N

‖x‖c > 0 for t ∈ (0, 1). (3.2)

Therefore, x is a positive solution of (1.1)-(1.2) provided that x ∈ Q \ {θ} is a
solution of (1.1)-(1.2).

Define the operator A on Q \ {θ} by

(Ax)(t) :=
∫ 1

0

J(t, τ)f(τ, x(τ))dτ, ∀x ∈ Q \ {θ}, (3.3)
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where J(t, τ) =
∫ 1

0
G(t, s)G(s, τ)ds and

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1;
s(1− t), 0 ≤ s ≤ t ≤ 1.

(3.4)

Now we show the operator A is well defined on Q \ {θ}. First we claim that for
each x ∈ Q \ {θ},

∫ 1

0
G(s, τ)f(τ, x(τ))dτ is convergent. In fact, since x ∈ Q \ {θ},

we can see by (3.2) that ‖x‖c 6= 0 and

z(t)
N

‖x‖c ≤ ‖x(τ)‖ ≤ ‖x‖c for each τ ∈ (0, 1).

This together with G(s, τ) ≤ τ(1 − τ) for all s, τ ∈ I and (H0) implies that∫ 1

0
G(s, τ)f(τ, x(τ))dτ is convergent and∫ 1

0

τ(1− τ)‖f(τ, x(τ))‖dτ < +∞ for each x ∈ Q \ {θ}.

The Lebesgue dominated convergence theorem yields that for every x ∈ Q \ {θ},∫ 1

0
G(s, τ)f(τ, x(τ))dτ is continuous in s on I. Therefore, by (3.3) we obtain that

Ax ∈ C2[I, P ] and

(Ax)(4)(t) = f(t, x(t)), 0 < t < 1;

(Ax)(0) = (Ax)(1) = (Ax)′′(0) = (Ax)′′(1) = 0.
(3.5)

Now we are in position to state the following lemma.

Lemma 3.1. The boundary-value problem (1.1)-(1.2) has a positive solution in
C2[I, P ] ∩ C4[(0, 1), P ] if and only if A has a fixed point x in Q \ {θ}.

Proof. From the above, sufficiency is evident. In what follows, we prove only ne-
cessity. Suppose x is a positive solution of (1.1)-(1.2), that is, x(t) > θ for t ∈ (0, 1)
and satisfies (1.1)-(1.2). Now we show x ∈ Q \ {θ}. To see this notice that

x(t) =
∫ 1

0

G(t, s)
∫ 1

0

G(s, τ)f(τ, x(τ))dτds for t ∈ I. (3.6)

This and

G(t, s)
G(ξ, s)

=



t(1−s)
ξ(1−s) ≥ t ≥ z(t), t, ξ ≤ s;
s(1−t)
s(1−ξ) ≥ 1− t ≥ z(t), t, ξ ≥ s;
t(1−s)
s(1−ξ) ≥ t ≥ z(t), t < s < ξ;
s(1−t)
ξ(1−s) ≥ 1− t ≥ z(t), t > s > ξ

(3.7)

yield

x(t) ≥ z(t)
∫ 1

0

G(ξ, s)
∫ 1

0

G(s, τ)f(τ, x(τ))dτ for t, ξ ∈ I,

which implies x ∈ Q\{θ}. On the other hand, it is easy to see by (3.6) that Ax = x.
This completes the proof. �

Consequently, the existence of positive solution for (1.2) is equivalent to that of
fixed point of A in Q\{θ}. By (3.5) and the process similar to the proof of Lemma
3.1, we also obtain the following Lemma.

Lemma 3.2. A(Q \ {θ}) ⊂ Q.
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Lemma 3.3. For every pair of positive numbers R2 and R1 with R2 > R1 > 0, A :
QR2 \QR1 → Q is a strict set contraction, where Qr := {x ∈ Q : ‖x‖c < r}(r > 0).

Proof. First, under the assumptions for R2 and R1, (H0) guarantees that for each
x ∈ QR2 \QR1 ,∫ 1

0

τ(1− τ)‖f(τ, x(τ))‖dτ ≤
∫ 1

0

τ(1− τ)fR1,R2(τ)dτ < +∞ (3.8)

which implies A: QR2 \QR1 → Q is bounded.
Next we show A: QR2 \QR1 → Q is continuous. To see this from (3.3) it follows

that for x ∈ QR2 \QR1 and t1, t2 ∈ I,

‖(Ax)(t1)− (Ax)(t2)‖ ≤
∫ 1

0

|G(t1, s)−G(t2, s)|ds
∫ 1

0

G(s, τ)‖f(τ, x(τ))‖dτ. (3.9)

This and (3.8) yield that for every subset V ⊂ QR2 \QR1 , (AV )(t) is equicontinuous
on I, where (AV )(t) = {(Ax)(t) : x ∈ V }, t ∈ I.

Let xn, x ∈ QR2 \QR1 with ‖xn − x‖c → 0 as n→ +∞ . This implies

‖xn(t)− x(t)‖ → 0 as n→ +∞ for t ∈ I.

From Lebesgue dominated convergence theorem and (3.8), it follows that

‖(Axn)(t)− (Ax)(t)‖ → 0 as n→ +∞.

Thus, {(Axn)(t)} is relatively compact for every t ∈ I. From this and the equiconti-
nuity of {Axn(t)} by the Ascoli-Arzela theorem, we obtain that {Axn} is a relatively
compact subset of Q.

Now it remains to show ‖Axn − Ax‖c → 0 as n → +∞. In fact, if this is
not true, then there is a constant ε0 > 0 and a subsequence {xni

} of {xn} such
that ‖Axni

− Ax‖c ≥ ε0 (i = 1, 2, . . . ). However, the relative compactness of
{Axn} implies that {Axni} contains a subsequence which converges in C[I, P ].
Without loss of generality, we may assume that {Axni} itself converges to y, that
is, ‖Axni

− y‖c → 0 as i → +∞. So we have y = Ax. This is a contradiction.
Therefore, A is continuous.

Finally, we show A: QR2 \ QR1 → Q is a strict set contraction, that is, there
exists k ∈ (0, 1) such that αc(AV ) ≤ kαc(V ) for each V ⊂ QR2 \ QR1 . Fix
V ⊂ QR2 \QR1 . Let

(Anx)(t) :=
∫ 1−(1/n)

1/n

J(t, s)f(s, x(s))ds for x ∈ V. (3.10)

By (3.8) we know

(Anx)(t) → (Ax)(t) as n→ +∞ for each x ∈ V and t ∈ I. (3.11)

This implies

dH((AnV )(t), (AV )(t)) → 0 as n→ +∞ for each t ∈ I,

where dH(·, ·) denotes the Hausdorff metric. Thus, by the property of noncompact-
ness measure,

α((AnV )(t)) → α((AV )(t)) for t ∈ I. (3.12)
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In what follows, we estimate α((AnV )(t)) for each t ∈ I. Note that x(s) ≥
z(s)x(τ) ≥ θ for s, τ ∈ I and x ∈ V. Thus,

R1

nN
≤ ‖x‖c

nN
≤ ‖x(s)‖ ≤ R2 for s ∈ [

1
n
, 1− 1

n
].

By the definition of integration and (3.4), respectively, we have∫ 1−(1/n)

1/n

J(t, s)f(s, x(s))ds ∈ (1− 2
n

)co({J(t, s)f(s, x(s)) : s ∈ [
1
n
, 1− 1

n
]}

and

J(t, s) =
∫ 1

0

G(t, τ)G(τ, s)dτ ≤
∫ 1

0

τ2(1− τ)2dτ =
1
30

for all t, s ∈ I.

These, (H1), (H2), and Lemma 2.1 guarantee that

α((AnV )(t)) = α({
∫ 1−(1/n)

1/n

J(t, s)f(s, x(s))ds| x ∈ V })

≤ (1− 2
n

)α(co{J(t, s)f(s, x(s))| s ∈ [
1
n
, 1− 1

n
], x ∈ V })

≤ α({J(t, s)f(s, x(s))| s ∈ [
1
n
, 1− 1

n
], x ∈ V })

≤ 1
30
α({f(s, x(s))| s ∈ [

1
n
, 1− 1

n
], x ∈ V })

≤ 1
30
α(f(In × V (In)) ≤ 1

30
l · αV (In)) ≤ 1

15
lαc(V ),

(3.13)

where In = [ 1
n , 1−

1
n ] and V (In) = {x(s): x ∈ V, s ∈ In}. Combining Lemma 2.1

with (3.9), (3.12), and (3.13) again, one can obtain

αc(AV ) = max
t∈I

α((AV )(t)) ≤ 1
15
l · αc(V ).

This implies A is a strict set contraction with k = 1
15 l < 1 from QR2 \QR1 to Q. �

Using (H4), we define an operator L on C[I,R] by

(Lu)(t) :=
∫ 1

0

J(s, t)a(s)u(s)ds =
∫ 1

0

G(τ, t)
∫ 1

0

G(s, τ)a(s)u(s)dsdτ

for u ∈ C[I,R] where J is given by (3.4), and a is the same as in (H4).
It is easy to see L: C[I,R] → C[I,R] is a completely continuous positive opera-

tor. Note that if v(t) = t(1− t) on I, then ‖v‖c = 1
4 . By G(t, τ) ≥ tτ(1− t)(1− τ)

for t, τ ∈ I, we know

(Lv)(t) ≥
∫ 1

0

τ2(1− τ)2dτ
∫ 1

0

s2(1− s)2a(s)ds · v(t) = δ0v(t) for t ∈ I,

where δ0 = 1
30

∫ 1

0
s2(1−s)2a(s)ds > 0. From Lemma 2.2 it follows that the spectral

radius r(L) ≥ δ0 > 0. So the well-known Krein-Rutman theorem [13] guarantees
that there exists an p ∈ C[I,R+] with p(t) 6≡ 0 on I such that

(Lp)(t) =
∫ 1

0

J(s, t)a(s)p(s)ds = r(L)p(t) for t ∈ I. (3.14)
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From (3.7) one deduces that

p(t) =
1

r(L)

∫ 1

0

(
∫ 1

0

G(s, τ)G(τ, t)dτ)a(s)p(s)ds

≥ 1
r(L)

∫ 1

0

z(s)
∫ 1

0

G(ξ, τ)G(τ, t)dτ)a(s)p(s)ds

≥ 1
r(L)

∫ 1

0

z(s)a(s)p(s)ds · J(ξ, t) for all t, ξ ∈ I.

Therefore,
p(t) ≥ δJ(ξ, t) for all t, ξ ∈ I, (3.15)

where δ := 1
r(L)

∫ 1

0
z(s)a(s)p(s)ds. This and (3.14) guarantees that∫ 1

0

p(t)a(t)dt ≥ δr(L). (3.16)

Now we are ready to give the main result of the present paper.

Theorem 3.4. Assume that (H0)–(H5) hold and r(L) > 1. Then (1.1) subject to
(1.2) has at least two positive solutions.

Proof. Set

K := {x ∈ Q :
∫ 1

0

p(t)a(t)x(t)dt ≥ δr(L)x(s), ∀s ∈ I}, (3.17)

where Q is given by (3.1), a(t) is given by (H4), p(t), r(L), and δ are given by
(3.14) and (3.15).

By (3.16) it is easy to see K \ {θ} 6= ∅ and K is also a cone of C[I, E]. We
now prove that the operator A defined by (3.3) maps Q \ {θ} into K. In fact, for
x ∈ Q \ {θ}, it follows from (3.3), (3.15), and (3.2) that∫ 1

0

p(t)a(t)(Ax)(t)dt =
∫ 1

0

p(t)a(t)
∫ 1

0

J(t, s)f(s, x(s))dsdt

= lim
n→+∞

∫ 1

0

p(t)a(t)
∫ 1−(1/n)

1/n

J(t, s)f(s, x(s))dsdt

= lim
n→+∞

∫ 1−(1/n)

1/n

f(s, x(s))ds
∫ 1

0

J(t, s)a(t)p(t)dt

= r(L) lim
n→+∞

∫ 1−(1/n)

1/n

p(s)f(s, x(s))ds

≥ δr(L) lim
n→+∞

∫ 1−(1/n)

1/n

J(τ, s)f(s, x(s))ds

= δr(L) lim
n→+∞

∫ 1

0

J(τ, s)f(s, x(s))ds

= δr(L)(Ax)(τ) for all τ ∈ I,

which implies A(Q\{θ}) ⊂ K. Consequently, we obtain by Lemma 3.2 and Lemma
3.3 that A : KR2 \ KR1 → K is a strict set contraction for every pair of positive
numbers R2 and R1 with R2 > R1 > 0, where KR1 = {x ∈ K : ‖x‖c < R1}.
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Choose a positive number R0 with R0 > R such that

R0 >
N‖b‖c

30δ(r(L)− 1)

∫ 1

0

a(t)p(t)dt.

We proceed to prove
Ax 6≤ x for all x ∈ ∂KR0 . (3.18)

Suppose, on the contrary, there exists an x0 ∈ ∂KR0 such that Ax0 ≤ x0. Therefore,

x0(t) ≥ (Ax0)(t) =
∫ 1

0

J(t, s)f(s, x0(s))ds for all t ∈ I.

Multiply by p(t)a(t) and integrate from 0 to 1 to obtain∫ 1

0

p(t)a(t)x0(t)dt ≥
∫ 1

0

p(t)a(t)
∫ 1

0

J(t, s)f(s, x0(s))dsdt

≥
∫ 1

0

p(t)a(t)
∫ 1

0

J(t, s)a(s)x0(s)dsdt−
∫ 1

0

∫ 1

0

J(t, s)a(t)p(t)b(s)dsdt

=
∫ 1

0

(
∫ 1

0

J(t, s)a(t)p(t)dt)a(s)x0(s)ds−
∫ 1

0

∫ 1

0

J(t, s)a(t)p(t)b(s)dsdt

= r(L)
∫ 1

0

p(s)a(s)x0(s)ds−
∫ 1

0

∫ 1

0

J(t, s)a(t)p(t)b(s)dsdt.

This and (3.17) yield∫ 1

0

∫ 1

0

J(t, s)a(t)p(t)b(s)dsdt ≥ (r(L)− 1)
∫ 1

0

p(s)a(s)x0(s)ds

≥ (r(L)− 1)δx0(τ) ≥ θ for all τ ∈ I.

The normality of the cone P and |J(t, s)| ≤ 1
30 for all t, s ∈ I guarantee that

N‖b‖c

30

∫ 1

0

a(t)p(t)dt ≥ δ(r(L)− 1)R0.

This is a contradiction with the selection of R0. Consequently, (3.18) holds.
In what follows we show

Ax 6≥ x for all x ∈ ∂KR. (3.19)

If this is false, then there exists an x1 ∈ ∂KR such that x1 ≤ Ax1, that is,

θ ≤ x1(t) ≤ (Ax1)(t) for t ∈ I.

Since x1 ∈ K ⊂ Q, we get

x1(t) ≥ z(t)x1(τ) ≥ θ for t, τ ∈ I.

As a result,
z(t)
N

R =
z(t)
N

‖x1‖c ≤ ‖x1(t)‖ ≤ R for t ∈ I.

This implies
‖f(t, x1(t))‖ ≤ fR,R(t) for t ∈ (0, 1).
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Combining the above with (H5) we know

‖x1(t)‖ ≤ N‖(Ax1)(t)‖ ≤ N‖
∫ 1

0

J(t, s)f(s, x1(s))ds‖

≤ N

∫ 1

0

J(t, s)‖f(s, x1(s))‖ds

≤ N

∫ 1

0

J(t, s)fR,R(s)ds

≤ N

∫ 1

0

G(t, τ)(
∫ 1

0

s(1− s)fR,R(s)ds)dτ

≤ N

8

∫ 1

0

s(1− s)fR,R(s)ds < R for t ∈ I.

This is a contradiction. Then (3.19) follows. Finally, we prove that there exists a
positive number R′ with R′ < R such that

Ax 6≤ x for x ∈ ∂KR′ . (3.20)

In fact, by (H3), given ε ∈ (0,
∫ d

c
J( 1

2 , s)φ(s)ds), there exists an R′′ > 0 such that

φ∗(f(t, x(t)) ≥ φ(t)− ε for t ∈ [c, d] and x ∈ PR′′ \ {θ}. (3.21)

Choose

R′ := min
{R

2
, R′′,

∫ d

c

J(
1
2
, s)φ(s)ds− ε

}
. (3.22)

Now we are ready to prove (3.20) holds. Suppose, on the contrary, there exists an
x2 ∈ ∂KR′ such that Ax2 ≤ x2. Then by (3.2) we know

z(t)
N

R′ ≤ ‖x2(t)‖ ≤ R′ ≤ R′′ for t ∈ (0, 1).

This and (3.21) guarantee that

φ∗(x2(t)) ≥
∫ 1

0

J(t, s)φ∗(f(s, x2(s))ds

≥
∫ d

c

J(t, s)[φ(s)− ε]ds

>

∫ d

c

J(t, s)φ(s)ds− ε

2
for t ∈ (0, 1).

Consequently,

‖x2‖c ≥ φ∗(x2(
1
2
)) ≥

∫ d

c

J(
1
2
, s)φ(s)ds− ε

2
> R′.

This is a contradiction with x2 ∈ ∂KR′ . Then the conclusion follows from Lemma
2.3. �

Remark 3.5. If r(L) > 1 is replaced with
∫ 1

0
s2(1 − s)2a(s)ds > 30 in Theorem

3.4, the conclusion of Theorem 3.4 also holds. In fact, by v(t) = t(1 − t) ∈ Q and
G(t, s) ≥ ts(1− t)(1− s) for t, s ∈ I, and using the definition of the operator L, one
can obtain

Lv ≥ 1
30

∫ 1

0

s2(1− s)2a(s)ds · v.
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Then by Lemma 2.2, r(L) > 1 follows.

For the next theorem we replace (H4) by
(H’4) There exists an ψ∗ ∈ P ∗ with ‖ψ∗‖ = 1 and a subinterval [c′, d′] ⊂ (0, 1)

such that

lim
‖x‖→+∞, x∈P

ψ∗(f(t, x))
‖x‖

> µ

uniformly with respect to t ∈ [c′, d′], where

µ = N
(

min{c′, 1− d′} ·
∫ d′

c′
J(

1
2
, s)ds

)−1

.

Theorem 3.6. Assume that (H0)-(H3), (H’4), and (H5) hold. Then (1.1) subject
to (1.2) has at least two positive solutions.

Proof. Consider the operator A in Q \ {θ}, where Q is defined by (3.1). From
the proof of Theorem 3.4, it is not difficult to see that (3.19) and (3.20) hold for
x ∈ ∂QR′ and x ∈ ∂QR, respectively; where R′ is given by (3.22) and R is given
by (H5).

It remains to show that there exists a positive number R0 with R0 > R such
that (3.18) holds for x ∈ ∂QR0 . By (H’4), there exist an ε > 0 and an R1 > 0 such
that

ψ∗(f(t, x)) ≥ (µ+ ε)‖x‖ for t ∈ [c′, d′], x ∈ P, and ‖x‖ ≥ R1. (3.23)

Choose
R0 ≥ max

{
R+ 1,

NR1

min{c′, 1− d′}
}
.

We proceed to prove (3.18) holds for x ∈ ∂QR0 . If this is false, then there exists an
x0 ∈ ∂QR0 such that Ax0 ≤ x0. By (3.1) we know

x0(t) ≥ z(t)x0(s) ≥ min{c′, 1− d′} · x0(s) ≥ θ for t ∈ [c′, d′] and s ∈ I.
¿From the normality of the cone P it follows that

N‖x0(t)‖ ≥ min{c′, 1− d′} · ‖x0‖c = min{c′, 1− d′} ·R0 for t ∈ [c′, d′],

that is, ‖x0(t)‖ ≥ R1 for t ∈ [c, d′]. This, (3.23), and (3.3) guarantee that

R0 ≥ ψ∗(x0(
1
2
))

≥
∫ 1

0

J(
1
2
, s)ψ∗(f(s, x0(s))ds

≥
∫ d′

c′
J(

1
2
, s)(µ+ ε)‖x0(s)‖ds

≥ min{c′, 1− d′}
N

∫ d′

c′
J(

1
2
, s)(µ+ ε)R0ds > R0,

which is a contradiction. Then the statement of Theorem 3.6 follows. �

Corollary 3.7. Suppose (H0), (H1), (H2), and one of the following conditions are
satisfied:

(i) (H3) and (H5).
(ii) (H4), (H5), and r(L) > 1.
(iii) (H’4) and (H5).
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Then (1.1) subject to (1.2) has at least one positive solution.

Remark 3.8. By the same method used above, we can study the existence of mul-
tiple positive solutions of second order nonlinear singular boundary-value problems
in scalar or in abstract space.

4. Examples

Example 4.1. Consider the boundary-value problem consisting of a finite system
of fourth-order scalar nonlinear differential equations.

x(4)
n (t) =

1√
t(1− t)

(
x

3
2
n +

1
max1≤i≤m |xi|

)
, 0 < t < 1;

xn(0) = xn(1) = x′′n(0) = x′′n(1) = 0, (n = 1, 2, . . .m).
(4.1)

Claim: (4.1) has at least two positive solutions x∗(t) = (x∗1(t), x
∗
2(t), . . . x

∗
m(t)) and

x∗∗(t) = (x∗∗1 (t), x∗∗2 (t), . . . x∗∗m (t)) such that

0 < max
1≤i≤m, t∈[0,1]

|x∗i (t)| < 1 < max
1≤i≤m, t∈[0,1]

|x∗∗i (t)|.

Proof. Let E be the m-dimensional Euclidean space Rm = {x = (x1, x2, . . . xm)}
with norm ‖x‖ = max1≤i≤m |xi| and

P = {x = (x1, x2, . . . xm) : xn ≥ 0 for n = 1, 2, . . .m}.

Then P is a normal cone in E, P ∗ = P and the normal constant is N = 1. System
(4.1) can be regarded as a boundary-value problem of form (1.1) subject to(1.2),
where x = (x1, x2, . . . xm),

f(t, x) = (f1(t, x1, . . . xm), . . . , fn(t, x1, . . . xm), . . . , fm(t, x1, . . . xm))

with

fn(t, x1, . . . xm) :=
1√

t(1− t)

(
x3/2

n +
1

max1≤i≤m |xi|
)
.

Evidently, f ∈ C[(0, 1) × P \ {θ}, P ] and is singular at t = 0, t = 1, and x = θ =
(0, 0, . . . , 0). Notice that

fr,R(t) ≤ 1√
t(1− t)

(
R

3
2 +

1
rt(1− t)

)
for t ∈ (0, 1) and R ≥ r > 0

and ∫ 1

0

t(1− t)f1,1(t)dt ≤
∫ 1

0

[
√
t(1− t) +

1√
t(1− t)

]dt < (
1
8

+ π) < 8.

Therefore, by Theorem 3.4 or Theorem 3.6, our conclusion follows. �

Example 4.2. Consider the boundary-value problem consisting of an infinite sys-
tem of fourth order scalar nonlinear differential equations.

x(4)
n (t) = fn(t, x(t)), t ∈ (0, 1);

xn(0) = xn(1) = x′′n(0) = x′′n(1) = 0, (n = 1, 2, . . . ).
(4.2)
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where

f1(t, x) =
1√

t(1− t)

(
x1 +

x2

2
+ (

∑
i≥1

|xi|)2 + b1
)
,

f2(t, x) =
1√

t(1− t)

(x2

2
+
x3

3
+

1∑
i≥1 |xi|

+ b2
)
,

fn(t, x) =
1√

t(1− t)

(xn

n
+
xn+1

n+ 1
+ bn

)
, n = 3, 4, . . . ;

x = (x1, x2, . . . ), bi ≥ 0 (i = 1, 2, . . . ),
∑
i≥1

bi ≤ 1.

Claim: System (4.2) has at least two positive solutions x∗(t) = (x∗1(t), x
∗
2(t), . . . )

and x∗∗(t) = (x∗∗1 (t), x∗∗2 (t), . . . ) such that

0 <
∑

1≤i, t∈[0,1]

|x∗i (t)| < 1 <
∑

1≤i, t∈[0,1]

|x∗∗i (t)|.

Proof. Let E = l1 with norm ‖x‖ =
∑

i≥1 |xi| and

P = {x = (x1, x2, . . . ) : xn ≥ 0 for n = 1, 2, . . . }.
Then P is a normal cone in E and the normal constant is N = 1. System (4.2)
can be regarded as a boundary-value problem form (1.1) with (1.2), where x =
(x1, x2, . . . ),

f(t, x) = (f1(t, x1, . . . ), . . . , fn(t, x1, . . . ), . . . , ).
Evidently, f ∈ C[(0, 1) × P \ {θ}, P ] and is singular at t = 0, t = 1, and x = θ =
(0, 0, . . . , ). Note that for t ∈ (0, 1) and R ≥ r > 0,

fr,R(t) ≤ 1√
t(1− t)

(
2R+R2 +

1
rt(1− t)

+ ‖b‖
)

So, (H0) is satisfied. In addition, (H1) is obvious. As in [7, Example 2.1.2], one can
see (H2) is satisfied with l = 0. Choosing φ∗ = ψ∗ = (1, 1, 0, . . . , 0, . . . ), we know
that (H3) and (H’4) holds for (4.1). From∫ 1

0

s(1− s)f1,1(s)ds ≤
∫ 1

0

((3 + ‖b‖)
√
s(1− s) +

1√
s(1− s)

)ds ≤ (
4
8

+ π) < 8,

it follows that (H5) is satisfied. By Theorem 3.6, our conclusion follows. �
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