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CONCENTRATION PHENOMENA FOR FOURTH-ORDER
ELLIPTIC EQUATIONS WITH CRITICAL EXPONENT

MOKHLESS HAMMAMI

Abstract. We consider the nonlinear equation

∆2u = u
n+4
n−4 − εu

with u > 0 in Ω and u = ∆u = 0 on ∂Ω. Where Ω is a smooth bounded domain
in Rn, n ≥ 9, and ε is a small positive parameter. We study the existence of
solutions which concentrate around one or two points of Ω. We show that this

problem has no solutions that concentrate around a point of Ω as ε approaches
0. In contrast to this, we construct a domain for which there exists a family
of solutions which blow-up and concentrate in two different points of Ω as ε

approaches 0.

1. Introduction and statement of results

This paper concerns the concentration phenomena for the following nonlinear
equation under Navier boundary conditions:

∆2u = up − εu, u > 0 in Ω
∆u = u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in Rn, n ≥ 9, ε is a small positive parameter
and p + 1 = 2n/(n− 4) is the critical Sobolev exponent of the embedding H2(Ω)∩
H1

0 (Ω) ↪→ Lp+1(Ω).
In the last decades, there have been many works in the study of concentration

phenomena for second order elliptic equations with critical exponent; see for exam-
ple [1, 3, 6, 9, 10, 11, 12, 17, 18, 20, 21, 22, 23, 24, 25, 26] and the references therein.
In sharp contrast to this, very little is known for fourth order elliptic equations.

For ε = 0, the situation is complex, Van Der Vorst showed in [27] that if Ω is
starshaped (1.1) has no solution whereas Ebobisse and Ould Ahmedou proved in [13]
that (1.1) has a solution provided that some homology group of Ω is nontrivial. This
topological condition is sufficient, but not necessary, as examples of contractible
domains Ω on which a solution exists show [16]. For −λ1(Ω) < ε < 0, Van der Vost
has shown in [28] that (1.1) has a solution, generalizing to (1.1) the famous Brezis-
Nirenberg’s result [8] concerning the corresponding second order elliptic equation,
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where λ1(Ω) denotes the first eigenvalue of ∆2 under the Navier boundary condition.
Recently, also for ε < 0, El Mehdi and Selmi [15] have constructed a solution of
(1.1) which concentrates around a critical point of Robin’s function,

However, as far as the author know, the case of ε > 0 has not been considered
before and this is precisely the first aim of the present paper. More precisely,
our goal is to study the existence of solutions of (1.1) which concentrate in one
or two points of Ω. The similar problems in the case of Laplacian have been
considered by Musso and Pistoia [22]. Compared with the second order case, further
technical problems arise which are overcome by careful and delicate expansions of
the Euler functional associated to (1.1) and its gradient near a neighborhood of
highly concentrated functions. Such expansions, which are of self interest, are
highly nontrivial and use the techniques developed by Bahri [2] and Rey [23] in the
framework of the Theory of critical points at infinity.

To state our results, we need to introduce some notations. We denote by G the
Green’s function of ∆2, that is, for all x ∈ Ω,

∆2G(x, .) = c′nδx in Ω

∆G(x, .) = G(x, .) = 0 on ∂Ω,

where δx denotes the Dirac mass at x and c′n = (n − 4)(n − 2)|Sn−1|. We also
denote by H the regular part of G, that is,

H(x, y) = |x− y|4−n −G(x, y), for (x, y) ∈ Ω× Ω.

For λ > 0 and x ∈ Rn, let

δx,λ(y) =
cnλ

n−4
2

(1 + λ2|y − x|2)n−4
2

, cn = [(n− 4)(n− 2)n(n + 2)](n−4)/8 . (1.2)

It is well known [19] that δx,λ are the only solutions of

∆2u = u
n+4
n−4 , u > 0 in Rn

with u ∈ Lp+1(Rn) and ∆u ∈ L2(Rn). They are also the only minimizers of the
Sobolev inequality on the whole space; that is,

S = inf{‖∆u‖2L2(Rn)‖u‖
−2

L
2n

n−4 (Rn)
: ∆u ∈ L2, u ∈ L

2n
n−4 , u 6= 0}. (1.3)

We denote by Pδx,λ the projection of the δx,λ’s onto H2(Ω) ∩H1
0 (Ω), defined by

∆2Pδx,λ = ∆2δx,λ in Ω and ∆Pδx,λ = Pδx,λ = 0 on ∂Ω,

and we set
ϕx,λ = δx,λ − Pδx,λ.

The space H(Ω) := H2(Ω) ∩H1
0 (Ω) is equipped with the norm ‖ · ‖ and its corre-

sponding inner product (., .) defined by

‖u‖ =
( ∫

Ω

|∆u|2
)1/2

, u ∈ H(Ω), (1.4)

(u, v) =
∫

Ω

∆u∆v, u, v ∈ H(Ω). (1.5)

For x ∈ Ω, λ > 0, let

Ex,λ = {v ∈ H(Ω) : (v, Pδx,λ) = (v,
∂Pδx,λ

∂λ
) = (v,

∂Pδx,λ

∂xj
) = 0, j = 1, . . . , n},
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where the xj is the j-th component of x.
Now we state our first result.

Theorem 1.1. There does not exist any solution of (1.1) of the form

uε = αεPδxε,λε
+ vε, (1.6)

where

vε ∈ Exε,λε , xε ∈ Ω and as ε→ 0, αε → 1, ‖vε‖ → 0, λεd(xε, ∂Ω)→ +∞.
(1.7)

On the contrary, if Ω is a domain with small “hole”, we prove the existence of a
family of solutions which blow-up and concentrate in two points. Namely, we have
the following result.

Theorem 1.2. Let D be a bounded smooth domain in Rn which contains the origin
0. There exists r0 > 0 such that, if 0 < r < r0 is fixed and Ω is the domain given by
D\ω for any smooth domain ω ⊂ B(0, r), then there exists ε0 > 0 such that problem
(1.1) has a solution uε for any 0 < ε < ε0. Moreover, the family of solutions uε

blows-up and concentrates at two different points of Ω in the following sense:

uε =
2∑

i=1

αε
i Pδxε

i ,λε
i
+ vε,

where λε
1, λε

2 > 0, xε
1, xε

2 ∈ Ω with limε→0 xε
i = xi ∈ Ω, x1 6= x2, λε

1 and λε
2 are of

order ε−1/(n−8), vε ∈ Exε
1,λε

1
∩ Exε

2,λε
2

and as ε→ 0, αε
i → 1, ‖vε‖ → 0.

Note that the construction of solutions which concentrate around k different
points of Ω, with k ≥ 2 is related to suitable critical points of the function Ψk :
Rk

+ × Ωk → R defined by

Ψk(Λ, x) =
1
2
(M(x)Λ,Λ) +

1
2

k∑
i=1

Λ
8

n−4
i ,

where Λ =T (Λ1, . . . ,Λk) and M(x) = (mij(x))1≤i,j≤k is the matrix defined by

mii = H(xi, xi), mij = −G(xi, xj) for i 6= j. (1.8)

Let ρ(x) be the least eigenvalue of M(x) and e(x) the eigenvector corresponding to
ρ(x) whose norm is 1 and whose components are all strictly positive (see Appendix
A of [3]). Now, we define the following subset of H(Ω)

Mε ={m = (α, λ, x, v) ∈ Rk × (R∗
+)k × Ωk

d0
×H(Ω) : |αi − 1| < ν0,

λi >
1
ν0
∀i, λi

λj
< c0, |xi − xj | > d′0 ∀i 6= j, v ∈ E, ‖v‖ < ν0}.

where ν0, c0, d0, d′0 are some suitable positive constants, Ωd0 = {x ∈ Ω : d(x, ∂Ω) >

d0} and E =
⋂k

i=1 Exi,λi
. Then, we have the following necessary condition.

Theorem 1.3. Assume that uε is a solution of (1.1) of the form

uε =
k∑

i=1

αε
i Pδxε

i ,λε
i
+ vε, (1.9)

where (αε, λε, xε, vε) ∈ Mε, then, when ε → 0, αε
i → 1, xε

i → xi for i = 1, . . . , k
and we have either ρ(x) = 0 and ρ′(x) = 0 or ρ(x) < 0 and (Λ, x) is a critical point
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of Ψk, where Λi = cµi, with µi = limε→0 ε
−1

n−8 λε
i > 0 for i = 1, . . . , k and c is a

positive constant.

The proof of our results is inspired by the methods of [2, 3, 5, 14, 22]. In Section
2, we develop the technical framework needed in the proofs of ours results. Section
3 is devoted to the proof of Theorems 1.1 and 1.3, while Theorem 1.2 is proved in
Section 4.

2. The Technical Framework

First of all, let us introduce the general setting. For ε > 0, we define on H(Ω)
the functional

Jε(u) =
1
2

∫
Ω

|∆u|2 − 1
p + 1

∫
Ω

|u|p+1 +
ε

2

∫
Ω

u2. (2.1)

If u is a positive critical point of Jε, u satisfies on Ω the equation (1.1). Conversely,
we see that any solution of (1.1) is a critical point of Jε.

Let us define the functional

Kε :Mε → R, Kε(α, λ, x, v) = Jε(
k∑

i=1

αiPδxi,λi
+ v). (2.2)

Note that (α, λ, x, v) is a critical point of Kε if and only if u =
∑k

i=1 αiPδxi,λi
+ v

is a critical point of Jε, i.e. if and only if there exist Ai, Bi, Cij ∈ R, 1 ≤ i ≤ k and
1 ≤ j ≤ n, such that

∂Kε

∂αi
= 0 ∀i, (2.3)

∂Kε

∂λi
= Bi

(∂2Pδxi,λi

∂λ2
i

, v
)

+
n∑

j=1

Cij

( ∂2Pδxi,λi

∂(xi)j∂λi
, v

)
∀i, (2.4)

∂Kε

∂(xi)r
= Bi

( ∂2Pδxi,λi

∂λi∂(xi)r
, v

)
+

n∑
j=1

Cij

( ∂2Pδxi,λi

∂(xi)j∂(xi)r
, v

)
∀r, ∀i, (2.5)

∂Kε

∂v
=

k∑
i=1

(
AiPδxi,λi

+ Bi
∂Pδxi,λi

∂λi
+

n∑
j=1

Cij
∂Pδxi,λi

∂(xi)j

)
, (2.6)

where the (xi)r is the r-th component of xi. As usual in this type of problems, we
first deal with the v-part of u, in order to show that it is negligible with respect to
the concentration phenomenon. Namely, we prove the following.

Proposition 2.1. There exists ε1 > 0 such that, for 0 < ε < ε1, there exists a
C1-map which to any (α, λ, x) with (α, λ, x, 0) ∈Mε, associates vε = v(ε,α,λ,x) ∈ E,
‖vε‖ < ν0, such that (2.6) is satisfied for some (A,B, C) ∈ Rk ×Rk × (Rn)k. Such
a vε is unique, minimizes Kε(α, λ, x, v) with respect to v in E and we have the
estimate

‖vε‖ = O
( k∑

i=1

( (log λi)
n+4
2n

λ
n+4

2
i

+(if n ≥ 12)
ε(log λi)

n+4
2n

λ4
i

+(if n < 12)(
ε

λ
n−4

2
i

+
1

λn−4
i

)
))
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Proof. As in [2] (see also [23]) we write

Kε(α, λ, x, v)

= Jε(
k∑

i=1

αiPδxi,λi + v)

=
1
2
‖

k∑
i=1

αiPδxi,λi
+ v‖2 − 1

p + 1

∫
Ω

|
k∑

i=1

αiPδxi,λi
+ v|p+1

+
ε

2

∫
Ω

( k∑
i=1

αiPδxi,λi + v
)2

= Kε(α, λ, x, 0)− (fε, v) +
1
2
Qε(v, v) + O

(
‖v‖min(3,p+1) + ε‖v‖2

)
,

(2.7)

where

(fε, v) =
∫

Ω

|
k∑

i=1

αiPδxi,λi
|pv − ε

∫
Ω

( k∑
i=1

αiPδxi,λi

)
v,

Qε(v, v) = ‖v‖2 − p

∫
Ω

(
k∑

i=1

αiPδxi,λi)
p−1v2 = ‖v‖2 − p

k∑
i=1

∫
Ω

δp−1
xi,λi

v2 + o(‖v‖2).

According to [4], there exists a positive constant c such that

‖v‖2 − p
k∑

i=1

∫
Ω

δp−1
xi,λi

v2 ≥ c‖v‖2, ∀v ∈ E. (2.8)

Now, we will estimate (fε, v). Using the fact that (Pδxi,λi , v) = 0, we obtain∫
Ω

|
k∑

i=1

αiPδxi,λi |pv

= O
( ∑

i

∫
Bi∪Bc

i

δp−1
xi,λi

ϕxi,λi
|v|+

∑
j 6=i

∫
Bi∪Bc

i

χPδj≤Pδi
Pδp−1

xi,λi
Pδxj ,λj

|v|
)

= O
( ∑

i,j

( 1

λ
(n−4)/2
j

∫
Bi

δp−1
xi,λi
|v|+

∫
Bc

i

δp
xi,λi
|v|

))
,

(2.9)

where Bi = {y : |y − xi| < d0/2}. Then using the Holder’s inequality we have∫
Ω

|
k∑

i=1

αiPδxi,λi
|pv = O

(
‖v‖

k∑
i=1

( (log λi)(n+4)/2n

λ
(n+4)/2
i

+ (if n < 12)
1

λn−4
i

))
. (2.10)

For the second integral, using the Holder’s inequality we have∫
Ω

Pδxi,λiv = O
(
‖v‖

( ∫
Ω

δ
2n/(n+4)
xi,λi

)(n+4)/2n)
= O

(
(if n ≥ 12)

‖v‖(log λi)(n+4)/2n

λ4
i

+ (if n < 12)
‖v‖

λ
(n−4)/2
i

)
.

(2.11)
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It follows from (2.10) and (2.11) that

(fε, v) = O
[
‖v‖

k∑
i=1

( (log λi)
n+4
2n

λ
n+4

2
i

+ (if n ≥ 12)
ε(log λi)

n+4
2n

λ4
i

+ (if n < 12)(
ε

λ
n−4

2
i

+
1

λn−4
i

)
)]

.

(2.12)

Using (2.8) and the implicit function theorem, we derive the existence of C1-map
which to (α, λ, x) associates vε ∈ E, such that vε minimizes Kε(α, λ, x, v) with
respect to v ∈ E and

‖vε‖ = O(‖fε‖).
Thus the estimate of Proposition 2.1 follows from (2.12). �

Next, we prove a useful expansion of the derivative of the function Kε associated
to (1.1), with respect to αi, λi, xi. For sake of simplicity, we will write δi instead
of δxi,λi

.

Lemma 2.2. Assume that (α, λ, x, v) ∈Mε and let v := vε be the function obtained
in Proposition 2.1. Then the following expansions hold
(1)

∂Kε

∂αi
(α, λ, x, v) = Snαi

(
1− α

8/(n−4)
i

)
+ O

( ε

λ4
i

+
1

λn−4
i

)
,

(2)

λi
∂Kε

∂λi
(α, λ, x, v)

= −2αic4
ε

λ4
i

+ αi(1− 2α
8/(n−4)
i )

c2(n− 4)H(xi, xi)
2λn−4

i

− c2

∑
j 6=i

n− 4
2

αj

(
1− α

8/(n−4)
j − α

8/(n−4)
i

) G(xi, xj)
(λiλj)(n−4)/2

+ O
( ε

λn−4
i

+
1

λn−2
i

+ (if n ≥ 12)
ε2(log λi)

n+4
n

λ8
i

+ (if n < 12)
ε2

λn−4
i

)
,

(3)

1
λi

∂Kε

∂xi
(α, λ, x, v)

= αi(2α
8

n−4
i − 1)

c2

2λn−3
i

∂H(xi, xi)
∂xi

+ c2

∑
j 6=i

αj(1− α
8/(n−4)
j − α

8/(n−4)
i )

1

λ
(n−2)/2
i λ

(n−4)/2
j

∂G(xi, xj)
∂xi

+ O
( ε

λn−3
i

+
1

λn−2
i

+ (if n ≥ 12)
ε2(log λi)

n+4
n

λ8
i

+ (if n < 12)
ε2

λn−4
i

)
,

where

Sn =
∫

Rn

δ
2n/(n−4)
o,1 dy, c2 = c2n/(n−4

n

∫
Rn

1
(1 + |y|2)(n+4)/2

dy, c4 =
∫

Rn

δ2
o,1dy.
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Proof. To prove Claim 1, we write

∂Kε

∂αi
(α, λ, x, v)

=
∑

αj

(
Pδj , P δi

)
−

∫
Ω

(∑
αjPδj + v

) n+4
n−4 Pδi + ε

∫
Ω

(
∑

αjPδj + v)Pδi

= αi

(
Pδi, P δi

)
− α

n+4
n−4
i

∫
Ω

Pδ
2n

n−4
i − n + 4

n− 4
α

8
n−4
i

∫
Ω

Pδ
n+4
n−4
i v

+ O
( ∑

j 6=i

∫
Ω

δ
(n+4)/(n−4)
j δi +

∑
j 6=i

ε

∫
Ω

δiδj + ‖v‖2 + ε

∫
Ω

δ2
i + ε

∫
Ω

δi|v|
)
.

Using [7, Proposition 2.1], we have ϕi = cn
H(xi,.)

λ
(n−4)/2
i

+ O

(
1

λ
n/2
i

)
. A computation

similar to the one performed in [2] and [23] shows that

(
Pδi, P δi

)
= Sn − c2

H(xi, xi)
λn−4

i

+ O
( 1
λn−2

i

)
, (2.13)∫

Ω

Pδ
2n

n−4
i = Sn −

2n

n− 4
c2

H(xi, xi)
λn−4

i

+ O

(
1

λn−2
i

)
, (2.14)

(
Pδi, P δj

)
= c2

(
εij −

H(xi, xj)
(λiλj)(n−4)/2

)
+ O

( ∑
k=i,j

1
λn−2

k

)
for i 6= j, (2.15)∫

Ω

PδiPδ
n+4
n−4
j =

(
Pδi, P δj

)
+ O

( ∑
k=i,j

1
λn−2

k

)
for i 6= j, (2.16)

where εij =
(
λi/λj + λj/λi + λiλj |xi − xj |2

)(4−n)/2. Using the fact that n ≥ 9
then ∫

Ω

δ2
i =

c4

λ4
i

+ O
( 1
λn−4

i

)
, (2.17)∫

Ω

δiδj = O
( 1
(λiλj)(n−4)/2

)
for i 6= j. (2.18)

From (2.10), (2.11), (2.13)–(2.18) and Proposition 2.1, Claim 1 follows.
Now, we prove Claim 2. As in Claim 1 we have

λi
∂Kε

∂λi
(α, λ, x, v)

=
∑

αj

(
Pδj , λi

∂Pδi

∂λi

)
−

∫
Ω

(∑
αjPδj + v

) n+4
n−4 λi

∂Pδi

∂λi

+ ε

∫
Ω

(
∑

αjPδj + v)λi
∂Pδi

∂λi

=
∑

αj

(
Pδj , λi

∂Pδi

∂λi

)
−

∫
Ω

(∑
αjPδj

) n+4
n−4 λi

∂Pδi

∂λi

− n + 4
n− 4

∫
Ω

(∑
αjPδj

) 8
n−4 λi

∂Pδi

∂λi
v + ε

∫
Ω

(
∑

αjPδj + v)λi
∂Pδi

∂λi
+ O(‖v‖2).

(2.19)
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Note that∫
Ω

(∑
αjPδj

) 8
n−4 λi

∂Pδi

∂λi
v =

∫
Ω

(
αiPδi

) 8
n−4 λi

∂Pδi

∂λi
v + O

( ∑
k 6=j

∫
δk≤δj

δ
8

n−4
j δk|v|

)
.

(2.20)
Using the fact that v ∈ E, we have∫

Ω

Pδ
8

n−4
i λi

∂Pδi

∂λi
v = O

( ∫
Ω

δ
8

n−4
i

λ
n−4

2
i

|v|
)

= O
(‖v‖(log λi)

n+4
2n

λ
n+4

2
i

+ (if n < 12)
‖v‖
λn−4

i

)
,

(2.21)
and for n ≥ 8, we have 8

n−4 ≤ 2, then we obtain∫
δk≤δj

δ
8

n−4
j δk|v| = O

( ∫
δ

8
n−4
j |v|2 +

∫
δk≤δj

δ
8

n−4
j δ2

k

)
= O

(
‖v‖2 +

∫
Ω

(δjδk)
n

n−4

)
= O

( 1
(λjλk)(n−1)/2

+ ‖v‖2
) (2.22)

where we have used
∫
Ω
(δiδj)

n
n−4 = O

(
ε

n
n−4
ij log ε−1

ij

)
. Observe that

(∑
αjPδj

) n+4
n−4

=
∑(

αjPδj

) n+4
n−4 +

n + 4
n− 4

∑
j 6=i

(
αiPδi

) 8
n−4 αjPδj

+ O
( ∑

j 6=i

Pδ
8

n−4
j PδiχPδi≤

∑
j 6=i Pδj

+
∑
j 6=i

Pδ
12−n
n−4

i Pδ2
j χPδj≤Pδi

+
∑

k 6=j,k,j 6=i

Pδ
8

n−4
j Pδk

)
.

(2.23)

Using [7, Proposition 2.1], we have λi
∂ϕi

∂λi
= −cn

n−4
2

H(xi,.)

λ
(n−4)/2
i

+ O
(

1

λ
n/2
i

)
. A compu-

tation similar to the one performed in [2] and [23] shows that(
Pδi, λi

∂Pδi

∂λi

)
=

n− 4
2

c2
H(xi, xi)

λn−4
i

+ O
( 1
λn−2

i

)
, (2.24)∫

Ω

Pδ
n+4
n−4
i λi

∂Pδi

∂λi
= (n− 4)c2

H(xi, xi)
λn−4

i

+ O
( 1
λn−2

i

)
. (2.25)

For i 6= j, we have(
Pδj , λi

∂Pδi

∂λi

)
= c2

(
λi

∂εij

∂λi
+

n− 4
2

H(xi, xj)
(λiλj)(n−4)/2

)
+ O

( ∑
k=i,j

1
λn−2

k

)
, (2.26)∫

Ω

Pδ
n+4
n−4
j λi

∂Pδi

∂λi
=

(
Pδj , λi

∂Pδi

∂λi

)
+ O

( ∑
k=i,j

1
λn−2

k

)
, (2.27)

∫
Ω

Pδjλi
∂(Pδi)

n+4
n−4

∂λi
=

(
Pδj , λi

∂Pδi

∂λi

)
+ O

( ∑
k=i,j

1
λn−2

k

)
. (2.28)
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We compute now the other integrals∫
Ω

Pδiλi
∂Pδi

∂λi

=
∫

Ω

(δi + ϕi)(λi
∂δi

∂λi
+ λi

∂ϕi

∂λi
)

=
∫

Ω

δiλi
∂δi

∂λi
+ O

(∫
ϕiδi +

∫
δiλi|

∂ϕi

∂λi
|
)

=
1
2
λi

∂

∂λi

( ∫
Rn

δ2
i

)
+ O(

1
λn−4

i

) + O
(( ∫

Bi

δi

)(
‖ϕi‖L∞ + ‖λi

∂ϕi

∂λi
‖L∞

))
=
−2c4

λ4
i

+ O
( 1
λn−4

i

)
,

(2.29)

∫
Ω

Pδjλi
∂Pδi

∂λi
= O

( ∫
Ω

δiδj

)
= O

( 1
(λiλj)(n−4)/2

)
for i 6= j, (2.30)

and as in (2.11)∫
Ω

λi
∂Pδi

∂λi
v = O

(
(if n ≥ 12)

‖v‖(log λi)(n+4)/2n

λ4
i

+ (if n < 12)
‖v‖

λ
(n−4)/2
i

)
. (2.31)

Using the fact that |xi − xj | > d′0 then

λi
∂εij

∂λi
= −n− 4

2
1

(λiλj |xi − xj |2)(n−4)/2
+ O

( ∑
k=i,j

1
λn−2

k

)
. (2.32)

The Claim 2 follows from Proposition 2.1 and (2.19)–(2.32).
Regarding Claim 3, its proof is similar to Claim 2, so we will omit it. �

Lemma 2.3. Assume that (α, λ, x, v) ∈Mε and let v := vε be the function obtained
in Proposition 2.1. Then the following expansion holds

Kε(α, λ, x, v)

=
Sn

2

( k∑
i=1

α2
i −

n− 4
n

k∑
i=1

αp+1
i

)
+

c2

2

k∑
i=1

α2
i

(
2αp−1

i − 1
) H(xi, xi)

λn−4
i

+
c2

2

∑
j 6=i

αiαj

(
1− 2αp−1

i

) G(xi, xi)
(λjλi)(n−4)/2

+
ε

2

k∑
i=1

α2
i

c4

λ4
i

+ O
( k∑

i=1

( ε

λn−4
i

+
1

λn−2
i

+ (if n ≥ 12)
ε2(log λi)

n+4
n

λ8
i

+ (if n < 12)
ε2

λn−4
i

))
.

Proof. Using (2.7) and Proposition 2.1, this lemma follows from (2.13)–(2.18). �

Let

M1
ε = {(λ, x) ∈ (R∗

+)k × Ωk
d0

: λi >
1
ν0
∀i, λi

λj
< c0, |xi − xj | > d′0 ∀i 6= j}.

For (λ, x) ∈M1
ε, our aim is to study the α-part of u. Namely, we prove the following

result.
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Proposition 2.4. There exists ε1 > 0 such that, for 0 < ε < ε1, there exists a
C1-map which to any (λ, x) ∈ M1

ε, associates α := α(ε,λ,x), which satisfies (2.3)
for each i and we have the following estimate

|αi − 1| = O
( ε

λ4
i

+
1

λn−4
i

)
.

Proof. Let βi = 1− αi. By Lemma 2.2, we have

8
n− 4

βiSn + O(β2
i ) = O

( ε

λ4
i

+
1

λn−4
i

)
,

then βi = O
(

ε
λ4

i
+ 1

λn−4
i

)
. On the other hand, we have

∂2Kε

∂αi∂αj
(α, λ, x, v) = (1− p)Snδj

i + o(1),

with δj
i the Kronecker symbol and o(1) tends to zero when ε → 0, where we have

used (2.13), (2.14), Proposition 2.1, the fact that ∂v/∂αi ∈ E and ‖∂v/∂αi‖ = o(1).
Using the implicit function theorem the proposition follows. �

3. Proof of Theorems 1.1 and 1.3

Proof of Theorem 1.3. Assume that uε is a family of solutions of (1.1) which has
the form (1.9) where (αε, λε, xε, vε) ∈ Mε. The result of the theorem will be
obtained through a careful analysis of (2.3), (2.4), (2.5) and (2.6). From Propo-
sition 2.1, there exists vε satisfying (2.6). We estimate now the corresponding
numbers Ai, Bi, Cij by taking the scalar product of (2.6) with Pδi, ∂Pδi/∂λi and
∂Pδi/∂(xi)r for i = 1, . . . , k and r = 1, . . . , n. Thus from the right side we get a
quasi-diagonal system whose coefficients are given by

(Pδi, P δj) = Snδj
i + O

( 1
λn−4

i

)
,
(∂Pδj

∂λj
, P δi

)
= O

( ∑
k=i,j

1
λn−3

k

)
,

( ∂Pδj

∂(xj)r
, P δi

)
= O

( ∑
k=i,j

1
λn−4

k

)
,
(∂Pδj

∂λj
,
∂Pδi

∂λi

)
=

n + 4
n− 4

Cn

λ2
i

δj
i + O

( ∑
k=i,j

1
λn−2

k

)
,

(∂Pδj

∂λj
,

∂Pδi

∂(xi)r

)
= O

( ∑
k=i,j

1
λn−3

k

)
,
(∂Pδi

∂xi
,
∂Pδj

∂xj

)
= O

( ∑
k=i,j

1
λn−5

k

)
for i 6= j,

( ∂Pδi

∂(xi)r
,

∂Pδi

∂(xi)j

)
=

n + 4
n− 4

C ′
nλ2

i δ
j
r + O

( 1
λn−5

i

)
,

where δj
i is the Kronecker symbol, Sn is defined in Lemma 2.2,

Cn =
(n− 4)2

4

∫
Rn

(1− |y|2)2

(1 + |y|2)n+2
dy and C ′

n =
(n− 4)2

4n

∫
Rn

|y|2

(1 + |y|2)n+2
dy .

The left side is given by(∂Kε

∂v
, Pδi

)
=

∂Kε

∂αi
,

(∂Kε

∂v
,
∂Pδi

∂λi

)
=

1
αi

∂Kε

∂λi
,

(∂Kε

∂v
,

∂Pδi

∂(xi)r

)
=

1
αi

∂Kε

∂(xi)r
.
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Let βi = 1− αi. By Lemma 2.2, we have
∂Kε

∂αi
(α, x, λ, vε) = O

(
|βi|+

ε

λ4
i

+
1

λn−4
i

)
,

∂Kε

∂λi
(α, x, λ, vε) = O

( ε

λ5
i

+
1

λn−3
i

)
,

∂Kε

∂(xi)r
(α, x, λ, vε)

= O
( 1

λn−4
i

+
ε

λn−4
i

+ (if n ≥ 12)
ε2(log λi)(n+4)/n

λ7
i

+ (if n < 12)
ε2

λn−5
i

)
.

The solution of the system in Ai, Bi, Cij shows that

Ai = O
(
|βi|+

ε

λ4
i

+
1

λn−4
i

)
Bi = O

( ε

λ3
i

+
1

λn−5
i

)
Cij = O

( 1
λn−2

i

+
ε

λn−2
i

+ (if n ≥ 12)
ε2(log λi)

n+4
n

λ9
i

+ (if n < 12)
ε2

λn−3
i

)
.

This allows us to evaluate the right hand side in the equations (2.3) and (2.5),
namely

Bi

( ∂2Pδi

∂λi∂(xi)r
, vε

)
+

n∑
j=1

Cij

( ∂2Pδi

∂(xi)j∂(xi)r
, vε

)
= O

(
|Bi‖|vε‖+

n∑
j=1

λ2
i |Cij‖|vε‖

)
= O

(
‖vε‖( ε

λ3
i

+
1

λn−5
i

)
)

= O
( 1
λn−3

i

+
ε2

λ5
i

)
.

(3.1)
In the same manner, we obtain

Bi

(∂2Pδi

∂λ2
i

, vε
)

+
n∑

j=1

Cij

( ∂2Pδi

∂(xi)j∂λi
, vε

)
= O

( 1
λn−1

i

+
ε2

λ5
i

)
. (3.2)

From Proposition 2.4 , there exists αε satisfying (2.3) for each i, and we have

1− αε
i = βε

i = O
( ε

(λε
i )4

+
1

(λε
i )n−4

)
. (3.3)

Using (3.1), (3.2), (3.3) and Lemma 2.2, we deduce that (2.4) and (2.5) are equiv-
alent to

− 2c4
ε

(λε
i )4
− c2(n− 4)H(xε

i , x
ε
i )

2(λε
i )n−4

+ c2

∑
j 6=i

(n− 4)G(xε
i , x

ε
j)

2(λε
i λ

ε
j)(n−4)/2

= O
( ε

(λε
i )n−4

+
1

(λε
i )n−2

+
ε2

(λε
i )4

)
,

(3.4)

− c2(n− 4)
2(λε

i )n−4

∂H(xε
i , x

ε
i )

∂xi
+ c2

∑
j 6=i

(n− 4)
2(λε

i λ
ε
j)(n−4)/2

∂G(xε
i , x

ε
j)

∂xi

= O
( ε

(λε
i )n−4

+
1

(λε
i )n−3

+
ε2

(λε
i )4

)
.

(3.5)
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Let us perform the change of variables

λε
i = (Λε

i )
−2

n−4 ε
−1

n−8
(c4

c2

) −1
n−8 . (3.6)

Note that

Λε
i ε

n−4
2(n−8) → 0 as ε→ 0,

Λε
i

Λε
j

< c0, (3.7)

and that (3.4), (3.5) read

−4
n− 4

(Λε
i )

12−n
n−4 −H(xε

i , x
ε
i )Λ

ε
i +

∑
j 6=i

G(xε
i , x

ε
j)Λ

ε
j

= O
(
εΛε

i + (Λε
i )

4
n−4 ε

2
n−8 Λε

i + ε(Λε
i )

12−n
n−4

)
,

(3.8)

−Λε
i

∂H(xε
i , x

ε
i )

∂xi
+

∑
j 6=i

Λε
j

∂G(xε
i , x

ε
j)

∂xi
= O

(
εΛε

i + (Λε
i )

2
n−4 ε

1
n−8 Λε

i + ε(Λε
i )

12−n
n−4

)
.

(3.9)

From (3.8), we deduce that

−4
n− 4

T (
(Λε

1)
12−n
n−4 , . . . , (Λε

k)
12−n
n−4

)
−M(xε)Λε

= O
(
εΛε

i + (Λε
i )

4
n−4 ε

2
n−8 Λε

i + ε(Λε
i )

12−n
n−4

)
,

(3.10)

where Λε =T (Λε
1, . . . ,Λ

ε
k). Taking the scalar product of (3.10) with e(xε), we

obtain
−4

n− 4

k∑
i=1

(Λε
i )

12−n
n−4 ei(xε)− ρ(xε)e(xε).Λε

= O
(
εΛε

i + (Λε
i )

4
n−4 ε

2
n−8 Λε

i + ε(Λε
i )

12−n
n−4

)
.

(3.11)

We distinguish three cases:
(1) Λε

i → 0, as ε→ 0 for all i.
(2) Λε

i → Λi ∈ R∗
+, as ε→ 0 for all i.

(3) Λε
i → +∞, as ε→ 0 for all i.

Multiplying (3.8) by (Λε
i )
−1 and using the fact that n ≥ 9, we see that case (1)

cannot occur. Let us consider the second case. Denoting by x ∈ Ωk
d0

the limit of
xε (up to a subsequence), from (3.8) and (3.11), we obtain

4
n− 4

Λ
12−n
n−4

i + H(xi, xi)Λi −
∑
j 6=i

G(xi, xj)Λj = 0,

4
n− 4

k∑
i=1

Λ
12−n
n−4

i ei(x) + ρ(x)e(x).Λ = 0.

This means that ρ(x) < 0 and (Λ, x) satisfied ∂Ψk

∂Λ (Λ, x) = 0. On the other hand,
from (3.5) and (3.6) we deduce that

−(Λε
i )

2 ∂H(xε
i , x

ε
i )

∂xi
+

∑
j 6=i

Λε
jΛ

ε
i

∂G(xε
i , x

ε
j)

∂xi
= O(ε

1
n−8 ),
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then, as ε→ 0, we derive

−Λ2
i

∂H(xi, xi)
∂xi

+
∑
j 6=i

ΛjΛi
∂G(xi, xj)

∂xi
= 0.

This implies that ∂Ψk

∂x (Λ, x) = 0 i.e. exactly what we want to prove.
Let us now consider the last case. From (3.11) we have

ρ(xε)e(xε).Λε = O
(
(Λε

i )
12−n
n−4 + εΛε

i + (Λε
i )

4
n−4 ε

2
n−8 Λε

i + ε(Λε
i )

12−n
n−4

)
and therefore, since Λε

i /Λε
j ≤ c0 for each i 6= j, we obtain

ρ(xε) = O
(
(Λε

i )
2(8−n)

n−4 + ε + (Λε
i )

4
n−4 ε

2
n−8

)
.

Thus, using (3.7) we get ρ(x) = 0. It remains to prove that ρ′(x) = 0. First, we
claim that the vector Λε is close to e(xε). In fact Λε may be written under the form

Λε = ξεe(xε) + e′(xε), (3.12)

with e(xε).e′(xε) = 0. It is easy to get ξε = O (|Λε|). Now, using the fact that
T ΛεM(xε)Λε = o(|Λε|2) (by (3.8) ), ρ(xε) → 0 and the fact that zero is a simple
eigenvalue of the matrix M(x) then e′(xε) = o(ξε) and our claim follows. From
(3.9) we obtain

∂M(xε)
∂xi

Λε = o (|Λε|) ,

using (3.12), we obtain

ξε ∂M(xε)
∂xi

e(xε) +
∂M(xε)

∂xi
e′(xε) = o (ξε) . (3.13)

The matrix ∂M(xε)
∂xi

being bounded on the set {x ∈ Ωk
d0

, |xi − xj | > d′0}, we get

∂M(xε)
∂xi

e′(xε) = O(|e′(xε)|) = o(ξε).

The scalar product of (3.13) with e(xε) gives

T e(xε)
∂M(xε)

∂xi
e(xε) = o(1). (3.14)

Since |e(xε)|2 = 1 and e(xε).∂e(xε)
∂xi

= 0, therefore

T e(xε)
∂M(xε)

∂xi
e(xε) =

∂ρ

∂xi
(xε). (3.15)

Passing to the limit in (3.14) and (3.15), we obtain

∂ρ

∂xi
(x) = 0.

This concludes the proof of Theorem 1.3. �
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Proof of Theorem 1.1. Arguing by contradiction, suppose that (1.1) has a solution
of the form (1.6) and satisfying (1.7). Multiplying (1.1) by vε and integrating over
Ω, we obtain

‖vε‖2 =
∫

Ω

|αεPδxε,λε
+ vε|pvε − ε

∫
Ω

(αεPδxε,λε
+ vε) vε (3.16)

= αp
ε

∫
Ω

Pδp
xε,λε

vε + pαp−1
ε

∫
Ω

Pδp−1
xε,λε

v2
ε + o(‖vε‖2) + O

(
ε

∫
Ω

δxε,λε |vε|
)
.

(3.17)

From Proposition 3.4 of [4] and the fact that αε → 1, there exists a positive constant
c, such that

‖vε‖2 − pαp−1
ε

∫
Ω

Pδp−1
xε,λε

v2
ε = ‖vε‖2 − p

∫
Ω

δp−1
xε,λε

v2
ε + o

(
‖vε‖2

)
≥ c‖vε‖2. (3.18)

On the other hand, using the fact that vε ∈ Exε,λε
, we obtain∫

Ω

Pδp
xε,λε

vε = O
( ∫

B∪Bc

|ϕxε,λε
|δp−1

xε,λε
|vε|

)
,

where B = {y : |y − xε| < dε}. Then using the Holder’s inequality we need to
estimate ∫

Bc

(
δp−1
xε,λε

ϕxε,λε

)2n/(n+4)

≤
∫

Bc

δp+1
xε,λε

= O
( 1
(λεdε)n

)
(3.19)

and

|ϕxε,λε |L∞
( ∫

B

δ
8(p+1)
(n+4)

xε,λε

)n+4
2n

= O
(
(ifn ≥ 12)

(log λεdε)
n+4
2n

(λεdε)
n+4

2

+ (if n < 12)
1

(λεdε)n−4

)
.

(3.20)

Combining (2.11), (3.16)–(3.20) we get

‖vε‖ = O
( (log λεdε)

n+4
2n

(λεdε)
n+4

2

+
ε(log λε)

n+4
2n

λ4
ε

+ (if n < 12)(
ε

λ
(n−4)/2
ε

+
1

(λεdε)n−4
)
)
.

(3.21)
Multiplying (1.1) by ∂Pδxε,λε

/∂λε and integrating over Ω, we derive that

αε

(
Pδxε,λε

,
∂Pδxε,λε

∂λε

)
−

∫
Ω

|αεPδxε,λε
+ vε|p

∂Pδxε,λε

∂λε

+ε

∫
Ω

(αεPδxε,λε + vε)
∂Pδxε,λε

∂λε
= 0,

which implies

αε

(
Pδxε,λε

,
∂Pδxε,λε

∂λε

)
− αp

ε

∫
Ω

Pδp
xε,λε

∂Pδxε,λε

∂λε
− pαp−1

ε

∫
Ω

Pδp−1
xε,λε

vε
∂Pδxε,λε

∂λε

+εαε

∫
Ω

Pδxε,λε

∂Pδxε,λε

∂λε
+ O

( ε

λε

∫
Ω

δxε,λε |vε|+
‖vε‖2

λε

)
= 0.

(3.22)



EJDE-2004/121 CONCENTRATION PHENOMENA 15

According to [7], we have(
Pδxε,λε

,
∂Pδxε,λε

∂λε

)
=

n− 4
2

c2
H(xε, xε)

λn−3
ε

+ O
( 1
λε(λεdε)n−2

)
, (3.23)∫

Ω

Pδ
n+4
n−4
xε,λε

∂Pδxε,λε

∂λε
= (n− 4)c2

H(xε, xε)
λn−3

ε

+ O
( 1
λε(λεdε)n−2

)
, (3.24)

and as in (2.29) ∫
Ω

Pδxε,λε

∂Pδxε,λε

∂λε
= −2

c4

λ5
ε

+ O
( 1
λ5

ε(λεdε)n−8

)
. (3.25)

Taking (2.11), (2.21), (3.21), (3.23)–(3.25) in (3.22) we obtain the following relation

−2ε
c4

λ5
ε

− c2
n− 4

2
H(xε, xε)

λn−3
ε

+ o
( ε

λ5
ε

+
1

λε(λεdε)n−4

)
= 0

which is a contradiction. This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

In this section, we construct a domain Ω for which (1.1) has a solution which
blows-up and concentrates in two points of Ω. More precisely, we will find a solution
uε of the form

uε =
2∑

i=1

αε
i,(λε,xε)Pδxε

i ,λε
i
+ vε

(αε,λε,xε), (4.1)

where αε
(λε,xε), vε

(αε,λε,xε) are defined in Propositions 2.1, 2.4, xε
i ∈ Ωd0 , |xε

1−xε
2| >

d′0 and λε
i satisfies λε

i = (Λε
i )

−2
n−4 ε

−1
n−8 ( c4

c2
)
−1

n−8 . For the rest of this article, we will
consider the set

M2
ε = {(Λ, x) ∈ (R∗

+)2 × Ω2
d0

: c < Λi <
1
c
∀i, |x1 − x2| > d′0}.

Let us define the functional

K2
ε (Λ, x) = Jε(uε).

Lemma 4.1. We have the expansion

K2
ε (Λ, x) =

4Sn

n
+ ε

n−4
n−8 c

n−4
n−8
4 c

−4
n−8
2

[1
2
H(x1, x1)Λ2

1 +
1
2
H(x2, x2)Λ2

2

−G(x1, x2)Λ1Λ2 +
1
2
(
Λ

8
n−4
1 + Λ

8
n−4
2

)]
+ o(ε

n−4
n−8 ),

in the C1-norm with respect to (Λ, x) ∈M2
ε, where c2and c4 are defined in Lemma

2.2.

The proof of this lemma follows from Propositions 2.1, 2.4 and Lemmas (2.2),
(2.3).

To find a solution of (1.1) with two blow-up points in Ω, it is enough to find
“sufficiently stable” critical point of the function Ψ defined by

Ψ := Ψ2(Λ, x)

=
1
2

(
H(x1, x1)Λ2

1 + H(x2, x2)Λ2
2 − 2G(x1, x2)Λ1Λ2

)
+

1
2
(
Λ

8
n−4
1 + Λ

8
n−4
2

)
.

Here we follow the ideas of [22], [11]. Let D be a bounded domain in Rn with smooth
boundary which contains the origin 0. The following result holds (see Corollary 2.1
of [11] which is analogue corollary for the Laplacian).
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Corollary 4.2. For any sufficiently small σ > 0 there exists r0 > 0 such that
if 0 < r < r0 is fixed and Ω is a domain given by D\ω for any smooth domain
ω ⊂ B(0, r), then

ρ(x) < 0 ∀x ∈ S2,

where the manifold S is defined by S = {x1 ∈ Ω : |x1| = σ}.

Here ρ(x) denotes the least eigenvalue of the matrix M(x) defined in (1.8) (ρ(x) =
−∞ if x1 = x2). Let e(x) be the eigenvector corresponding to ρ(x) whose norm is
1 and whose all components are strictly positive.

In the following we will construct a critical point of the “min-max” type of the
function Ψ. Let us introduce for δ > 0 and ρ > 0 the following manifold

W δ
ρ = {x ∈ Ω2

δ : ρ(x) < −ρ}.
Let ρ0 = −maxx∈S2 ρ(x) and δ0 = dist(S, ∂Ω). It holds for any 0 < ρ < ρ0 and
0 < δ < δ0 that S2 ⊂W δ

ρ . Since 8
n−4 < 2, there exist R0 > 0 such that

b = max
x∈S2,0≤R≤R0

Ψ(Re(x), x) > 0 and max
x∈S2,R=0,R0

Ψ(Re(x), x) = 0. (4.2)

Next we let Γ be the class of continuous function γ : [0, R0]×S2× [0, 1]→ R2
+×W δ

ρ ,
such that

(1) γ(0, x, t) = (0, x) and γ(R0, x, t) = (R0e(x), x) for all x ∈ S2, t ∈ [0, 1].
(2) γ(R, x, 0) = (Re(x), x) for all (R, x) ∈ [0, R0]× S2.

For every (R, x, t) ∈ [0, R0]×S2× [0, 1] we denote γ(R, x, t) = (Λ̃(R, x, t), x̃(R, x, t))
and, for τ > 0, we define the set

Iτ = {(R, x) ∈ [0, R0]× S2 : Λ̃1(R, x, 1)Λ̃2(R, x, 1) = τ}.
In the following we prove that Ψ has a critical level between a and b where b is
defined in (4.2) and a will be defined in Corollary 4.4. The first step in this direction
is the following topological result which is similar to [11, Lemma 7.1].

Lemma 4.3. For every open neighborhood U of Iτ in R2
+ × S2, the projection

g : U → S2 induces a monomorphism in cohomology, that is g∗ : H∗(S2)→ H∗(U)
is a monomorphism.

Corollary 4.4. For τ > 0 small, there exist a = a(τ) > 0, such that

sup
x∈S2,0≤R≤R0

Ψ(γ(R, x, 1)) ≥ a for all γ ∈ Γ.

Proof. Since Ω is smooth, there is c0 > 0 such that if x1, x2 ∈ Ωδ and |x1−x2| < c0

then the line segment [x1, x2] ⊂ Ω. Then we let K > 0 so that G(x1, x2) ≥ K
implies |x1−x2| < c0. Assume, by contradiction, for each a > 0, there exists γ ∈ Γ
such that

Ψ(γ(R, x, 1)) < a for all (R, x) ∈ [0, R0]× S2.

This implies that, for a small neighborhood U of Iτ in [0, R0]× S2, we have

−G(x̃(R, x, 1))τ + τ4/(n−4) ≤ a,

and therefore
G(x̃(R, x, 1)) ≥ 1

2
τ

8−n
n−4 ≥ K (4.3)

if we choose 2a < τ4/(n−4) and τ small. Let D0 = R2
+ × Ω × Ω and γ1 = γ(., 1).

Consider the inclusion i2 : γ1(U) → D0 and the maps p : γ1(U) → R2
+ × Ω and
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f : R2
+×Ω→ D0 defined as p(Λ, x1, x2) = (Λ, x1) and f(Λ, x1) = (Λ, x1, x1). From

(4.3) we find that the function h : γ1(U) × [0, 1] → D0 defined as h(Λ, x1, x2, t) =
(Λ, x1, x2 + t(x1 − x2)) is a homotopy between i2 and fop. We consider the com-
mutative diagram

H∗([0, R0]× S2)←−γ∗1 H∗(D0)

↓ i∗1 ↓ i∗2

H∗(U)←−γ∗2 H∗(γ1(U))

where i1 is the inclusion map and γ2 = γ1/U . Let u ∈ Hn−1(S) and v ∈ Hn−1(Ω)
nontrivial elements such that i(v) = u. If v̂× v̂ ∈ H2(n−1)(D0) is the corresponding
element, then by homotopy axiom and Lemma 4.3 we have i∗1oγ

∗
1 (v̂ × v̂) 6= 0. On

the other hand we see that f∗(v̂ × v̂) = v̂ ` v̂ ∈ H2(n−1)(R2
+ × Ω) is zero, because

H2(n−1)(Ω) = 0. Then we have γ∗2oi∗2(v̂ × v̂) = 0, providing a contradiction. �

Let Tδ = {x ∈ S2 : |x1 − x2| ≤ δ}. We can choose δ small such that

Ψ(Re(x), x) <
a

2
for each x ∈ Tδ and 0 ≤ R ≤ R0. (4.4)

Let us introduce the manifold

Vδ = {x ∈ Ω2
δ : |x1 − x2| > δ}.

To prove that the function Ψ constrained to R2
+ × (W δ

ρ ∩ Vδ) has a critical level
between a and b we need to care about the fact that the domain R2

+× (W δ
ρ ∩Vδ) is

not necessarily closed for the gradient flow of Ψ. The following lemma, is the first
step in this direction.

Lemma 4.5. There exists δ′0 > 0 such that for any δ ∈ (0, δ′0) and for any (Λ, x) ∈
R2

+ × (W δ
ρ ∩ Vδ) with Ψ(Λ, x) ∈ [a, b], ∇ΛΨ(Λ, x) = 0 and x = (x1, x2) ∈ ∂Vδ,

then there exists a vector T tangent to R2
+ × ∂Vδ at the point (Λ, x) such that

∇Ψ(Λ, x).T 6= 0.

Proof. The proof will be given in two steps.
Step1. We argue by contradiction. Let (Λδ, xδ) ∈ R2

+×Ω2 be such that Ψ(Λδ, xδ) ∈
[a, b], ∇ΛΨ(Λδ, xδ) = 0, ρ(xδ) < −ρ, dist(x1δ

, ∂Ω) = δ, dist(x2δ
, ∂Ω) ≥ δ, |x1δ

−
x2δ
| ≥ δ and for any vector T tangent to R2

+ × ∂Vδ at the point (Λδ, xδ) it holds

∇Ψ(Λδ, xδ).T = 0.

Set Ω̃δ = Ω−x̃1δ

δ , y = x−x̃1δ

δ and µδ = δ
−(n−4)2

2(n−8) Λδ, where x̃1δ
∈ ∂Ω satisfies |x1δ

−
x̃1δ
| = δ. Then dist(y1δ

, ∂Ω̃δ) = 1, dist(y2δ
, ∂Ω̃δ) ≥ 1 and |y1δ

− y2δ
| ≥ 1.

After a rotation and translation we may assume without loss of generality that
y1δ
→ (0, 1) ∈ Rn−1×R as δ tends to 0 and the domain Ω̃δ becomes the half-space

π = {(y′, yn) ∈ Rn−1 ×R : yn > 0}. We observe that if G̃δ and H̃δ are the Green’s
function and its regular part associated to the domain Ω̃δ then

G̃δ(y1, y2) = δn−4G(δy1, δy2), H̃δ(y1, y2) = δn−4H(δy1, δy2).

Recall that

lim
δ

H̃δ(y1, y2) = Hπ(y1, y2) =
1

|y1 − ȳ2|n−4
C1-uniformly on compact sets of π2,

(4.5)
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and

lim
δ

G̃δ(y1, y2) = Gπ(y1, y2) =
1

|y1 − y2|n−4
− 1
|y1 − ȳ2|n−4

, (4.6)

C1-uniformly on compact sets of {(y1, y2) ∈ π2 : y1 6= y2}. Here for y = (y′, yn),
we denote ȳ = (y′,−yn). Moreover, Ψ̃δ denotes by

Ψ̃δ(µ, y) =
1
2

(
H̃δ(y1, y1)µ2

1 + H̃δ(y2, y2)µ2
2 − 2G̃δ(y1, y2)µ1µ2

)
+

1
2
(
µ

8
n−4
1 + µ

8
n−4
2

)
,

then
Ψ̃δ(µ, y) = δ

−4(n−4)
n−8 Ψ(Λ, x) .

From [22, appendix A], we have

∇Ψ(Λ, x) = 0 if and only if ∇Ψ̃δ(µ, y) = 0.

First of all, we claim that

0 < c1 ≤ Λ1δ
,Λ2δ

≤ c2 as δ → 0. (4.7)

It is easy to check that 0 < c1 ≤ |Λδ| ≤ c2. In fact, since ∇ΛΨ(Λδ, xδ) = 0, we have
that

Ψ(Λδ, xδ) =
n− 8

2(n− 4)
(
Λ

8
n−4
1δ

+ Λ
8

n−4
2δ

)
∈ [a, b],

and so if |Λδ| → +∞ or |Λδ| → 0, a contradiction arises.
Let limδ Λ1δ

= Λ1 ∈ R+ and limδ Λ2δ
= Λ2 ∈ R+. Since ρ(xδ) < 0, there exists

a positive constant C such that |x1δ
− x2δ

| ≤ Cδ. We obtain |y2δ
| ≤ C and then

limδ y2δ
= ŷ2. Using the fact that ∇ΛΨ(Λδ, xδ) = 0, we have

0 = δn−4Λ1δ
∇Λ1Ψ(Λδ, xδ)

= H̃δ(y1δ
, y1δ

)Λ2
1δ
− G̃δ(y1δ

, y2δ
)Λ1δ

Λ2δ
+

4
n− 4

δn−4Λ8/(n−4)
1δ

0 = δn−4Λ2δ
∇Λ2Ψ(Λδ, xδ)

= H̃δ(y2δ
, y2δ

)Λ2
2δ
− G̃δ(y1δ

, y2δ
)Λ1δ

Λ2δ
+

4
n− 4

δn−4Λ8/(n−4)
2δ

.

Passing to the limit we deduce that

lim
δ

G̃δ(y1δ
, y2δ

)Λ1δ
Λ2δ

= Hπ((0, 1), (0, 1))Λ2
1 = Hπ(ŷ2, ŷ2)Λ2

2. (4.8)

Since |Λδ| does not tend to 0 then Λ1,Λ2 ∈ R∗
+, and (4.7) follows. Second we prove

that
There exist ŷ = ((0, 1); (ŷ′2, β)) with (0, 1) 6= (ŷ′2, β), 0, ŷ′2 ∈
Rn−1, (1, β) ∈ R2 and µ̂ = (µ̂1, µ̂2) ∈ (R∗

+)2 : Mπ(ŷ)µ̂ = 0,
T.∇yΨπ(µ̂, ŷ) = 0 for all T ∈ Rn−1 × {0} × Rn.

(4.9)

Let limδ y2δ
= ŷ2 = (ŷ′2, β) and limδ y1δ

= ŷ1 = (0, 1). Moreover, from (4.7)
it follows that limδ |µδ| = +∞, then up to a subsequence we can assume that

µ̂ = limδ
µδ

|µδ| . It holds |µ̂| = 1. Now, since δ
(n−4)(n−12)

2(n−8) ∇ΛΨ(Λδ, xδ) = 0, we have

M̃δ(yδ)
µδ

|µδ|
+

4
n− 4

δn−4
(Λ(12−n)/(n−4)

1δ

|Λδ|
+

Λ(12−n)/(n−4)
2δ

|Λδ|

)
= 0,

and by passing to the limit we get Mπ(ŷ)µ̂ = 0. Therefore 0 is the first eigenvalue of
the matrix Mπ(ŷ) and µ̂ is the eigenvector associated to 0 and by [3] it follows that
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µ̂1, µ̂2 ∈ R∗
+. From (4.5) and (4.6) we get ∇yΨπ(µ̂, ŷ) = limδ

1
|µδ|2∇yΨ̃δ(µδ, yδ) and

then (4.9) follows.
Finally we prove that by (4.9) we get a contradiction. We write now the function

Ψπ explicitly:

Ψπ(µ, y) =
1
2

( 1
(2yn

1 )n−4
µ2

1 +
1

(2yn
2 )n−4

µ2
2 − 2Gπ(y1, y2)µ1µ2

)
+

1
2
(
µ

8
n−4
1 + µ

8
n−4
2

)
.

We have two cases:
If ŷ′2 6= 0 then

ŷ′2.∇y′2
Ψπ(µ̂, ŷ) = −ŷ′2.∇y′2

Gπ(ŷ1, ŷ2)µ̂1µ̂2

= (n− 4)|ŷ′2|2
( 1
|(ŷ′2, β − 1)|n−2

− 1
|(ŷ′2, β + 1)|n−2

)
µ̂1µ̂2 6= 0,

and a contradiction arises.
If ŷ′2 = 0 then β > 1 and

0 = ∇yn
2
Ψπ(µ̂, ŷ) = (n− 4)µ̂2

(
Γn−3(β)µ̂1 −

1
(2β)n−3

µ̂2

)
,

where
Γn−3(β) =

1
(β − 1)n−3

− 1
(β + 1)n−3

> 0.

We deduce that
µ̂2 = (2β)n−3Γn−3(β)µ̂1. (4.10)

On the other hand, by the condition Mπ(ŷ)µ̂ = 0, we get
1

2n−4
µ̂1 − Γn−4(β)µ̂2 = 0,

−Γn−4(β)µ̂1 +
1

(2β)n−4
µ̂2 = 0,

(4.11)

where
Γn−4(β) =

1
(β − 1)n−4

− 1
(β + 1)n−4

.

Equations (4.10) and (4.11) imply

(2βΓn−3(β)− Γn−4(β)) µ̂1 = 0

and a contradiction arises since 2βΓn−3(β)− Γn−4(β) > 0.
Step2. as in step 1, we prove the following: for any (Λ, x) ∈ R2

+×Ω2 with Ψ(Λ, x) ∈
[a, b], ∇ΛΨ(Λ, x) = 0, ρ(x) < −ρ, dist(x1, ∂Ω) ≥ δ, dist(x2, ∂Ω) ≥ δ and |x1 −
x2| = δ, then there exist a vector T tangent to R2

+ × ∂Vδ at the point (Λ, x) such
that

∇Ψ(Λ, x).T 6= 0.

The lemma follows. �

Lemma 4.6. There exist δ′0 > 0 and ρ′0 > 0 such that for any δ ∈ (0, δ′0) and ρ ∈
(0, ρ′0) the function Ψ satisfies the following property: For any sequence (Λn, xn) ∈
R2

+×(W δ
ρ∩Vδ) such that limn(Λn, xn) = (Λ, x) ∈ ∂(R2

+×(W δ
ρ∩Vδ)) and Ψ(Λn, xn) ∈

[a, b] there exists a vector T tangent to ∂(R2
+ × (W δ

ρ ∩ Vδ)) at the point (Λ, x) such
that

∇Ψ(Λ, x).T 6= 0.
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Proof. First, it is easy to check that 0 < c ≤ |Λn| ≤ c′. In fact we have that |Λn| →
+∞ and |Λn| → 0 yield respectively to |Ψ(Λn, xn)| → +∞ and |Ψ(Λn, xn)| → 0,
which is impossible.

Let Λ = limn Λn and x = limn xn. If ∇ΛΨ(Λ, x) 6= 0, then T can be chosen
parallel to ∇ΛΨ(Λ, x). In the other case we have Λ ∈ (R∗

+)2. In fact if Λ2 = 0, by

0 = ∇Λ1Ψ(Λ, x) = H(x1, x1)Λ1 +
4

n− 4
Λ

12−n
n−4

1 ,

we get a contradiction. Analogously Λ1 6= 0. Thus x ∈ ∂(W δ
ρ ∩ Vδ). Now we claim

that there exists ρ′0 > 0 such that

ρ(x) < −ρ′0. (4.12)

In fact, since ∇ΛΨ(Λ, x) = 0, we have

Ψ(Λ, x) =
n− 8

2(n− 4)
(
Λ

8
n−4
1 + Λ

8
n−4
2

)
=

8− n

4
(M(x)Λ,Λ),

and since Ψ(Λ, x) ∈ [a, b] we deduce that

|Λ|2 ≤
(2(n− 4)

n− 8
)n−4

4 b
n−4

4 and (M(x)Λ,Λ) ≤ 4
8− n

a,

which implies (4.12) because (M(x)Λ,Λ) ≥ ρ(x)|Λ|2. Therefore we have that x ∈
∂Vδ (if we choose ρ < ρ′0 ) and we can apply Lemma 4.5 to conclude the proof. �

Lemma 4.7. The function Ψ constrained to R2
+ × (W δ

ρ ∩ Vδ) satisfies the Palais-
Smal condition in [a, b].

Proof. Let (Λn, xn) ∈ R2
+ × (W δ

ρ ∩ Vδ) be such that limn Ψ(Λn, xn) = c and
limn∇Ψ(Λn, xn) = 0. Arguing as in the proof of Lemma 4.5 it can be shown
that Λn remains bounded component-wise from above and below by a positive
constant. As in Lemma 4.6, Λ ∈ (R∗

+)2 and by Lemma 4.5, x ∈ (W δ
ρ ∩ Vδ). �

Proposition 4.8. There exists a critical level for Ψ between a and b.

Proof. Assume by contradiction that there are no critical levels in the interval
[a, b]. By Lemmas 4.5 and 4.6, We can define an appropriate negative flow that will
remain in A := R2

+ × (W δ
ρ ∩ Vδ) at any level c ∈ [a, b]. Moreover the Palais-Smale

condition holds for Ψ|A in [a, b] (see Lemma 4.7 ). Hence there exists a continuous
deformation

η : [0, 1]×Ψb
|A → Ψb

|A,

such that for some a′ ∈ (0, a)

η(0, u) = u ∀u ∈ Ψb
|A

η(t, u) = u ∀u ∈ Ψa′

|A

η(1, u) ∈ Ψa′

|A.

Then there exist a continuous function γ ∈ Γ such that

γ/[0,R0]×(S2\Tδ) = η/[0,R0]×(S2\Tδ)

and using (4.4), we obtain Ψ(γ(R, x, 1)) < a for all (R, x) ∈ [0, R0] × S2, this
condition provides a contradiction with Corollary 4.4 �
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Proof of Theorem 1.2. Arguing as in [22] and using Proposition 4.8 and Lemma
4.1, it is possible to construct a critical point (λε, xε) of the function K2

ε for ε small
enough. We only need to prove that (αε

(λε,xε), λ
ε, xε, vε

(αε,λε,xε)) satisfies (2.5) and
(2.4). Indeed, we have by easy computation

0 =
∂Kε

∂xi
+

(∂Kε

∂v
,

∂v

∂xi

)
+

(∂Kε

∂αi
,
∂αi

∂xi

)
=

∂Kε

∂xi
+

( k∑
i=1

(
AiPδxi,λi

+ Bi
∂Pδxi,λi

∂λi
+

n∑
j=1

Cij
∂Pδxi,λi

∂(xi)j

)
,

∂v

∂xi

)
.

Using the fact that v ∈ E, then (2.5) is satisfied, in the same way we proof that
(2.4) is satisfied. �
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