Electronic Journal of Differential Equations, Vol. 2004(2004), No. 125, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS TO N-DIMENSIONAL PENDULUM-LIKE EQUATIONS

PABLO AMSTER, PABLO L. DE NÁPOLI, MARÍA CRISTINA MARIANI

ABSTRACT. We study the elliptic boundary-value problem

$$\Delta u + g(x, u) = p(x)$$
 in Ω
 $u|_{\partial\Omega} = \text{constant}, \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0$

where g is T-periodic in u, and $\Omega \subset \mathbb{R}^n$ is a bounded domain. We prove the existence of a solution under a condition on the average of the forcing term p. Also, we prove the existence of a compact interval $I_p \subset \mathbb{R}$ such that the problem is solvable for $\tilde{p}(x) = p(x) + c$ if and only if $c \in I_p$.

1. INTRODUCTION

Existence and multiplicity of periodic solutions to the one-dimensional pendulum like equation

$$u'' + g(t, u) = p(t)$$
(1.1)

$$u(0) - u(T) = u'(0) - u'(T) = 0$$
(1.2)

where g is T-periodic in u have been studied by many authors; see e.g. [4] and for the history and a survey of the problem see [6, 7]. In this work, we consider a generalization of this problem to higher dimensions. With this aim, note that the boundary condition (1.2) can be written as

$$u(0) = u(T) = c, \quad \int_0^T u'' = 0$$

where c is a non-fixed constant. Thus, by the divergence Theorem, (1.1)-(1.2) can be generalized to a boundary-value problem for an elliptic PDE in the following way:

$$\Delta u + g(x, u) = p(x) \quad \text{in } \Omega$$

$$u|_{\partial\Omega} = \text{constant}, \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0, \qquad (1.3)$$

topological methods.

²⁰⁰⁰ Mathematics Subject Classification. 35J25, 35J65.

Key words and phrases. Pendulum-like equations; boundary value problems;

 $[\]textcircled{C}2004$ Texas State University - San Marcos.

Submitted June 3, 2004. Published October 20, 2004.

where $\Omega \subset \mathbb{R}^n$ is a bounded $C^{1,1}$ domain. We shall assume that $p \in L^2(\Omega)$, and that $g \in L^{\infty}(\Omega \times \mathbb{R})$ is T-periodic in u. For simplicity we shall assume also that $\frac{\partial g}{\partial u} \in L^{\infty}(\Omega \times \mathbb{R}).$

This kind of problems have been considered for example in [2], where the authors study a model describing the equilibrium of a plasma confined in a toroidal cavity. Under appropriate conditions this model can be reduced to the nonhomogeneous boundary-value problem

$$\Delta u + h(x, u) = 0 \quad \text{in } \Omega$$

$$u|_{\partial\Omega} = \text{constant}, \quad -\int_{\partial\Omega} \frac{\partial u}{\partial\nu} = I.$$
(1.4)

The authors prove the existence of at least one solution $u \in H^2$ of the problem for any h satisfying the following assumptions:

- (A1) $h: \overline{\Omega} \times \mathbb{R} \to [0, +\infty)$ is continuous, nondecreasing on u, with h(x, u) = 0for u < 0.
- (A2) $\lim_{u\to+\infty} \int_{\Omega} h(x,u) dx > I.$ (A3) $\lim_{u\to+\infty} \frac{h(x,u)}{u^r} = 0$ for some $r \in \mathbb{R}$ (with $r \leq \frac{n}{n-2}$ when n > 2).

On the other hand, for the particular case $h(x, u) = [u]_{+}^{p}$ and $\Omega = B_{1}(0)$, Ortega has proved in [9] that if n > 2 and $p \ge \frac{n}{n-2}$ then there exists a finite constant I_p such that the problem has no solutions for $I > I_p$.

In the second section we obtain a solution of (1.3) by variational methods under a condition on the average of the forcing term p.

In the third section we prove by topological methods that for a given p there exists a nonempty closed and bounded interval I_p such that problem (1.3) is solvable for $\tilde{p} = p + c$ if and only if $c \in I_p$. A similar result for the one-dimensional case has been proved by Castro [3], using variational methods, and by Fournier and Mawhin [4], using topological methods.

2. Solutions by variational methods

For fixed $x \in \Omega$, define $a_q(x)$ as the average of g with respect to u, namely:

$$a_g(x) = \frac{1}{T} \int_0^T g(x, u) du \,.$$

For $\varphi \in L^1(\Omega)$ denote by $\overline{\varphi}$ the average of φ , i.e.

$$\overline{\varphi} = \frac{1}{|\Omega|} \int_{\Omega} \varphi(x) dx.$$

Theorem 2.1. If

$$\overline{p} = \overline{a_g},\tag{2.1}$$

then (1.3) admits at least one solution $u \in H^2(\Omega)$.

Proof. Let $\mathbb{R} + H_0^1(\Omega) = \{ u \in H^1(\Omega) : u |_{\partial\Omega} = \text{constant} \}$, and consider the functional $\mathcal{I}: \mathbb{R} + H^1_0(\Omega) \to \mathbb{R}$ given by

$$\mathcal{I}(u) = \int_{\Omega} \left(\frac{|\nabla u(x)|^2}{2} - G(x, u(x)) + p(x)u(x) \right) dx,$$

where

$$G(x,u) = \int_0^u g(x,s) ds$$

EJDE-2004/125

By standard results, \mathcal{I} is weakly lower semicontinuous in $\mathbb{R} + H_0^1(\Omega)$. We remark that u is a critical point of \mathcal{I} if and only if

$$\int_{\Omega} (\nabla u \cdot \nabla \varphi - g(x, u)\varphi + p\varphi)dx = 0$$
(2.2)

for any $\varphi \in \mathbb{R} + H_0^1(\Omega)$. In this case, if $c = u \big|_{\partial\Omega}$ then u is a weak solution of the problem

$$\Delta u + g(x, u) = p(x), \quad u\big|_{\partial\Omega} = c.$$
(2.3)

It follows that $u \in H^2(\Omega)$. We claim that $\int_{\partial\Omega} \frac{\partial u}{\partial \nu} = 0$. Indeed, taking $\varphi \equiv 1$ in (2.2) we obtain:

$$\int_{\Omega} g(x, u) dx = \int_{\Omega} p(x) dx.$$

Integrating (2.3) over Ω , we deduce that

$$\int_{\partial\Omega} \frac{\partial u}{\partial\nu} = \int_{\Omega} \Delta u = 0.$$

Thus, any critical point of \mathcal{I} is a weak solution of (1.3).

To prove the existence of critical points of \mathcal{I} , let $\{u_n\} \subset \mathbb{R} + H_0^1(\Omega)$ be a minimizing sequence, and let $c_n = u_n \big|_{\partial\Omega}$. For any $u \in \mathbb{R} + H_0^1(\Omega)$ it holds that

$$\mathcal{I}(u+T) - \mathcal{I}(u) = T \int_{\Omega} p(x) dx - \int_{\Omega} [G(x, u+T) - G(x, u)] dx.$$

For fixed x, we have

$$G(x, u(x) + T) - G(x, u(x)) = \int_{u(x)}^{u(x)+T} g(x, s)ds = \int_0^T g(x, s)ds = Ta_g(x),$$

and from (2.1) we deduce that $\mathcal{I}(u+T) = \mathcal{I}(u)$. Hence, we may assume that $c_n \in [0, T]$. By Poincaré's inequality we have that

$$||u_n - c_n||_{L^2} \le C ||\nabla u_n||_{L^2},$$

and then

$$I(u_n) = \frac{1}{2} \|\nabla u_n\|_{L^2}^2 + \int_{\Omega} p u_n dx - \int_{\Omega} G(x, u_n) dx \ge \frac{1}{2} \|\nabla u_n\|_{L^2}^2 - r \|\nabla u_n\|_{L^2} - s$$

for some constants r, s. Thus, $\{u_n\}$ is bounded, and by classical results \mathcal{I} has a minimum on $\mathbb{R} + H_0^1(\Omega)$.

3. The maximal interval I_p

Fix $p \in L^2(\Omega)$ such that $\overline{p} = \overline{a_g}$ and consider the problem

$$\Delta u + g(x, u) = p(x) + c \quad \text{in } \Omega$$

$$u|_{\partial\Omega} = \text{constant} \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0 \qquad (3.1)$$

with $c \in \mathbb{R}$. It is easy to establish a necessary condition on c for the solvability of (3.1): indeed, if u is a solution of (3.1) then

$$\frac{1}{|\Omega|} \int_{\Omega} g(x, u(x)) dx = \overline{p} + c.$$

Thus, if we define $g_u(x) = g(x, u(x))$, we obtain:

$$c = \overline{g_u} - \overline{a_g}$$

Furthermore, if

$$g_+(x) = \sup_{0 \le u \le T} g(x, u), \quad g_-(x) = \inf_{0 \le u \le T} g(x, u),$$

it follows that $\overline{g_{-}} \leq \overline{g_{u}} \leq \overline{g_{+}}$, and hence

$$\overline{g_-} - \overline{a_g} \le c \le \overline{g_+} - \overline{a_g}.$$

In particular,

$$\inf_{[0,T]\times\mathbb{R}} g - \overline{a_g} \le c \le \sup_{[0,T]\times\mathbb{R}} - \overline{a_g}.$$

In the next theorem we obtain also a sufficient condition. More precisely, if we define

 $I_p = \{ c \in \mathbb{R} : (3.1) \text{ admits a solution in } H^2(\Omega) \},\$

we shall prove that ${\cal I}_p$ is a nonempty compact interval. From Theorem 2.1, it follows that

$$I_p = [\alpha_p, \beta_p],$$

where

$$\overline{g_{-}} - \overline{a_g} \le \alpha_p \le 0 \le \beta_p \le \overline{g_{+}} - \overline{a_g}.$$

Theorem 3.1. Assume that $\overline{p} = \overline{a_g}$ and define

$$E = \{ u \in \mathbb{R} + H^2 \cap H^1_0(\Omega) : \Delta u + g(x, u) = p + \overline{g_u} - \overline{a_g} \}.$$

Then the set

$$E_g := \{\overline{g_u} : u \in E\} \subset \mathbb{R}$$

is a nonempty compact interval. Furthermore, $E_g = \overline{a_g} + I_p$.

For the proof of this theorem, we need Lemmas 3.2, 3.3, 3.4, 3.6, 3.7 and Theorem 3.8 below.

Lemma 3.2 (Poincaré-Wirtinger inequality). There exists a constant $c \in \mathbb{R}$ such that

$$\|u - \overline{u}\|_{L^2} \le c \|\nabla u\|_{L^2}$$

for all $u \in H^1(\Omega)$.

The proof of the above lemma can be found in [5].

Lemma 3.3. Assume that $\overline{p} = \overline{a_g}$. Then for any $r \in \mathbb{R}$ the problem

$$\Delta u + g(x, u) = p + \overline{g_u} - \overline{a_g}$$
$$u\big|_{\partial\Omega} = \text{constant}, \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0$$

admits at least one solution u such that $\overline{u} = r$.

Proof. For $u \in H^1(\Omega)$ define Tu = v as the unique solution of the problem

$$\Delta v = p + \overline{g_u} - \overline{a_g} - g(x, u)$$

$$v|_{\partial \Omega} = \text{constant}, \quad \overline{v} = r.$$
(3.2)

Then $T: H^1(\Omega) \to H^1(\Omega)$ is well defined and compact. Indeed, if u_0 is the unique element of $H^2 \cap H^1_0(\Omega)$ such that

$$\Delta u_0 = p + \overline{g_u} - \overline{a_g} - g(x, u),$$

EJDE-2004/125

it is clear that $v = u_0 - \overline{u_0} + r$ is the unique solution of (3.2), and compactness follows immediately from the compactness of the mapping $u \to u_0$. Moreover, integrating the equation, it is immediate that

$$\int_{\partial\Omega} \frac{\partial v}{\partial\nu} = \int_{\Omega} \Delta v = 0.$$

Then

$$\int_{\Omega} \Delta v(v-r) + \int_{\Omega} |\nabla v|^2 = (v\big|_{\partial\Omega} - r) \int_{\partial\Omega} \frac{\partial v}{\partial\nu} = 0,$$

and we deduce that

$$\|v - r\|_{H^1} \le c \|\Delta v\|_{L^2} \le C$$

for some constant C. Thus, the proof follows from Schauder Theorem.

Lemma 3.4. Let
$$p, E, E_g$$
 be as in Theorem 3.1 and

$$E_T = \{ u \in E : u \big|_{\partial \Omega} \in [0, T] \}$$

Then:

(1)
$$E_T \subset \mathbb{R} + H_0^1(\Omega)$$
 is compact.
(2) $E_g = \{\overline{g_u} : u \in E_T\}.$

Proof. Let $\{u_n\} \subset E_T$ and $c_n = u_n|_{\partial\Omega} \in [0,T]$. ¿From standard elliptic estimates it follows that $||u_n||_{H^2} \leq C$ for some constant C. Taking a subsequence we may assume that $u_n \to u$ in $\mathbb{R} + H_0^1(\Omega)$. ¿From the equalities

$$\Delta u_n = p + \overline{g_{u_n}} - \overline{a_g} - g(x, u_n)$$

it follows easily that $u \in E_T$, and (1) is proved. Moreover, for any $u \in E$ there exists $k \in \mathbb{Z}$ such that $u_T := u + kT \in E_T$. As $g_{u_T} = g_u$, the proof of (2) follows. \Box

To complete the proof of Theorem 3.1, it suffices to show that I_p is connected. Indeed, it is clear that u is a solution of (3.1) if and only if $u \in E$ with $c = \overline{g_u} - \overline{a_g}$, and by continuity of the mapping $u \to \overline{g_u}$ it follows that I_p is compact.

Remark 3.5. ¿From Lemma 3.3, E is infinite. In particular, if $I_p = \{0\}$ then (1.3) admits a continuum of solutions.

To apply the method of upper and lower solutions to our problem, we shall first prove an associated maximum principle:

Lemma 3.6. Let $\lambda > 0$ and assume that $u \in H^2(\Omega)$ satisfies:

$$\Delta u - \lambda u \ge 0,$$

$$u\big|_{\partial\Omega} = \text{constant}, \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} \le 0.$$

Then $u \leq 0$.

Proof. If $u|_{\partial\Omega} = c \leq 0$ the result follows by the classical maximum principle. If c > 0, let $\Omega^+ = \{x \in \Omega : u(x) > 0\}$ and $u^+(x) = \max\{u(x), 0\}$. Then

$$0 \leq \int_{\Omega} \lambda u . u^{+} \leq \int_{\Omega} \Delta u . u^{+} = -\int_{\Omega^{+}} |\nabla u|^{2} + c \int_{\partial \Omega} \frac{\partial u}{\partial \nu} < 0,$$

a contradiction.

Lemma 3.7. Let $\theta \in L^2(\Omega)$ and $\lambda > 0$. Then the problem

$$\Delta u - \lambda u = \theta \quad in \ \Omega$$
$$u\big|_{\partial\Omega} = \quad \text{constant}, \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0$$

admits a unique solution $u_{\theta} \in H^2(\Omega)$. Furthermore, the mapping $\theta \to u_{\theta}$ is continuous.

Proof. Let $\mathcal{J}: \mathbb{R} + H^1_0(\Omega) \to \mathbb{R}$ be the functional

$$\mathcal{J}(u) = \int_{\Omega} \frac{|\nabla u|^2}{2} + \frac{\lambda u^2}{2} + \theta u$$

It is immediate that \mathcal{J} is weakly lower semicontinuous and coercive, then it has a minimum u. Furthermore, $u \in H^2(\Omega)$ and $\int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0$. Integrating the equation, we also obtain that $-\lambda \overline{u} = \overline{\theta}$.

By standard elliptic estimates and Lemma 3.2, there exists a constant c such that

$$\|w - \overline{w}\|_{H^2} \le c \|\Delta w - \lambda w\|_{L^2}$$

for any $w \in H^2 \cap (\mathbb{R} + H_0^1)$ such that $\int_{\partial \Omega} \frac{\partial w}{\partial \nu} = 0$; thus, uniqueness follows. Finally, if $\theta_1, \theta_2 \in L^2(\Omega)$ then

$$||u_{\theta_1} - u_{\theta_2}||_{H^2} \le |\Omega| \cdot |\overline{\theta}_1 - \overline{\theta}_2| + c ||\theta_1 - \theta_2||_{L^2},$$

and the proof is complete.

Now we have the following result.

Theorem 3.8. If $\varphi \in L^2(\Omega)$ and there exist $\alpha, \beta \in H^2(\Omega)$ with $\alpha \leq \beta$ such that

$$\begin{split} \Delta \beta + g(\cdot,\beta) &\leq \varphi(x) \leq \Delta \alpha + g(\cdot,\alpha), \\ \beta \big|_{\partial \Omega} &= \text{ constant}, \quad \alpha \big|_{\partial \Omega} = \text{ constant}, \\ \int_{\partial \Omega} \frac{\partial \beta}{\partial \nu} &\geq 0 \geq \int_{\partial \Omega} \frac{\partial \alpha}{\partial \nu}, \end{split}$$

then the problem

$$\Delta u + g(x, u) = \varphi(x)$$
$$u\big|_{\partial\Omega} = \text{ constant}, \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0$$

admits at least one solution $u \in H^2(\Omega)$ such that $\alpha \leq u \leq \beta$.

Proof. Let $\lambda \geq R$, where $R = \|\frac{\partial g}{\partial u}\|_{L^{\infty}}$. For fixed $v \in L^2(\Omega)$ define Tv = u as the unique solution of the problem

$$\Delta u - \lambda u = \varphi - g(x, v) - \lambda v \quad \text{in } \Omega$$
$$u|_{\partial\Omega} = \quad \text{constant}, \quad \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = 0.$$

By the lemmas above, the mapping $T: L^2(\Omega) \to L^2(\Omega)$ is well defined and compact. Moreover for $\alpha \leq v \leq \beta$, we have

$$\Delta u - \lambda u = \varphi - g(x, v) - \lambda v \ge \varphi - g(x, \beta) - \lambda \beta \ge \Delta \beta - \lambda \beta.$$

Hence,

$$\Delta(u-\beta) - \lambda(u-\beta) \ge 0$$

EJDE-2004/125

and

$$(u-\beta)|_{\partial\Omega} = \text{constant}, \quad \int_{\partial\Omega} \frac{\partial(u-\beta)}{\partial\nu} \leq 0.$$

From Lemma 3.6, we deduce that $u \leq \beta$. In the same way, we obtain that $u \geq \alpha$ and the result follows by Schauder Theorem.

Proof of Theorem 3.1. Let $P \in H^2(\Omega)$ be any solution of the problem

$$\Delta P = p - \overline{a_g}$$

$$P|_{\partial\Omega} = \text{ constant}, \quad \int_{\partial\Omega} \frac{\partial P}{\partial\nu} = 0.$$

Taking v = u - P, problem (3.1) is equivalent to the problem

$$\Delta v + \tilde{g}(x, v) = c + \overline{a_g}$$
$$P\big|_{\partial\Omega} = \text{ constant}, \quad \int_{\partial\Omega} \frac{\partial P}{\partial\nu} = 0,$$

where $\tilde{g}(x,v) := g(x,v+P(x))$ is continuous and *T*-periodic in v. Thus, we may assume without loss of generality that p is continuous. Let $c_1, c_2 \in I_p$, $c_1 < c_2$, and take $u_1, u_2 \in E$ such that $\overline{g_{u_i}} = c_i - \overline{a_g}$. As $u_i \in C(\overline{\Omega})$, adding kT for some integer k if necessary, we may suppose that $u_1 \leq u_2$. For $c \in [c_1, c_2]$ we have that

$$\Delta u_1 + g(x, u_1) = p + c_1 - \overline{a_g} \le p + c - \overline{a_g} \le p + c_2 - \overline{a_g} = \Delta u_2 + g(x, u_2).$$

From the previous theorem, there exists $u \in E$ such that $\overline{g_u} = c - \overline{a_g}$. The proof is complete.

Remark 3.9. Using fixed point methods, Lemma 3.7 can be generalized; thus, it is easy to see that Theorem 3.1 is still valid for the more general problem

$$egin{aligned} \Delta u + \langle b(x),
abla u
angle + g(x, u) &= p(x) & ext{in } \Omega \ u ert_{\partial\Omega} &= ext{constant}, \quad \int_{\partial\Omega} rac{\partial u}{\partial
u} &= 0 \,, \end{aligned}$$

where b is a C^1 -field such that div b = 0. However, for $b \neq 0$ the problem is no longer variational, and then the claim of Theorem 2.1 is not necessarily true. Indeed, in the particular case n = 1, it is well known that for the pendulum equation

$$u'' + au' + b \sin u = f(t),$$

where a is a positive constant, there exists a family of T-periodic functions f such that $\int_0^T f = 0$ for which the equation has no periodic solutions (see [1, 8, 10]).

Remark 3.10. As in [4], it can be proved that for any c in the interior of I_p there exist at least two solutions of (3.1) which are essentially different (i.e. not differing by a multiple of T).

Acknowledgement. The authors would like to thank the anonymous referee for his/her careful reading of the original manuscript and the fruitful remarks.

References

- Alonso J.; Nonexistence of periodic solutions for a damped pendulum equation. Diff. and Integral Equations, 10 (1997), 1141-1148.
- [2] Berestycki B., Brezis H.; On a free boundary problem arising in plasma physics. Nonlinear Analysis 4, 3 (1980), pp 415-436.
- [3] Castro A.; Periodic solutions of the forced pendulum equation. Differential equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, Okla., 1979), pp. 149–160, Academic Press, New York-London-Toronto, Ont., 1980.
- [4] Fournier G., Mawhin J.; On periodic solutions of forced pendulum-like equations. Journal of Differential Equations 60 (1985) 381-395.
- [5] Kesavan, S.; Topics in Functional Analysis and Applications. John Wiley & Sons, Inc., New York, NY, 1989.
- [6] Mawhin J.; Periodic oscillations of forced pendulum-like equations, Lecture Notes in Math, 964, Springer, Berlin 1982, 458-476.
- [7] Mawhin J.; Seventy-five years of global analysis around the forced pendulum equation, Proc. Equadiff 9, Brno 1997.
- [8] Ortega R.; A counterexample for the damped pendulum equation. Bull. de la Classe des Sciences, Ac. Roy. Belgique, LXXIII (1987), 405-409.
- [9] Ortega R.; Nonexistence of radial solutions of two elliptic boundary value problems. Proc. of the Royal Society of Edinburgh 114A (1990) 27-31.
- [10] Ortega R., Serra E., Tarallo M.; Non-continuation of the periodic oscillations of a forced pendulum in the presence of friction. Proc. of Am. Math. Soc. Vol. 128, 9 (2000), 2659-2665.

Pablo Amster

UNIVERSIDAD DE BUENOS AIRES, FCEYN - DEPARTAMENTO DE MATEMÁTICA, CIUDAD UNIVERSI-TARIA, PABELLÓN I, (1428) BUENOS AIRES, ARGENTINA, AND CONSEJO NACIONAL DE INVESTIGA-CIONES CIENTÍFICAS Y TÉCNICAS (CONICET)

E-mail address: pamster@dm.uba.ar

Pablo L. De Nápoli

UNIVERSIDAD DE BUENOS AIRES, FCEYN - DEPARTAMENTO DE MATEMÁTICA, CIUDAD UNIVERSI-TARIA, PABELLÓN I, (1428) BUENOS AIRES, ARGENTINA

E-mail address: pdenapo@dm.uba.ar

María Cristina Mariani

DEPARTMENT OF MATHEMATICAL SCIENCES, NEW MEXICO STATE UNIVERSITY, LAS CRUCES, NM 88003-0001, USA

 $E\text{-}mail \ address: mmariani@nmsu.edu$