Electronic Journal of Differential Equations, Vol. 2004(2004), No. 125, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS TO N-DIMENSIONAL PENDULUM-LIKE EQUATIONS

PABLO AMSTER, PABLO L. DE NÁPOLI, MARÍA CRISTINA MARIANI

Abstract. We study the elliptic boundary-value problem

$$
\begin{gathered}
\Delta u+g(x, u)=p(x) \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=\text { constant }, \quad \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0
\end{gathered}
$$

where g is T-periodic in u, and $\Omega \subset \mathbb{R}^{n}$ is a bounded domain. We prove the existence of a solution under a condition on the average of the forcing term p. Also, we prove the existence of a compact interval $I_{p} \subset \mathbb{R}$ such that the problem is solvable for $\tilde{p}(x)=p(x)+c$ if and only if $c \in I_{p}$.

1. Introduction

Existence and multiplicity of periodic solutions to the one-dimensional pendulum like equation

$$
\begin{gather*}
u^{\prime \prime}+g(t, u)=p(t) \tag{1.1}\\
u(0)-u(T)=u^{\prime}(0)-u^{\prime}(T)=0 \tag{1.2}
\end{gather*}
$$

where g is T-periodic in u have been studied by many authors; see e.g. 4 and for the history and a survey of the problem see [6, 7]. In this work, we consider a generalization of this problem to higher dimensions. With this aim, note that the boundary condition 1.2 can be written as

$$
u(0)=u(T)=c, \quad \int_{0}^{T} u^{\prime \prime}=0
$$

where c is a non-fixed constant. Thus, by the divergence Theorem, $1.1-(1.2$ can be generalized to a boundary-value problem for an elliptic PDE in the following way:

$$
\begin{gather*}
\Delta u+g(x, u)=p(x) \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=\text { constant }, \quad \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0 \tag{1.3}
\end{gather*}
$$

[^0]where $\Omega \subset \mathbb{R}^{n}$ is a bounded $C^{1,1}$ domain. We shall assume that $p \in L^{2}(\Omega)$, and that $g \in L^{\infty}(\Omega \times \mathbb{R})$ is T-periodic in u. For simplicity we shall assume also that $\frac{\partial g}{\partial u} \in L^{\infty}(\Omega \times \mathbb{R})$.

This kind of problems have been considered for example in [2], where the authors study a model describing the equilibrium of a plasma confined in a toroidal cavity. Under appropriate conditions this model can be reduced to the nonhomogeneous boundary-value problem

$$
\begin{gather*}
\Delta u+h(x, u)=0 \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=\text { constant, } \quad-\int_{\partial \Omega} \frac{\partial u}{\partial \nu}=I . \tag{1.4}
\end{gather*}
$$

The authors prove the existence of at least one solution $u \in H^{2}$ of the problem for any h satisfying the following assumptions:
(A1) $h: \bar{\Omega} \times \mathbb{R} \rightarrow[0,+\infty)$ is continuous, nondecreasing on u, with $h(x, u)=0$ for $u \leq 0$.
(A2) $\lim _{u \rightarrow+\infty} \int_{\Omega} h(x, u) d x>I$.
(A3) $\lim _{u \rightarrow+\infty} \frac{h(x, u)}{u^{r}}=0$ for some $r \in \mathbb{R}\left(\right.$ with $r \leq \frac{n}{n-2}$ when $\left.n>2\right)$.
On the other hand, for the particular case $h(x, u)=[u]_{+}^{p}$ and $\Omega=B_{1}(0)$, Ortega has proved in 9 that if $n>2$ and $p \geq \frac{n}{n-2}$ then there exists a finite constant I_{p} such that the problem has no solutions for $I>I_{p}$.

In the second section we obtain a solution of 1.3 by variational methods under a condition on the average of the forcing term p.

In the third section we prove by topological methods that for a given p there exists a nonempty closed and bounded interval I_{p} such that problem 1.3 is solvable for $\tilde{p}=p+c$ if and only if $c \in I_{p}$. A similar result for the one-dimensional case has been proved by Castro [3], using variational methods, and by Fournier and Mawhin [4], using topological methods.

2. Solutions by variational methods

For fixed $x \in \Omega$, define $a_{g}(x)$ as the average of g with respect to u, namely:

$$
a_{g}(x)=\frac{1}{T} \int_{0}^{T} g(x, u) d u
$$

For $\varphi \in L^{1}(\Omega)$ denote by $\bar{\varphi}$ the average of φ, i.e.

$$
\bar{\varphi}=\frac{1}{|\Omega|} \int_{\Omega} \varphi(x) d x
$$

Theorem 2.1. If

$$
\begin{equation*}
\bar{p}=\overline{a_{g}} \tag{2.1}
\end{equation*}
$$

then (1.3) admits at least one solution $u \in H^{2}(\Omega)$.
Proof. Let $\mathbb{R}+H_{0}^{1}(\Omega)=\left\{u \in H^{1}(\Omega):\left.u\right|_{\partial \Omega}=\right.$ constant $\}$, and consider the functional $\mathcal{I}: \mathbb{R}+H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ given by

$$
\mathcal{I}(u)=\int_{\Omega}\left(\frac{|\nabla u(x)|^{2}}{2}-G(x, u(x))+p(x) u(x)\right) d x
$$

where

$$
G(x, u)=\int_{0}^{u} g(x, s) d s
$$

By standard results, \mathcal{I} is weakly lower semicontinuous in $\mathbb{R}+H_{0}^{1}(\Omega)$. We remark that u is a critical point of \mathcal{I} if and only if

$$
\begin{equation*}
\int_{\Omega}(\nabla u \cdot \nabla \varphi-g(x, u) \varphi+p \varphi) d x=0 \tag{2.2}
\end{equation*}
$$

for any $\varphi \in \mathbb{R}+H_{0}^{1}(\Omega)$. In this case, if $c=\left.u\right|_{\partial \Omega}$ then u is a weak solution of the problem

$$
\begin{equation*}
\Delta u+g(x, u)=p(x),\left.\quad u\right|_{\partial \Omega}=c \tag{2.3}
\end{equation*}
$$

It follows that $u \in H^{2}(\Omega)$. We claim that $\int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0$. Indeed, taking $\varphi \equiv 1$ in (2.2) we obtain:

$$
\int_{\Omega} g(x, u) d x=\int_{\Omega} p(x) d x
$$

Integrating 2.3 over Ω, we deduce that

$$
\int_{\partial \Omega} \frac{\partial u}{\partial \nu}=\int_{\Omega} \Delta u=0
$$

Thus, any critical point of \mathcal{I} is a weak solution of 1.3 .
To prove the existence of critical points of \mathcal{I}, let $\left\{u_{n}\right\} \subset \mathbb{R}+H_{0}^{1}(\Omega)$ be a minimizing sequence, and let $c_{n}=\left.u_{n}\right|_{\partial \Omega}$. For any $u \in \mathbb{R}+H_{0}^{1}(\Omega)$ it holds that

$$
\mathcal{I}(u+T)-\mathcal{I}(u)=T \int_{\Omega} p(x) d x-\int_{\Omega}[G(x, u+T)-G(x, u)] d x
$$

For fixed x, we have

$$
G(x, u(x)+T)-G(x, u(x))=\int_{u(x)}^{u(x)+T} g(x, s) d s=\int_{0}^{T} g(x, s) d s=T a_{g}(x)
$$

and from 2.1 we deduce that $\mathcal{I}(u+T)=\mathcal{I}(u)$. Hence, we may assume that $c_{n} \in[0, T]$. By Poincaré's inequality we have that

$$
\left\|u_{n}-c_{n}\right\|_{L^{2}} \leq C\left\|\nabla u_{n}\right\|_{L^{2}}
$$

and then

$$
I\left(u_{n}\right)=\frac{1}{2}\left\|\nabla u_{n}\right\|_{L^{2}}^{2}+\int_{\Omega} p u_{n} d x-\int_{\Omega} G\left(x, u_{n}\right) d x \geq \frac{1}{2}\left\|\nabla u_{n}\right\|_{L^{2}}^{2}-r\left\|\nabla u_{n}\right\|_{L^{2}}-s
$$

for some constants r, s. Thus, $\left\{u_{n}\right\}$ is bounded, and by classical results \mathcal{I} has a minimum on $\mathbb{R}+H_{0}^{1}(\Omega)$.

3. The maximal interval I_{p}

Fix $p \in L^{2}(\Omega)$ such that $\bar{p}=\overline{a_{g}}$ and consider the problem

$$
\begin{align*}
& \Delta u+g(x, u)=p(x)+c \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=\text { constant } \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0 \tag{3.1}
\end{align*}
$$

with $c \in \mathbb{R}$. It is easy to establish a necessary condition on c for the solvability of (3.1): indeed, if u is a solution of (3.1) then

$$
\frac{1}{|\Omega|} \int_{\Omega} g(x, u(x)) d x=\bar{p}+c
$$

Thus, if we define $g_{u}(x)=g(x, u(x))$, we obtain:

$$
c=\overline{g_{u}}-\overline{a_{g}}
$$

Furthermore, if

$$
g_{+}(x)=\sup _{0 \leq u \leq T} g(x, u), \quad g_{-}(x)=\inf _{0 \leq u \leq T} g(x, u),
$$

it follows that $\overline{g_{-}} \leq \overline{g_{u}} \leq \overline{g_{+}}$, and hence

$$
\overline{g_{-}}-\overline{a_{g}} \leq c \leq \overline{g_{+}}-\overline{a_{g}} .
$$

In particular,

$$
\inf _{[0, T] \times \mathbb{R}} g-\overline{a_{g}} \leq c \leq \sup _{[0, T] \times \mathbb{R}}-\overline{a_{g}} .
$$

In the next theorem we obtain also a sufficient condition. More precisely, if we define

$$
I_{p}=\left\{c \in \mathbb{R}: 3.1 \text { admits a solution in } H^{2}(\Omega)\right\}
$$

we shall prove that I_{p} is a nonempty compact interval. From Theorem 2.1, it follows that

$$
I_{p}=\left[\alpha_{p}, \beta_{p}\right]
$$

where

$$
\overline{g_{-}}-\overline{a_{g}} \leq \alpha_{p} \leq 0 \leq \beta_{p} \leq \overline{g_{+}}-\overline{a_{g}} .
$$

Theorem 3.1. Assume that $\bar{p}=\overline{a_{g}}$ and define

$$
E=\left\{u \in \mathbb{R}+H^{2} \cap H_{0}^{1}(\Omega): \Delta u+g(x, u)=p+\overline{g_{u}}-\overline{a_{g}}\right\} .
$$

Then the set

$$
E_{g}:=\left\{\overline{g_{u}}: u \in E\right\} \subset \mathbb{R}
$$

is a nonempty compact interval. Furthermore, $E_{g}=\overline{a_{g}}+I_{p}$.
For the proof of this theroem, we need Lemmas $3.2,3.3,3.4,3.6,3.7$ and Theorem 3.8 below.

Lemma 3.2 (Poincaré-Wirtinger inequality). There exists a constant $c \in \mathbb{R}$ such that

$$
\|u-\bar{u}\|_{L^{2}} \leq c\|\nabla u\|_{L^{2}}
$$

for all $u \in H^{1}(\Omega)$.
The proof of the above lemma can be found in [5].
Lemma 3.3. Assume that $\bar{p}=\overline{a_{g}}$. Then for any $r \in \mathbb{R}$ the problem

$$
\begin{gathered}
\Delta u+g(x, u)=p+\overline{g_{u}}-\overline{a_{g}} \\
\left.u\right|_{\partial \Omega}=\text { constant, } \quad \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0
\end{gathered}
$$

admits at least one solution u such that $\bar{u}=r$.
Proof. For $u \in H^{1}(\Omega)$ define $T u=v$ as the unique solution of the problem

$$
\begin{gather*}
\Delta v=p+\overline{g_{u}}-\overline{a_{g}}-g(x, u) \\
\left.v\right|_{\partial \Omega}=\text { constant }, \quad \bar{v}=r . \tag{3.2}
\end{gather*}
$$

Then $T: H^{1}(\Omega) \rightarrow H^{1}(\Omega)$ is well defined and compact. Indeed, if u_{0} is the unique element of $H^{2} \cap H_{0}^{1}(\Omega)$ such that

$$
\Delta u_{0}=p+\overline{g_{u}}-\overline{a_{g}}-g(x, u)
$$

it is clear that $v=u_{0}-\overline{u_{0}}+r$ is the unique solution of 3.2 , and compactness follows immediately from the compactness of the mapping $u \rightarrow u_{0}$. Moreover, integrating the equation, it is immediate that

$$
\int_{\partial \Omega} \frac{\partial v}{\partial \nu}=\int_{\Omega} \Delta v=0
$$

Then

$$
\int_{\Omega} \Delta v(v-r)+\int_{\Omega}|\nabla v|^{2}=\left(\left.v\right|_{\partial \Omega}-r\right) \int_{\partial \Omega} \frac{\partial v}{\partial \nu}=0
$$

and we deduce that

$$
\|v-r\|_{H^{1}} \leq c\|\Delta v\|_{L^{2}} \leq C
$$

for some constant C. Thus, the proof follows from Schauder Theorem.
Lemma 3.4. Let p, E, E_{g} be as in Theorem 3.1 and

$$
E_{T}=\left\{u \in E:\left.u\right|_{\partial \Omega} \in[0, T]\right\}
$$

Then:
(1) $E_{T} \subset \mathbb{R}+H_{0}^{1}(\Omega)$ is compact.
(2) $E_{g}=\left\{\overline{g_{u}}: u \in E_{T}\right\}$.

Proof. Let $\left\{u_{n}\right\} \subset E_{T}$ and $c_{n}=\left.u_{n}\right|_{\partial \Omega} \in[0, T]$. ¿From standard elliptic estimates it follows that $\left\|u_{n}\right\|_{H^{2}} \leq C$ for some constant C. Taking a subsequence we may assume that $u_{n} \rightarrow u$ in $\overline{\mathbb{R}}+H_{0}^{1}(\Omega)$. ¿From the equalities

$$
\Delta u_{n}=p+\overline{g_{u_{n}}}-\overline{a_{g}}-g\left(x, u_{n}\right)
$$

it follows easily that $u \in E_{T}$, and (1) is proved. Moreover, for any $u \in E$ there exists $k \in \mathbb{Z}$ such that $u_{T}:=u+k T \in E_{T}$. As $g_{u_{T}}=g_{u}$, the proof of (2) follows.

To complete the proof of Theorem 3.1, it suffices to show that I_{p} is connected. Indeed, it is clear that u is a solution of (3.1) if and only if $u \in E$ with $c=\overline{g_{u}}-\overline{a_{g}}$, and by continuity of the mapping $u \rightarrow \overline{g_{u}}$ it follows that I_{p} is compact.

Remark 3.5. ¿From Lemma 3.3, E is infinite. In particular, if $I_{p}=\{0\}$ then 1.3 admits a continuum of solutions.

To apply the method of upper and lower solutions to our problem, we shall first prove an associated maximum principle:

Lemma 3.6. Let $\lambda>0$ and assume that $u \in H^{2}(\Omega)$ satisfies:

$$
\begin{gathered}
\Delta u-\lambda u \geq 0 \\
\left.u\right|_{\partial \Omega}=\text { constant }, \quad \int_{\partial \Omega} \frac{\partial u}{\partial \nu} \leq 0
\end{gathered}
$$

Then $u \leq 0$.
Proof. If $\left.u\right|_{\partial \Omega}=c \leq 0$ the result follows by the classical maximum principle. If $c>0$, let $\Omega^{+}=\{x \in \Omega: u(x)>0\}$ and $u^{+}(x)=\max \{u(x), 0\}$. Then

$$
0 \leq \int_{\Omega} \lambda u \cdot u^{+} \leq \int_{\Omega} \Delta u \cdot u^{+}=-\int_{\Omega^{+}}|\nabla u|^{2}+c \int_{\partial \Omega} \frac{\partial u}{\partial \nu}<0
$$

a contradiction.

Lemma 3.7. Let $\theta \in L^{2}(\Omega)$ and $\lambda>0$. Then the problem

$$
\begin{gathered}
\Delta u-\lambda u=\theta \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=\quad \text { constant, } \quad \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0
\end{gathered}
$$

admits a unique solution $u_{\theta} \in H^{2}(\Omega)$. Furthermore, the mapping $\theta \rightarrow u_{\theta}$ is continuous.

Proof. Let $\mathcal{J}: \mathbb{R}+H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ be the functional

$$
\mathcal{J}(u)=\int_{\Omega} \frac{|\nabla u|^{2}}{2}+\frac{\lambda u^{2}}{2}+\theta u
$$

It is immediate that \mathcal{J} is weakly lower semicontinuous and coercive, then it has a minimum u. Furthermore, $u \in H^{2}(\Omega)$ and $\int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0$. Integrating the equation, we also obtain that $-\lambda \bar{u}=\bar{\theta}$.

By standard elliptic estimates and Lemma 3.2, there exists a constant c such that

$$
\|w-\bar{w}\|_{H^{2}} \leq c\|\Delta w-\lambda w\|_{L^{2}}
$$

for any $w \in H^{2} \cap\left(\mathbb{R}+H_{0}^{1}\right)$ such that $\int_{\partial \Omega} \frac{\partial w}{\partial \nu}=0$; thus, uniqueness follows. Finally, if $\theta_{1}, \theta_{2} \in L^{2}(\Omega)$ then

$$
\left\|u_{\theta_{1}}-u_{\theta_{2}}\right\|_{H^{2}} \leq|\Omega| \cdot\left|\bar{\theta}_{1}-\bar{\theta}_{2}\right|+c\left\|\theta_{1}-\theta_{2}\right\|_{L^{2}}
$$

and the proof is complete.
Now we have the following result.
Theorem 3.8. If $\varphi \in L^{2}(\Omega)$ and there exist $\alpha, \beta \in H^{2}(\Omega)$ with $\alpha \leq \beta$ such that

$$
\begin{aligned}
& \Delta \beta+g(\cdot, \beta) \leq \varphi(x) \leq \Delta \alpha+g(\cdot, \alpha) \\
&\left.\beta\right|_{\partial \Omega}= \text { constant, }\left.\quad \alpha\right|_{\partial \Omega}=\text { constant } \\
& \int_{\partial \Omega} \frac{\partial \beta}{\partial \nu} \geq 0 \geq \int_{\partial \Omega} \frac{\partial \alpha}{\partial \nu}
\end{aligned}
$$

then the problem

$$
\begin{gathered}
\Delta u+g(x, u)=\varphi(x) \\
\left.u\right|_{\partial \Omega}=\quad \text { constant, } \quad \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0
\end{gathered}
$$

admits at least one solution $u \in H^{2}(\Omega)$ such that $\alpha \leq u \leq \beta$.
Proof. Let $\lambda \geq R$, where $R=\left\|\frac{\partial g}{\partial u}\right\|_{L^{\infty}}$. For fixed $v \in L^{2}(\Omega)$ define $T v=u$ as the unique solution of the problem

$$
\begin{aligned}
& \Delta u-\lambda u=\varphi-g(x, v)-\lambda v \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=\text { constant, } \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0 .
\end{aligned}
$$

By the lemmas above, the mapping $T: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is well defined and compact. Moreover for $\alpha \leq v \leq \beta$, we have

$$
\Delta u-\lambda u=\varphi-g(x, v)-\lambda v \geq \varphi-g(x, \beta)-\lambda \beta \geq \Delta \beta-\lambda \beta
$$

Hence,

$$
\Delta(u-\beta)-\lambda(u-\beta) \geq 0
$$

and

$$
\left.(u-\beta)\right|_{\partial \Omega}=\quad \text { constant, } \quad \int_{\partial \Omega} \frac{\partial(u-\beta)}{\partial \nu} \leq 0
$$

From Lemma 3.6, we deduce that $u \leq \beta$. In the same way, we obtain that $u \geq \alpha$ and the result follows by Schauder Theorem.

Proof of Theorem 3.1. Let $P \in H^{2}(\Omega)$ be any solution of the problem

$$
\begin{gathered}
\Delta P=p-\overline{a_{g}} \\
\left.P\right|_{\partial \Omega}=\text { constant, } \int_{\partial \Omega} \frac{\partial P}{\partial \nu}=0 .
\end{gathered}
$$

Taking $v=u-P$, problem (3.1) is equivalent to the problem

$$
\begin{gathered}
\Delta v+\tilde{g}(x, v)=c+\overline{a_{g}} \\
\left.P\right|_{\partial \Omega}=\quad \text { constant, } \quad \int_{\partial \Omega} \frac{\partial P}{\partial \nu}=0
\end{gathered}
$$

where $\tilde{g}(x, v):=g(x, v+P(x))$ is continuous and T-periodic in v. Thus, we may assume without loss of generality that p is continuous. Let $c_{1}, c_{2} \in I_{p}, c_{1}<c_{2}$, and take $u_{1}, u_{2} \in E$ such that $\overline{g_{u_{i}}}=c_{i}-\overline{a_{g}}$. As $u_{i} \in C(\bar{\Omega})$, adding $k T$ for some integer k if necessary, we may suppose that $u_{1} \leq u_{2}$. For $c \in\left[c_{1}, c_{2}\right]$ we have that

$$
\Delta u_{1}+g\left(x, u_{1}\right)=p+c_{1}-\overline{a_{g}} \leq p+c-\overline{a_{g}} \leq p+c_{2}-\overline{a_{g}}=\Delta u_{2}+g\left(x, u_{2}\right)
$$

From the previous theorem, there exists $u \in E$ such that $\overline{g_{u}}=c-\overline{a_{g}}$. The proof is complete.

Remark 3.9. Using fixed point methods, Lemma 3.7 can be generalized; thus, it is easy to see that Theorem 3.1 is still valid for the more general problem

$$
\begin{gathered}
\Delta u+\langle b(x), \nabla u\rangle+g(x, u)=p(x) \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=\text { constant, } \quad \int_{\partial \Omega} \frac{\partial u}{\partial \nu}=0,
\end{gathered}
$$

where b is a C^{1}-field such that div $b=0$. However, for $b \neq 0$ the problem is no longer variational, and then the claim of Theorem 2.1 is not necessarily true. Indeed, in the particular case $n=1$, it is well known that for the pendulum equation

$$
u^{\prime \prime}+a u^{\prime}+b \sin u=f(t)
$$

where a is a positive constant, there exists a family of T-periodic functions f such that $\int_{0}^{T} f=0$ for which the equation has no periodic solutions (see [1, 8, 10]).

Remark 3.10. As in [4], it can be proved that for any c in the interior of I_{p} there exist at least two solutions of (3.1) which are essentially different (i.e. not differing by a multiple of T).

Acknowledgement. The authors would like to thank the anonymous referee for his/her careful reading of the original manuscript and the fruitful remarks.

References

[1] Alonso J.; Nonexistence of periodic solutions for a damped pendulum equation. Diff. and Integral Equations, 10 (1997), 1141-1148.
[2] Berestycki B., Brezis H.; On a free boundary problem arising in plasma physics. Nonlinear Analysis 4, 3 (1980), pp 415-436.
[3] Castro A.; Periodic solutions of the forced pendulum equation. Differential equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, Okla., 1979), pp. 149-160, Academic Press, New York-London-Toronto, Ont., 1980.
[4] Fournier G., Mawhin J.; On periodic solutions of forced pendulum-like equations. Journal of Differential Equations 60 (1985) 381-395.
[5] Kesavan, S.; Topics in Functional Analysis and Applications. John Wiley \& Sons, Inc., New York, NY, 1989.
[6] Mawhin J.; Periodic oscillations of forced pendulum-like equations, Lecture Notes in Math, 964, Springer, Berlin 1982, 458-476.
[7] Mawhin J.; Seventy-five years of global analysis around the forced pendulum equation, Proc. Equadiff 9, Brno 1997.
[8] Ortega R.; A counterexample for the damped pendulum equation. Bull. de la Classe des Sciences, Ac. Roy. Belgique, LXXIII (1987), 405-409.
[9] Ortega R.; Nonexistence of radial solutions of two elliptic boundary value problems. Proc. of the Royal Society of Edinburgh 114A (1990) 27-31.
[10] Ortega R., Serra E., Tarallo M.; Non-continuation of the periodic oscillations of a forced pendulum in the presence of friction. Proc. of Am. Math. Soc. Vol. 128, 9 (2000), 2659-2665.

Pablo Amster
Universidad de Buenos Aires, FCEyN - Departamento de Matemática, Ciudad Universitaria, Pabellón I, (1428) Buenos Aires, Argentina, and Consejo Nacional de InvestigaCiones Científicas y Técnicas (CONICET)

E-mail address: pamster@dm.uba.ar
Pablo L. De Nápoli
Universidad de Buenos Aires, FCEyN - Departamento de Matemática, Ciudad Universitaria, Pabellón I, (1428) Buenos Aires, Argentina

E-mail address: pdenapo@dm.uba.ar
María Cristina Mariani
Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-0001, USA

E-mail address: mmariani@nmsu.edu

[^0]: 2000 Mathematics Subject Classification. 35J25, 35J65.
 Key words and phrases. Pendulum-like equations; boundary value problems; topological methods.
 (C) 2004 Texas State University - San Marcos.

 Submitted June 3, 2004. Published October 20, 2004.

