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A SEMILINEAR PARABOLIC BOUNDARY-VALUE PROBLEM
IN BIOREACTORS THEORY

ABDOU KHADRY DRAMÉ

Abstract. In this paper, we analyze a dynamical model describing the behav-

ior of bioreactors with diffusion. We obtain a convergence result for solutions
of asymptotically autonomous semilinear parabolic equations to steady state
solutions of the limiting equations. This allows us to establish the convergence

of solutions of the initial value problem that describes the dynamics of the
bioreactor.

1. Introduction

We consider a Plug Flow bioreactor with diffusion in which occurs a simple
growth reaction (one biomass/one substrate). The dynamics of this bioreactor are
described by the following system of partial differential equations

∂S

∂t
= −q

∂S

∂x
+ d

∂2S

∂x2
− µ(S)X, (t, x) ∈]0,∞[×]0, l[

∂X

∂t
= −q

∂X

∂x
+ d

∂2X

∂x2
+ µ(S)X, (t, x) ∈]0,∞[×]0, l[

S(0, x) = S0(x), X(0, x) = X0(x), x ∈]0, l[ ,

(1.1)

with the boundary conditions

d
∂S

∂x
(t, 0)− qS(t, 0) = −qSin ,

∂S

∂x
(t, l) = 0, t ∈]0,∞[,

d
∂X

∂x
(t, 0)− qX(t, 0) = −qXin ,

∂X

∂x
(t, l) = 0, t ∈]0,∞[ .

(1.2)

In (1.1)-(1.2), S, X, Sin, Xin, q, d, l and µ denote substrate and biomass con-
centrations in the bioreactor, feed substrate and biomass concentrations, the flow
rate, the diffusion rate, the length of the bioreactor and the kinetic function, re-
spectively. Basically the first equation of (1.1) contains a yield coefficient Y , but
it is convenient to rescale X to X

Y in order to reduce the number of parameters.
For further details on the modeling, refer to [4] or [24]. This paper is devoted to
the analysis of (1.1)-(1.2): we aim at proving uniform boundedness of the solutions
and describing their omega-limit sets.
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To ease the analysis, we will perform in Section 2 a linear change of state variables
which transforms (1.1) into two equations; one of them is nonlinear, but the other
one is linear. Next, in the same section, we will show that the operator associated to
this linear equation is the infinitesimal generator of a strongly continuous semigroup
on C[0, l] (the Banach space of the continuous real-valued functions on [0, l]) which
is exponentially stable. As a consequence of this, the unique steady state solution
of the linear equation is globally exponentially stable in C[0, l]. Following this, we
will rewrite (1.1)-(1.2) as a nonautonomous semilinear parabolic equation

du

dt
= Au(t) + f(t, u),

u(0) = u0,
(1.3)

where A is a linear operator in the Banach space C[0, l] with domain D(A) and
(1.3) is asymptotically autonomous with limiting equation

du

dt
= Au(t) + g(u),

u(0) = u0

(1.4)

in the sense that:
(i) (1.3) and (1.4) have a unique mild solution in C[0, l], respectively,
(ii) limt→∞ f(t, u) = g(u) uniformly in u on bounded subsets of C[0, l].

Many works available in the literature are devoted to the study of the asymptotic
behavior of solutions of equations of type (1.3) and/or (1.4) (see [1, 2, 10, 11, 14, 15,
16, 17, 18, 19, 24], etc.). In the earlier works of N. Chafee [1] and H. Matano [10, 11],
the authors dealt with equations of type (1.4) with Neumann and Robin boundary
conditions. In [1], one-dimensional equation was considered and the author used
the energy function as a Lyapunov function of (1.4) to prove that the omega-
limit sets of solutions consist of steady state solutions of (1.4). Observe that this
result is proved under the strong assumption that the initial value is continuously
differentiable. In [11], Matano proved a more general result. He considered (1.4)
in C(D), where D is a bounded domain of RN , N ≥ 1. He established that
omega-limit sets of bounded solutions of (1.4) consist of its steady state solutions.
In [10], he considered one-dimensional equation and proved that the omega-limit
sets contain at most one element, that is, each solution of (1.4) either blows up
or converges to steady state solution. More recently, Polàčik et al. investigated
the asymptotic behavior of solutions of (1.4) with Dirichlet, Neumann and Robin
conditions (see [14, 15, 16, 17, 18, 19]). They established that the omega-limit set
of bounded solutions of (1.4) can be a set of continuum of steady state solutions
([14, 16, 17, 18]).

However, the knowledge of the behavior of solutions of (1.4) does not give any
a priori information on the structure of the omega-limit sets of solutions of (1.3).
In [2] the one-dimensional case was considered. It is proved therein that if f is
periodic then any bounded solution of (1.3) converges to a periodic solution of
(1.3). In [24], the system of type (1.1)-(1.2) has been studied by Smith for a class
of monotonic kinetic functions. In this case, the limiting equation (1.4) generates a
monotone dynamical system. However, the author does not establish any result on
the behavior of solutions of the nonautonomous equation (equivalently (1.1)-(1.2)),
as it is mentioned in his remarks section. His result on the asymptotic behavior of
the solutions of the limiting equation are valid only for monotonic kinetic functions.
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In this paper, we extend the earlier result of [11] to asymptotically autonomous
nonlinear equations. In Theorem 3.4, we prove that the ω-limit set of any bounded
solution of the nonautonomous equation (1.3) is nonempty and it is contained in a
set of steady state solutions of (1.4). This result relies neither on a particular form
of f deduced from the reduction of (1.1) nor on the one-dimensional aspect of the
equations. It is also established for equations in abstract Banach spaces with more
general properties on f (see remarks following the proof of Theorem 3.4). On the
other hand, Theorem 3.4 can be applied to many models in practical applications
since we do not consider a particular class of kinetic functions. Based on Theorem
3.4 and [10, Theorem A], in Theorem 3.5 we show that every solution of (1.3) that
starts in a certain given set, is bounded and converges to a unique steady state
solution of (1.4). We finally apply Theorem 3.4 to the limiting equation although
it is autonomous.

We introduce the following assumptions. Observe that they are often fullfiled by
kinetic models in practical applications.

A1 µ(s) > 0 for s > 0, µ(s) = 0 for s ≤ 0, µ is bounded as s → +∞.
A2 The function s → µ(s) is twice continuously differentiable. Moreover, µ

and µ′ are Holder continuous in R (of exponent γ).

2. Preliminaries

Let us consider the new function U(t, x) = S(t, x) + X(t, x) and let us introduce
the notation M = Sin + Xin. Then U(t, x) satisfies:

∂U

∂t
= d

∂2U

∂x2
− q

∂U

∂x
, (t, x) ∈]0,∞[×]0, l[,

U(0, x) = U0(x), x ∈]0, l[,

d
∂U

∂x
(t, 0) = q(U(t, 0)−M) ,

∂U

∂x
(t, l) = 0, t ∈]0,∞[,

(2.1)

with U0(x) = S0(x) + X0(x). It is easy to see that (2.1) has a unique steady state
solution Ū and Ū(x) = M , for all x ∈ [0, l].

Let Z = C[0, l]. We define the linear operator

D(A) = {v ∈ C2[0, l] : d
∂v

∂x
(0)− q

2
v(0) = 0, d

∂v

∂x
(l) +

q

2
v(l) = 0},

Av = d
∂2v

∂x2
− q2

4d
v, ∀ v ∈ D(A).

Note that if u(t, x) = e−
q
2d x(U(t, x)−M), where U(t, x) is a solution of (2.1), then

we have u(t) ∈ D(A) as long as U(t, x) is defined and t > 0. Moreover,

du

dt
= Au(t),

u(0) = u0.
(2.2)

The linear operator A is closed, densely defined and A + δI is dissipative in Z,
where δ = q2

4d . Moreover, for any λ > 0 and f ∈ Z, the ordinary differential
equation λu − Au = f has a unique solution u ∈ D(A). Then, λ − A is surjective
for λ > 0. It follows that A is the infinitesimal generator of a C0-semigroup of
contractions T (t) on Z (see [5, Theorem 3.15] or [12, Theorem 4.3]) and

‖T (t)‖L(Z) ≤ e−δt, ∀ t ≥ 0. (2.3)
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Further, if Γ(x, y, t) denotes the fundamental solution of

∂v

∂t
= d

∂2v

∂x2
− δv, (t, x) ∈]0,∞[×]0, l[

and

d
∂v

∂x
(t, 0) =

q

2
v(t, 0); d

∂v

∂x
(t, l) = −q

2
v(t, l), t > 0,

then the semigroup T (t) is given by

(T (t)v)(x) =
∫ l

0

Γ(x, y, t)v(y)dy, ∀ t > 0, ∀ v ∈ Z. (2.4)

(see [11]). Let us recall [11, Lemma 2.2].

Lemma 2.1. The functions Γ and ∂Γ
∂t are continuous in [0, l]× [0, l]×]0,∞[. More-

over, given any t0 > 0, there exists a constant C0 > 0 such that

sup
0≤x≤l

∫ l

0

|∂Γ
∂t

(x, y, t)|dy ≤ C0

t
, ∀ 0 < t ≤ t0. (2.5)

We deduce from the lemma above the following result.

Lemma 2.2. The semigroup T (t) is continuously differentiable and compact on Z
for t > 0; i.e: T (t) : Z → Z is compact and for any v ∈ Z, the map t → T (t)v is
continuously differentiable for t > 0. Moreover, for any given t0 > 0, there exists
C0 > 0 such that

‖AT (t)‖L(Z) ≤
C0

t
, ∀ 0 < t ≤ t0. (2.6)

Proof. The continuous differentiability of T (t) follows from the continuity of ∂Γ
∂t on

[0, l]× [0, l]×]0,∞[. Then, T (t) maps Z into D(A) for t > 0, AT (t) ∈ L(Z) for t > 0
and AT (t)v = d

dtT (t)v for all t > 0 and all v ∈ Z. Hence, (2.6) follows from (2.4)
and (2.5). Since Γ is continuous on the compact [0, l]× [0, l] for any fixed t > 0, the
compactness of T (t) follows from Ascoli-Arzelà’s Theorem (see [25, P. 85]). �

Remarks: Indeed, T (t) defines an analytic semigroup (see [24, P. 121]. However,
it is more interesting to consider the properties stated in Lemma 2.2 since the con-
dition of continuous differentiability and (2.6) is weaker than analyticity condition.
Moreover, the condition in Lemma 2.2 is sufficient to establish the main result in
this paper and it is satisfied in much more situations if one thinks of generalization
(see remarks in Section 3).

As a consequence of (2.3), the steady state solution Ū ≡ M of (2.1) is globally
exponentially stable in Z. Following this, it can be seen that (1.1)-(1.2) is equivalent
to the following semilinear parabolic equation

∂u

∂t
= d

∂2u

∂x2
− q

∂u

∂x
+ f̃(t, u), (t, x) ∈]0,∞[×]0, l[ ,

u(0, x) = u0(x), x ∈]0, l[ ,

d
∂u

∂x
(t, 0) = q(u(t, 0)− Sin);

∂u

∂x
(t, l) = 0, t ∈]0,∞[ ,

(2.7)

where f̃(t, u) = −µ(u)(U(t) − u) and U(t) is the solution of the linear equation
(2.1). We have that f̃ is continuous in t and locally Lipschitz continuous in u,
uniformly in t and lim

t→∞
f̃(t, u) = g̃(u) = −µ(u)(M − u) uniformly in u on bounded
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subsets of Z under assumptions (A1)-(A2). Equation (2.7) is then asymptotically
autonomous according to the previous definition and its limiting equation is

∂u

∂t
= d

∂2u

∂x2
− q

∂u

∂x
− µ(u)(M − u), (t, x) ∈]0,∞[×]0, l[ ,

u(0, x) = u0(x), x ∈]0, l[ ,

d
∂u

∂x
(t, 0) = q(u(t, 0)− Sin);

∂u

∂x
(t, l) = 0, t ∈]0,∞[ .

(2.8)

3. Main results

We give here our main result on the asymptotic behavior of solutions of the
nonautonomous equation (2.7) (and equivalently the system (1.1)-(1.2)). Equation
(2.8) is also analyzed.

3.1. The nonautonomous equation. Instead of (2.7) and (2.8), we consider the
following equations

∂u

∂t
= d

∂2u

∂x2
− q2

4d
u + f(t, u), (t, x) ∈]0,∞[×]0, l[ ,

u(0, x) = u0(x), x ∈]0, l[ ,

d
∂u

∂x
(t, 0) =

q

2
u(t, 0); d

∂u

∂x
(t, l) = −q

2
u(t, l), t ∈]0,∞[

(3.1)

and
∂u

∂t
= d

∂2u

∂x2
− q2

4d
u + g(u), (t, x) ∈]0,∞[×]0, l[ ,

u(0, x) = u0(x), x ∈]0, l[,

d
∂u

∂x
(t, 0) =

q

2
u(t, 0), d

∂u

∂x
(t, l) = −q

2
u(t, l), t ∈]0,∞[ ,

(3.2)

where f : [0,∞[×Z → Z is continuous and f :]0,∞[×Z → Z, g : Z → Z are
continuously differentiable and limt→∞ f(t, u) = g(u) uniformly in u on bounded
subsets of Z. These equations are deduced from (2.7) and (2.8) respectively by
introducing u(t, x) = e−

q
2d x(v(t, x) − Sin) for any solution v of (2.7) (respectively

(2.8)) as in Section 2. So, it is equivalent to study (3.1) in order to understand
the behavior of solutions of (2.7). Note that for any u0 ∈ Z, (3.1) (resp. (3.2))
has a unique mild solution on some interval [0, tu[, that is: u ∈ C([0,, tu[;Z) and
is solution of the integral equation u(t) = T (t)u0 +

∫ t

0
T (t − s)f(s, u(s))ds (resp.

u(t) = T (t)u0 +
∫ t

0
T (t− s)g(u(s))ds) on [0, tu[.

Lemma 3.1. Assume that (A1)-(A2) hold. Then
(i) For any u0 ∈ Z, the mild solution u(t) of (3.1) (resp. of (3.2)) is a

classical solution; i.e., u ∈ C([0, tu[;Z) ∩ C1(]0, tu[;Z), u(t) ∈ D(A), for
all 0 < t < tu and u(t) satisfies (3.1) (resp. (3.2)), where [0, tu[ is the
maximum interval of existence of u(t).

(ii) If u(t) is bounded in Z then, for any t0 > 0 the subsets {Au(t), t ≥ t0} and
{∂u(t)

∂t , t ≥ t0} are bounded in Z.

Proof. We give the proof only for solutions of (3.1) since the other case is similar.
(i) The mild solution u(t) of (3.1) is given by

u(t) = T (t)u0 +
∫ t

0

T (t− s)f(s, u(s))ds, 0 < t < tu.
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Since T (t) is continuously differentiable, we have T (t)u0 ∈ D(A), for 0 < t < tu
and AT (t) ∈ L(Z), for t > 0. Let ε, T0 and T1 be such that 0 < ε < T0 ≤ T1 < tu
and rewrite the equality above as follows

u(t) = T (t− ε)u(ε) +
∫ t

ε

T (t− s)f(s, u(s))ds, ε ≤ t ≤ T1.

The map t → T (t−ε)u(ε) is continuously differentiable on ]ε, T1] and T (t−ε)u(ε) ∈
D(A) fo rall t ∈]ε, T1]. Let

v(t) =
∫ t

ε

T (t− s)f(s, u(s))ds, ε ≤ t ≤ T1.

Since f : [ε, T1] × Z → Z is continuously differentiable, by [12, Theorem 1.5], v is
continuously differentiable on ]ε, T1] and if w(t) denotes the solution of the integral
equation

w(t) = T (t−ε)f(ε, u(ε))+
∫ t

ε

T (t−s)
∂

∂s
f(s, u(s))ds+

∫ t

ε

T (t−s)
∂

∂u
f(s, u(s))w(s)ds

on [ε, T1]. Then

dv

dt
(t) = w(t) +

∫ t

ε

AT (t− ε)
∂

∂u
f(s, u(s))u(ε)ds, ∀ t ∈]ε, T1].

Therefore, v(t) ∈ D(A) for all t ∈]ε, T1]. Hence, u(t) = T (t−ε)u(ε)+v(t) ∈ D(A) for
all t ∈ [T0, T1] and ∂u

∂t ∈ C([T0, T1]; Z). Since T0 and T1 are any given numbers in
]0, tu[, we have u ∈ C([0, tu[; Z)∩C1(]0, tu[; Z) and u(t) ∈ D(A) for all 0 < t < tu.
Moreover, u(t) satisfies (3.1) on [0, tu[.
(ii) Let 0 < a < t0 and ‖u(t)‖Z ≤ N0, ‖f(t, u(t))‖Z ≤ N1, for all t ≥ 0. We have

Au(t0 + t) = AT (t0)u(t) +
∫ t0−a

0

AT (t0 − s)f(s + t, u(s + t))ds

+
∫ t0

t0−a

AT (t0 − s)f(s + t, u(s + t))ds.

By (2.6), we have

‖AT (t0)u(t)‖Z +
∫ t0−a

0

‖AT (t0 − s)‖ ‖f(s + t, u(s + t))‖Zds

≤ C0N0

t0
+ C0N1 ln(

t0
a

),
(3.3)

where ‖AT (t)‖ denotes the norm of AT (t) in L(Z). Moreover, one can check readily
that ∫ t0

t0−a

AT (t0 − s)f(s + t, u(s + t))ds

=
∫ t0

t0−a

AT (t0 − s) (f(s + t, u(s + t))− f(t0 + t, u(s + t))) ds

+
∫ t0

t0−a

AT (t0 − s) (f(t0 + t, u(s + t))− f(t0 + t, u(t0 + t))) ds

+
∫ t0

t0−a

AT (t0 − s)f(t0 + t, u(t0 + t))ds.
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Under Hypotheses (A1) and (A2), µ(r) is bounded as r → ∞ and f is locally
Lipschitz continuous in u, uniformly in t. Then, let µ0 be a constant such that
|µ(r)| ≤ µ0 for all r ∈ R and let L0 be the (local) Lipschitz constant of f with
respect to the second variable since u(t) is bounded. Using (2.3) and (2.6) we have,
for all s ∈ [t0 − a, t0],

‖f(s + t, u(s + t))− f(t0 + t, u(s + t))‖Z ≤ µ0‖T (s + t)V0 − T (t0 + t)V0‖Z

≤ µ0(t0 − s)‖T (t)‖ ‖AT (s)‖ ‖V0‖Z

≤ µ0C0
(t0 − s)
t0 − a

‖V0‖Z ,

where V0(x) = e−
q
2d x(U0(x) − M) for all x ∈ [0, l] (and T (τ)V0 is a solution of

(2.2)). Moreover,

‖
∫ t0

t0−a

AT (t0 − s)f(t0 + t, u(t0 + t))ds‖Z

= ‖(I − T (a))f(t0 + t, u(t0 + t))‖Z ≤ 2N1.

It follows that

‖
∫ t0

t0−a

AT (t0 − s)f(s + t, u(s + t))ds‖Z

≤ aC2
0µ0‖V0‖Z

t0 − a
+ 2N1 + L0

∫ t0

t0−a

‖AT (t0 − s)‖ ‖u(s + t))− u(t0 + t)‖Z .

Let ∆s = t0 − s, for all s ∈ [t0 − a, t0]. We have ∆s ≥ 0 and

‖u(s + t)− u(t0 + t)‖Z

≤ ‖(T (t0)− T (s))u(t)‖Z +
∫ t0

max(s−∆s,0)

‖T (t0 − τ)f(τ + t, u(τ + t))‖Zdτ

+
∫ s

max(s−∆s,0)

‖T (s− τ)f(τ + t, u(τ + t))‖Zdτ

+
∫ max(s−∆s,0)

0

‖ (T (t0 − τ)− T (s− τ)) f(τ + t, u(τ + t))‖Zdτ.

Then,

‖u(s + t)− u(t0 + t)‖Z

≤ C0N0

t0 − a
∆s + 3N1∆s

+
∫ s

min(s,∆s)

‖ (T (τ + ∆s)− T (τ)) f(s− τ + t, u(s− τ + t))‖Zdτ

≤ C0N0

t0 − a
∆s + 3N1∆s

+
∫ s

min(s,∆s)

∫ ∆s

0

‖T (σ)‖ ‖AT (τ)‖ ‖f(s− τ + t, u(s− τ + t))‖Zdσdτ.
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Using (2.3) and (2.6) again and the estimate on f , we have

‖u(s + t)− u(t0 + t)‖Z ≤
C0N0

t0 − a
∆s + 3N1∆s +

∫ s

min(s,∆s)

C0N1

τ
∆sdτ

≤ C0N0

t0 − a
∆s + 3N1∆s + C0N1 ln(

s

min(s,∆s)
)∆s

≤
(

C0N0

t0 − a
+ 3N1 + C0N1 max

(
ln(

s

t0 − a
), ln(

s

a
)
))

∆s

≤
(

C0N0

t0 − a
+ 3N1 + C0N1N2

)
(t0 − s),

where N2 = max
(
ln( t0

t0−a ), ln( t0
a )

)
. Then, using (2.6) once again, we have

‖
∫ t0

t0−a

AT (t0 − s)f(s + t, u(s + t))ds‖Z

≤ aC2
0µ0‖V0‖Z

t0 − a
+ 2N1 + aL0C0

( C0N0

t0 − a
+ 3N1 + C0N1N2

)
.

(3.4)

It follows from (3.3) and (3.4) that

‖Au(t0 + t)‖Z ≤
C0N0

t0
+ C0N1 ln(

t0
a

) +
aC2

0µ0‖V0‖Z

t0 − a
+ 2N1

+ aL0C0

( C0N0

t0 − a
+ 3N1 + C0N1N2

)
,

for any t ≥ 0. Hence, Au(t0 + t) remains bounded in Z for t ≥ 0. Since
‖f(t, u(t))‖Z ≤ N1 and u(t) is a classical solution of (3.1) then, ∂u

∂t (t0 + t) also
remains bounded for t ≥ 0 and Lemma 3.1 is proved. �

Lemma 3.2. Assume that (A1) and (A2) hold. Let u(t) be a bounded solution of
(3.1) (resp. of (3.2)) then, K = {u(t), t ≥ 0} is compact in Z, where E denotes
the closure of E.

Proof. By Lemma 2.2, T (t) is compact for t > 0. As u(t) is bounded in Z, we have
‖f(t, u(t))‖Z ≤ N , for t ≥ 0 where N > 0. The compactness of K follows from [12,
Lemma 2.4]. �

Let us define the functional

J(t, v) =
∫ l

0

(d

2
(∂v

∂x

)2 −
∫ v

0

F (t, x, w)dw
)
dx +

q

4
(v2(0) + v2(l)),

where F (t, x, w) = −
[

q2

4dw + e−αxµ(eαxw + Sin)(U(t, x)− eαxw − Sin)
]
, α = q

2d .
For any solution u(t) of (3.1), J(t, u(t)) is defined and the following statement
holds.

Lemma 3.3. If u(t) is a solution of (3.1), then

d

dt
(J(t, u(t))) =

∫ l

0

−
(∂u

∂t

)2
dx−

∫ l

0

( ∫ u(t,x)

0

∂F

∂t
(t, x, w) dw

)
dx

for 0 < t < tu.
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Proof. First, we deduce from Lemma 3.1 (i) and [6, Chap 3 Theorem 10] that for
any u0 ∈ Z the solution u(t) of (3.1) has continuous partial derivatives ∂3u

∂x3 and
∂2u
∂t∂x on ]0, tu[×]0, l[. Then the following calculation is well founded. By deriving
and integrating by parts, we have

∂

∂t

∫ l

0

(d

2

(∂u

∂x

)2

−
∫ u

0

F (t, x, w)dw
)
dx

=
∫ l

0

(
d

∂2u

∂t∂x

∂u

∂x
− F (t, x, u)

∂u

∂t

)
dx−

∫ l

0

∫ u(t,x)

0

∂F

∂t
(t, x, w)dwdx

=
∫ l

0

−
(

∂u

∂t

)2

dx + d
∂u

∂t

∂u

∂x
|x=l − d

∂u

∂t

∂u

∂x
|x=0 −

∫ l

0

∫ u(t,x)

0

∂F

∂t
(t, x, w)dwdx .

Since u(t) satisfies the boundary conditions in (3.1),

d
∂u

∂t

∂u

∂x
|x=l − d

∂u

∂t

∂u

∂x
|x=0 = −q

4
∂

∂t

(
v2(t, 0) + v2(t, l)

)
.

Hence,

d

dt
(J(t, u(t))) =

∫ l

0

−
(∂u

∂t

)2

dx−
∫ l

0

∫ u(t,x)

0

∂F

∂t
(t, x, w)dwdx,

for 0 < t < tu and for any solution u(t) of (3.1). �

Now we can state the main result dealing with the asymptotic behavior of solu-
tions of (3.1).

Theorem 3.4. Assume that (A1) and (A2) hold and let u0 ∈ Z be such that u(t) is
a bounded solution of (3.1). Then, the omega limit set ω(u0) of u(t) is nonempty,
it is contained in C2[0, l] and it consists of steady state solutions of (3.2).

Proof. Let K = {u(t), t ≥ 0}. By Lemma 3.2, K is compact in Z. Then, ω(u0) is
nonempty. Let ϕ ∈ ω(u0), there exists a sequence (tn)n≥0 such that tn → +∞ and
u(tn) → ϕ in Z as n → +∞. Let un = u(tn) and vn(t) = u(t + tn) for n ≥ 0 and
t ≥ 0. We have

vn(t) = T (t)un +
∫ t+tn

tn

T (t + tn − s)f(s, u(s))ds

= T (t)un +
∫ t

0

T (t− s)f(s + tn, vn(s))ds.

(3.5)

The set B = {vn(t), n ≥ 0, t ≥ 0} is bounded in Z and f is locally Lipschitz
continuous in u, uniformly in t. Moreover,

‖f(s + tn, vn(s))− f(s + tm, vn(s))‖Z ≤ µ0‖T (tn)V0 − T (tm)V0‖Z , for all s ≥ 0,

where µ0 is a constant such that |µ(r)| ≤ µ0 for all r ∈ R and V0(x) = e−αx(U0(x)−
M) for all x ∈ [0, l]. Then, by Gronwall’s inequality, we have: For all t0 > 0 there
exists C > 0 such that

sup
0≤t≤t0

‖vm(t)− vn(t)‖Z ≤ C (‖um − un‖Z + µ0‖T (tm)V0 − T (tn)V0‖Z) . (3.6)

It follows from (3.6) that there exists a continuous function h : [0,∞[→ Z such that

lim
n→∞

sup
0≤t≤t0

‖vn(t)− h(t)‖Z = 0 for any given t0 > 0 .
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On the other hand, for all t > 0,

lim
n→∞

‖f(t + tn, vn(t))− g(vn(t))‖Z ≤ lim
n→∞

sup
w∈B

‖f(t + tn, w)− g(w)‖Z = 0. (3.7)

So, rewriting (3.5) as

vn(t) = T (t)un +
∫ t

0

T (t− s)(f(s + tn, vn(s))− g(vn(s))) +
∫ t

0

T (t− s)g(vn(s))ds

and passing to the limit when n → +∞, we have

h(t) = T (t)ϕ +
∫ t

0

T (t− s)g(h(s))ds, t ≥ 0. (3.8)

It follows from (3.8) that h(t) is a mild solution of (3.2) and by Lemma 3.1 (i), h(t)
is a classical solution of (3.2). By Lemma 3.1 (i), we have vn(t) ∈ D(A) for n ≥ 0
and t > 0. Moreover,

Avn(t) = AT (t)un +
∫ t

0

AT (t− s)(f(s + tn, vn(s))− g(vn(s)))ds

+
∫ t

0

AT (t− s)g(vn(s))ds.

Since T (t) is continuously differentiable, AT (t) ∈ L(Z) for t > 0. Then, using (3.7)
and (3.8), we have

lim
n→∞

Avn(t) = Ah(t) in Z for t > 0.

Hence,

lim
n→∞

∂vn(t)
∂t

=
∂h(t)

∂t
in Z for t > 0.

Now we aim to prove that ∂h
∂t = 0 in ]0, ∞[. Let t0 > 0, by Lemma 3.3 we have∫ t

t0

∫ l

0

(∂u

∂s

)2
dx ds = J(t0, u(t0))− J(t, u(t))−

∫ t

t0

∫ l

0

∫ u(s,x)

0

∂F

∂s
(s, x, w) dw dx ds

for t ≥ t0. Since u(t) is bounded in Z, it follows from Lemma 3.1 (ii) that J(t, u(t))
remains bounded for t ≥ t0. Let

ξ(t) =
∫ t

t0

∫ l

0

∫ u(s,x)

0

∂F

∂s
(s, x, w) dw dx ds

=
∫ t

t0

∫ l

0

∫ u(s,x)

0

e−αxµ(eαxw + Sin)
∂U

∂s
(s, x)dw dx ds

=
∫ t

t0

∫ l

0

∂

∂s

(
e−αx(U(s, x)−M)

)
k(s, x) dx ds,

where k(t, x) =
∫ u(t,x)

0
µ(eαxw + Sin)dw, α = q

2d and U(t, x) is the solution of the
linear equation (2.1). Then,

ξ(t) = −
∫ l

0

∫ t

t0

(
e−αx(U(s, x)−M)

) ∂k

∂s
(s, x)dsdx

+
∫ l

0

e−αx[(U(t, x)−M)k(t, x)− (U(t0, x)−M)k(t0, x)]dx
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and ∂k
∂t (t, x) = µ(eαxu(t, x) + Sin)∂u

∂t (t, x). By Lemma 3.1 (ii), ∂u
∂t (t) remains

bounded in Z for t ≥ t0 and therefore |∂k
∂t (t, x)| remains also bounded for t ≥ t0

and x ∈ [0, l]. Furthermore, by (2.3) we have

sup
0≤x≤l

|e−αx(U(t, x)−M)| ≤ sup
0≤x≤l

|e−αx(U0(x)−M)|e−δt, ∀ t ≥ 0.

Since u(t) is bounded in Z, it follows that ξ(t) is bounded for t ≥ t0. Hence,∫ ∞

t0

∫ l

0

(∂u

∂t

)2
dx dt < ∞, ∀ t0 > 0. (3.9)

Let 0 < t0 < t1 < ∞. From (3.9), we have

lim
n→∞

∫ t1

t0

∫ l

0

(∂vn

∂t
(t)

)2
dx dt = lim

n→∞

∫ t1+tn

t0+tn

∫ l

0

(∂u

∂t
(t)

)2
dx dt = 0.

Then, regarding h as a function of (t, x), we have∫ t1

t0

∫ l

0

(∂h

∂t

)2
dx dt = 0.

It follows that ∂h
∂t = 0 on any compact set [t0, t1]×[0, l]. Then, ∂h

∂t = 0 in ]0,∞[×[0, l]
and therefore h(t) = ϕ in Z for t ≥ 0. Hence, ϕ ∈ D(A) and Aϕ + g(ϕ) = 0. This
proves that ω(u0) ⊂ C2[0, l] and for any ϕ ∈ ω(u0), we have

d
∂2ϕ

∂x2
− q2

4d
ϕ + g(ϕ) = 0, x ∈]0, l[,

d
∂ϕ

∂x
(0)− q

2
ϕ(0) = 0, d

∂ϕ

∂x
(l) +

q

2
ϕ(l) = 0.

�

Remarks: Theorem 3.4 can be stated in a more general form: Consider an asymp-
totically autonomous nonlinear equation of type (1.3) with limiting equation (1.4)
on a Banach space Z. Assume that the linear operator A is the infinitesimal gen-
erator of a C0-semigroup of contractions on Z which is continuously differentiable
and satisfies (2.6) and that f is Lipschitz continuous (locally with respect to u) in
the sense that for any bounded subset B of Z, there is a constant C > 0 such that
‖f(t, u)− f(t′, v)‖Z ≤ C(|t− t′|+ ‖u− v‖Z) for t, t′ ∈ R+, u, v ∈ B. Let u(t) be a
precompact, classical solution of (1.3) satisfying∫ ∞

t0

‖∂u

∂t
(t)‖Zdt < ∞, for some t0 > 0.

Then, the omega-limit set ω(u0) of u(t) is nonempty, it is contained in D(A) and it
consists of steady state solutions of (1.4). The proof is almost the same one as above.
However, the existence of h is proved by application of Ascoli-Arzela’s Theorem to
the subset {vn, n ≥ 0} of C(]0,∞[; Z) and the equicontinuity is established in the
same manner as the estimates of ‖u(s + t) − u(t0 + t)‖Z in the proof of Lemma
3.1(ii).

Now we can apply Theorem 3.4 to prove the convergence of solutions of (2.7).
Let

K0 = {u ∈ Z, 0 ≤ u(x) ≤ U0(x)}.
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Theorem 3.5. Assume that (A1) and (A2) hold. Then, for any u0 ∈ K0, there
exists a unique steady state solution ū of (2.8) such that the solution u(t) of (2.7)
converges to ū in Z.

Proof. Let u0 ∈ K0. U(t, x) is then an upper-solution of (2.7) and by the standard
comparison Theorem, we have 0 ≤ u(t, x) ≤ U(t, x), for t ≥ 0, and x ∈ [0, l]
(see [13, Chap 3 Theorem 8]. As U(t, x) is bounded then u(t, x) is also bounded
and by Theorem 3.4 we have that ω(u0) is nonempty and consists of steady state
solutions of (2.8). Then, it follows from [10, Theorem A] that ω(u0) contains
exactly one steady state solution (the proof in [10] can be easily extended to the
nonautonomous case since as in the autonomous case ω(u0) consists of solutions of
autonomous ordinary differential equations). �

3.2. The limiting equation. Let

KM = {u ∈ Z, 0 ≤ u(x) ≤ M} .

Proposition 3.6. Assume that(A1) and (A2) hold. For any u0 ∈ KM , the solution
u(t) of (2.8) remains in KM (i.e. for all t ≥ 0, u(t) ∈ KM ) and there exists a unique
steady state solution ū of (2.8) such that u(t) converges to ū in Z.

Proof. Let h(w) = µ(w)|M−w|, for w ∈ R and w0 = max(Sin, ‖u0‖Z). Assumption
(A1) implies

−µ(w)(M − w) ≤ h(w), ∀ w ∈ R.

Consider the solution w(t) of the ordinary differential equation

dw

dt
= h(w),

w(0) = w0.

We deduce from the standard comparison theorem that

0 ≤ u(t, x) ≤ w(t) ≤ M, for t ≥ 0 and all x ∈ [0, l].

The convergence of u(t) to steady state solution of (2.8) follows from Theorem 3.4
above and [10, Theorem A]. To apply Theorem 3.4 to (2.8), we have to consider
the functional

J1(u) =
∫ l

0

(d

2
(∂u

∂x

)2 −
∫ u

0

F (x, w)dw
)
dx +

q

4
(
u2(0) + u2(l)

)
,

where F (x,w) = −( q2

4dw+e−αxµ(eαxw+Sin)(Xin−eαxw)) for x ∈ [0, l] and w ∈ R,

instead of J(t, u(t)). Therefore, d
dtJ1(u(t)) = −

∫ l

0

(
∂u
∂t

)2
dx for solutions of the

corresponding transformed equation (3.2). �
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[3] A. K. Dramé, J. Harmand, A. Rapaport and C. Lobry; Multiple Steady State Profiles in

Interconnected Biological Systems, to appear in Math. and Computer Modeling of Dynamical

Systems.
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