Electronic Journal of Differential Equations, Vol. 2004(2004), No. 13, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

LOCAL WELL-POSEDNESS FOR A HIGHER ORDER NONLINEAR SCHRÖDINGER EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES

XAVIER CARVAJAL

ABSTRACT. We prove that the initial value problem associated with $\partial_t u + i\alpha \partial_x^2 u + \beta \partial_x^3 u + i\gamma |u|^2 u = 0, \quad x,t \in \mathbb{R},$ is locally well-posed in H^s for s > -1/4.

1. INTRODUCTION

In this work, we study a particular case of the initial value problem (IVP)

$$\partial_t u + i\alpha \partial_x^2 u + \beta \partial_x^3 u + F(u) = 0, \quad x, t \in \mathbb{R}, u(x, 0) = u_0(x).$$
(1.1)

Here u is a complex valued function, $F(u) = i\gamma |u|^2 u + \delta |u|^2 \partial_x u + \epsilon u^2 \partial_x \overline{u}, \gamma, \delta, \epsilon \in \mathbb{C}$ and $\alpha, \beta \in \mathbb{R}$ are constants.

Hasegawa and Kodama [10, 14] proposed (1.1) as a model for propagation of pulse in optical fiber. We will study the IVP (1.1) in Sobolev space $H^{s}(\mathbb{R})$ under the condition $\delta = \epsilon = 0, \ \beta \neq 0$ (see case (iv) in Theorem 1.1 below). When $\gamma, \delta, \epsilon \in \mathbb{R}$, it was shown in [16] that the flow associated to the IVP (1.1) leaves the following quantity

$$I_1(v) = \int_{\mathbb{R}} |v|^2(x,t) \, dx, \tag{1.2}$$

conserved in time. Also, when $\delta - \gamma = \epsilon \neq 0$ we have the following quantity conserved:

$$I_2(v) = c_1 \int_{\mathbb{R}} |\partial_x v|^2(x,t) \, dx + c_2 \int_{\mathbb{R}} |v|^4(x,t) \, dx + c_3 \int_{\mathbb{R}} v(x,t) \, \partial_x \overline{v(x,t)} \, dx, \quad (1.3)$$

where $c_1 = 3\beta \epsilon$, $c_2 = -\epsilon(\epsilon + \delta)/2$ and $c_3 = i(\alpha(\epsilon + \delta) - 3\beta\gamma)$. These quantities were used in [16] to establish global well-posedness for (1.1) in $H^s(\mathbb{R})$, $s \ge 1$. Note that the quantity $i \int_{\mathbb{R}} v(x,t) \partial_x \overline{v(x,t)} dx$ in (1.3) is real since

$$\partial_t (i \int_{\mathbb{R}} v(x,t) \partial_x \overline{v(x,t)} dx) = 2\epsilon \operatorname{Im}(\int_{\mathbb{R}} [v(x,t) \partial_x \overline{v(x,t)}]^2 dx).$$

trilinear estimate, Bourgain spaces.

²⁰⁰⁰ Mathematics Subject Classification. 35Q58, 35Q60.

Key words and phrases. Schrödinger equation, Korteweg-de Vries equation,

^{©2004} Texas State University - San Marcos.

Submitted July 30, 2003. Published January 23, 2004.

Partially supported by FAPESP, Brazil.

We say that the IVP (1.1) is locally well-posed in X (Banach space) if the solution uniquely exists in certain time interval [-T, T] (unique existence), the solution describes a continuous curve in X in the interval [-T, T] whenever initial data belongs to X (persistence), and the solution varies continuously depending upon the initial data (continuous dependence) i.e. continuity of application $u_0 \mapsto u(t)$ from X to $\mathcal{C}([-T, T]; X)$. We say that the IVP (1.1) is globally well-posed in X if the same properties hold for all time T > 0. If some hypothesis in the definition of local well-posed fails, we say that the IVP is ill-posed.

Particular cases of (1.1) are the following:

• Cubic nonlinear Schrödinger equation (NLS), $(\alpha = \mp 1, \beta = 0, \gamma = -1, \delta = \epsilon = 0)$.

$$iu_t \pm u_{xx} + |u|^2 u = 0, \quad x, t \in \mathbb{R}.$$
 (1.4)

The best known local result for the IVP associated to (1.4) is in $H^s(\mathbb{R})$, $s \ge 0$, obtained by Tsutsumi [26].

• Nonlinear Schrödinger equation with derivative $(\alpha = -1, \beta = 0, \gamma = 0, \delta = 2\epsilon)$.

$$iu_t + u_{xx} + i\lambda(|u|^2 u)_x = 0, \quad x, t \in \mathbb{R}.$$
 (1.5)

The best known local result for the IVP associated to (1.5) is in $H^s(\mathbb{R})$, $s \ge 1/2$, obtained by Takaoka [24].

• Complex modified Korteweg-de Vries (mKdV) equation ($\alpha = 0, \beta = 1, \gamma = 0, \delta = 1, \epsilon = 0$).

$$u_t + u_{xxx} + |u|^2 u_x = 0, \quad x, t \in \mathbb{R}.$$
 (1.6)

If u is real, (1.6) is the usual mKdV equation and Kenig et al. [11] proved the IVP associated to it is locally well-posed in $H^s(\mathbb{R})$, $s \ge 1/4$.

• When $\alpha \neq 0$ is real and $\beta = 0$, we obtain a particular case of the well-known mixed nonlinear Schrödinger equation

$$u_t = i\alpha u_{xx} + \lambda (|u|^2)_x u + g(u), \quad x, t \in \mathbb{R},$$
(1.7)

where g satisfies some appropriate conditions. Ozawa and Tsutsumi in [19] proved that for any $\rho > 0$, there is a positive constant $T(\rho)$ depending only on ρ and g, such that the IVP (1.7) is locally well-posed in $H^{1/2}(\mathbb{R})$, whenever the initial data satisfies

$$||u_0||_{\mathrm{H}^{1/2}} \le \rho.$$

There are other dispersive models similar to (1.1). The interested readers can see the following works and the references therein [1, 7, 20, 21, 23].

Laurey [17, 16] proved that the IVP associated to (1.1) is locally well-posed in $H^{s}(\mathbb{R}), s > 3/4$. Staffilani [22] improved this result by proving the IVP associated to (1.1) is locally well-posed in $H^{s}(\mathbb{R}), s \geq 1/4$.

When α, β are functions of t, we proved in [2, 3] local well-posedness in $H^s(\mathbb{R})$, $s \geq 1/4$. Also we studied in [2, 5] the unique continuation property for the solution of (1.1). Regarding the ill-posedness of the IVP (1.1), we proved in [4] the following theorem.

Theorem 1.1. The mapping data-solution $u_0 \mapsto u(t)$ for the IVP (1.1) is not C^3 at origin in the following cases:

- (i) $\beta = 0, \ \alpha \neq 0, \ \delta = \epsilon = 0, \ \gamma \neq 0 \ for \ s < 0.$
- (ii) $\beta = 0, \alpha \neq 0, \delta \neq 0 \text{ or } \epsilon \neq 0 \text{ for } s < 1/2.$
- (iii) $\beta \neq 0, \ \delta \neq 0 \ or \ \epsilon \neq 0 \ for \ s < 1/4.$
- (iv) $\beta \neq 0$, $\delta = \epsilon = 0$, $\gamma \neq 0$ for s < -1/4.

In this work, we consider the case (iv) and prove the following result.

Theorem 1.2. Let $\beta \neq 0$ real and $\gamma \neq 0$ complex, then the following IVP

$$\partial_t u + i\alpha \partial_x^2 u + \beta \partial_x^3 u + i\gamma |u|^2 u = 0, \quad x, t \in \mathbb{R}, u(x, 0) = u_0,$$
(1.8)

is locally well-posed in $H^s(\mathbb{R})$, s > -1/4.

The following trilinear estimate will be fundamental in the proof of Theorem 1.2.

Theorem 1.3. Let $-1/4 < s \le 0$, b > 7/12, b' < s/3, then we have

$$\|uv\overline{w}\|_{\mathbf{X}^{s,b'}} \le C \|u\|_{\mathbf{X}^{s,b}} \|v\|_{\mathbf{X}^{s,b}} \|w\|_{\mathbf{X}^{s,b}}.$$
(1.9)

where

$$\|u\|_{\mathbf{X}^{s,b}} = \|\langle\xi\rangle^{s} \langle \tau - \phi(\xi)\rangle^{b} \hat{u}\|_{\mathbf{L}^{2}_{\xi}\mathbf{L}^{2}_{\tau}}, \quad \langle\xi\rangle = 1 + |\xi|, \quad \phi(\xi) = \alpha\xi^{2} + \beta\xi^{3}.$$

Theorem 1.4. The trilinear estimate (1.9) fails if s < -1/4 and $b \in \mathbb{R}$.

Remarks. • When $\gamma \in \mathbb{R}$, as (1.1) preserves L^2 norm, Theorem 1.2 permits to obtain global existence in L^2 .

• From Lemma 2.3 we note that b = 7/12 + is the best possible for s = -1/4 +, in the trilinear estimate (1.9).

• The trilinear estimate is valid for all s > 0, as it can be seen by combining $\langle \xi \rangle^s \leq \langle \xi - (\xi_2 - \xi_1) \rangle^s \langle \xi_2 \rangle^s \langle \xi_1 \rangle^s$ and the estimate (1.9) for s = 0.

• We will use the notation $||u||_{\{s,b\}} := ||u||_{X^{s,b}}$.

• When $\alpha = 0, \beta = 1$, we have the usual bilinear estimate due to Kenig et al. [12],

$$\|(uv)_x\|_{\{-3/4+,-1/2+\}} \le C \|u\|_{\{-3/4+,1/2+\}} \|v\|_{\{-3/4+,1/2+\}}.$$

Also we have the 1/4 trilinear estimate due to Tao [25],

$$\|(uvw)_x\|_{\{1/4,-1/2+\}} \le C \|u\|_{\{1/4,1/2+\}} \|v\|_{\{1/4,1/2+\}} \|w\|_{\{1/4,1/2+\}}.$$

2. Proofs of Main Result

Proof of Theorem 1.4. As in [12] consider the set

$$B := \{ (\xi, \tau); N \le \xi \le N + N^{-1/2}, |\tau - \phi(\xi)| \le 1 \},\$$

where $\phi(\xi) = \alpha \xi^2 + \beta \xi^3$. We have $|B| \sim N^{-1/2}$. Let us consider $\hat{v} = \chi_B$, it is not difficult to see that $\|v\|_{\{s,b\}} \leq N^s |B|^{1/2}$. Moreover

$$\mathcal{F}(|v|^2\overline{v}) := \chi_B * \chi_B * \chi_{-B} \gtrsim \frac{1}{N}\chi_A,$$

where A is a rectangle contained in B such that $|A| \sim N^{-1/2}$. Therefore

$$||v|^{2}\overline{v}||_{\{s,b'\}} = ||\langle\xi\rangle^{s}\langle\tau - \phi(\xi)\rangle^{b'}\mathcal{F}(|v|^{2}\overline{v})||_{\mathrm{L}^{2}_{\xi}\mathrm{L}^{2}_{\tau}} \gtrsim N^{s}\frac{1}{N}N^{-1/4} = N^{s-5/4}.$$

As a consequence, for large N the trilinear estimate fails if 3(s - 1/4) < s - 5/4, i.e. if s < -1/4.

Proof of Theorem 1.3. In Lemma 2.1 below, we gather some elementary estimates needed in the proof of Theorem 1.3, we need the following results from elementary calculus.

Lemma 2.1. (1) If
$$b > 1/2$$
, $a_1, a_2 \in \mathbb{R}$ then

$$\int_{\mathbb{R}} \frac{dx}{\langle x - a_1 \rangle^{2b} \langle x - a_2 \rangle^{2b}} \sim \frac{1}{\langle a_1 - a_2 \rangle^{2b}}.$$
(2.1)

(2) If $0 < c_1, c_2 < 1, c_1 + c_2 > 1, a_1 \neq a_2$, then

$$\int_{\mathbb{R}} \frac{dx}{|x-a_1|^{c_1}|x-a_2|^{c_2}} \lesssim \frac{1}{|a_1-a_2|^{(c_1+c_2-1)}}.$$
(2.2)

(3) Let $a \in \mathbb{R}$, $c_1 \leq c_2$, then

$$\frac{|x|^{c_1}}{\langle ax \rangle^{c_2}} \le \frac{1}{|a|^{c_1}}.$$
(2.3)

(4) Let $a, \eta \in \mathbb{R}, b > 1/2$, then

$$\int_{\mathbb{R}} \frac{dx}{\langle a(x^2 - \eta^2) \rangle^{2b}} \lesssim \frac{1}{|a\eta|}.$$
(2.4)

Now, let $f(\xi,\tau) = \langle \xi \rangle^s \langle \tau - \xi^3 \rangle^b \hat{u}, \ g(\xi,\tau) = \langle \xi \rangle^s \langle \tau - \xi^3 \rangle^b \hat{v}, \ h(\xi,\tau) = \langle \xi \rangle^s, \ \langle \tau - \xi^3 \rangle^b \hat{w}, \ \eta = (\xi,\tau), \ x = (\xi_1,\tau_1), \ y = (\xi_2,\tau_2).$ We have

$$\begin{aligned} \|uv\overline{w}\|_{\{s,b'\}} &= \|\int_{\mathbb{R}^4} f(\eta + x - y)g(y)\overline{h}(x)K(\eta, x, y)dxdy\|_{\mathcal{L}^2_{\eta}} \\ &\leq \|K(\eta, x, y)\|_{\mathcal{L}^{\infty}_{\eta}\mathcal{L}^2_{x,y}}\|f\|_{\mathcal{L}^2}\|g\|_{\mathcal{L}^2}\|h\|_{\mathcal{L}^2}, \end{aligned}$$

where

$$K(\eta, x, y) = \frac{\langle \xi + \xi_1 - \xi_2 \rangle^{\rho} \langle \xi_2 \rangle^{\rho} \langle \xi_1 \rangle^{\rho}}{r(\xi, \tau) \langle \tau_1 - \phi(\xi_1) \rangle^b \langle \tau_2 - \phi(\xi_2) \rangle^b \langle \tau + \tau_1 - \tau_2 - \phi(\xi + \xi_1 - \xi_2) \rangle^b}$$

and $r(\xi, \tau) = \langle \xi \rangle^{\rho} \langle \tau - \phi(\xi) \rangle^{-b'}, \ \rho = -s.$ Using (2.1) we obtain

$$\begin{split} I(\xi,\tau) &:= \|K\|_{\mathcal{L}^2_{x,y}}^2 \sim \frac{1}{r(\xi,\tau)^2} \int_{\mathbb{R}^2} \frac{G_{\rho}(\xi,\xi_1,\xi_2) \ d\xi_1 d\xi_2}{\langle \tau - \phi(\xi + \xi_1 - \xi_2) - \phi(\xi_2) + \phi(\xi_1) \rangle^{2b}} \\ &= \frac{1}{r(\xi,\tau)^2} \int_{\mathbb{R}^2} \frac{G_{\rho}(\xi,\xi_1,\xi_2) \ d\xi_1 d\xi_2}{\langle \tau - \phi(\xi) + g(\xi,\xi_1,\xi_2) \rangle^{2b}} \end{split}$$

where

$$G_{\rho}(\xi,\xi_{1},\xi_{2}) := \langle \xi + \xi_{1} - \xi_{2} \rangle^{2\rho} \langle \xi_{1} \rangle^{2\rho} \langle \xi_{2} \rangle^{2\rho},$$

$$g(\xi,\xi_{1},\xi_{2}) = (\xi_{1} - \xi_{2})(\xi + \xi_{2})(2\alpha + 3\beta(\xi - \xi_{1})).$$
(2.5)

Assuming $y = \tau - \phi(\xi)$, to get Theorem 1.3 it is sufficient to prove the following lemma.

Lemma 2.2. Let $0 \le \rho < 1/4$, b > 7/12, $b' < -\rho/3$. Then

$$I(\xi,y) := \frac{1}{\langle \xi \rangle^{2\rho} \langle y \rangle^{-2b'}} \int_{\mathbb{R}^2} \frac{G_{\rho}(\xi,-\xi_1,-\xi_2) d\xi_1 d\xi_2}{\langle y+g(\xi,\xi_1,\xi_2) \rangle^{2b}} \le C(\rho,b,b') < \infty,$$

where $C(\rho, b, b')$ is a constant independent of ξ and y.

To prove Lemma 2.2 we need to prove the following lemmas.

Lemma 2.3. Let $\rho < 1/4$. Then

$$I(0,0) = \int_{\mathbb{R}^2} \frac{G_{\rho}(0,-\xi_1,-\xi_2)d\xi_1d\xi_2}{\langle g(0,\xi_1,\xi_2)\rangle^{2b}} = \begin{cases} C(\rho,b) < \infty & \text{if } \rho + 1/3 < b \\ \infty & \text{if } \rho + 1/3 \ge b \end{cases}$$

where $C(\rho, b)$ is a constant.

We have that if b = 7/12 and $\rho = -s \ge 1/4$ then $I(0,0) = \infty$, therefore Lemma 2.3 shows that b = 7/12 + is the best possible when s = -1/4 + i.

Lemma 2.4. Let $0 \le \rho < 1/4$, b > 7/12. Then

$$I(\xi,0) = \frac{1}{\langle \xi \rangle^{2\rho}} \int_{\mathbb{R}^2} \frac{G_{\rho}(\xi,-\xi_1,-\xi_2) d\xi_1 d\xi_2}{\langle g(\xi,\xi_1,\xi_2) \rangle^{2b}} \le C(\rho,b),$$

where $C(\rho, b)$ is a constant independent of ξ .

For clarity in exposition, we consider the case $\alpha = 0$, $\beta = 1$, i.e. $\phi(\xi) = \xi^3$ (see the observation at the end of the proof of Lemma 2.2).

In the definition of $I(\xi, y)$ if we make the change of variables $\xi - \xi_1 := \xi \xi_1$, $\xi + \xi_2 := \xi \xi_2$ and $y = \xi^3 z$, then $I(\xi, y)$ becomes

$$I(\xi, z) = p(\xi, z) \int_{\mathbb{R}^2} \frac{H_{\rho}(\xi, \xi_1, \xi_2) d\xi_1 d\xi_2}{\langle \xi^3(z + F(\xi_1, \xi_2)) \rangle^{2b}},$$
(2.6)

where $p(\xi, z) = \xi^2 \langle \xi^3 z \rangle^{2b'} \langle \xi \rangle^{-2\rho}$, $F(\xi_1, \xi_2) = (2 - (\xi_1 + \xi_2))\xi_1\xi_2$ and

$$H_{\rho}(\xi,\xi_1,\xi_2) = \langle \xi(1-(\xi_1+\xi_2)) \rangle^{2\rho} \langle \xi(1-\xi_1) \rangle^{2\rho} \langle \xi(1-\xi_2) \rangle^{2\rho}$$

From here onwards we will suppose z > 0, because if z < 0 we can obtain the same result by symmetry (see Remark after Proposition 1).

Proof of Lemma 2.3. By symmetry it is sufficient to prove that the integrals

$$I_1(0,0) := \int_0^\infty \int_0^\infty \frac{G_\rho(0,-\xi_1,-\xi_2)d\xi_1d\xi_2}{\langle g(0,\xi_1,\xi_2)\rangle^{2b}},$$
$$I_2(0,0) := \int_0^\infty \int_0^\infty \frac{G_\rho(0,-\xi_1,\xi_2)d\xi_1d\xi_2}{\langle g(0,\xi_1,-\xi_2)\rangle^{2b}}$$

are finite. We will prove that $I_1(0,0)$ is finite only; the same proof works for $I_2(0,0)$. Also, by symmetry we can suppose that $0 \le \xi_2 \le \xi_1$. We have

$$\int_{1}^{\infty} d\xi_1 \int_{0}^{\xi_1} d\xi_2 \frac{G_{\rho}(0, -\xi_1, -\xi_2)}{\langle g(0, \xi_1, \xi_2) \rangle^{2b}} = \int_{1}^{\infty} d\xi_1 \int_{0}^{\xi_1/2} d\xi_2 + \int_{1}^{\infty} d\xi_1 \int_{\xi_1/2}^{\xi_1} d\xi_2 = I_{1,1} + I_{1,2}.$$
(2.7)

Since $0 \leq \xi_2 \leq \xi_1$, we have $G_{\rho}(0, -\xi_1, -\xi_2) \leq \langle \xi_1 \rangle^{4\rho} \langle \xi_2 \rangle^{2\rho}$. In $I_{1,1}$ we have $\xi_1/2 < \xi_1 - \xi_2 < \xi_1$, therefore if $b > \rho + 1/3$,

$$\begin{split} I_{1,1} &\lesssim \int_{1}^{\infty} \langle \xi_{1} \rangle^{4\rho} d\xi_{1} \int_{0}^{\xi_{1}/2} \frac{\langle \xi_{2} \rangle^{2\rho} d\xi_{2}}{\langle 3\xi_{1}^{2}\xi_{2} \rangle^{2b}} \\ &\lesssim \int_{1}^{\infty} \langle \xi_{1} \rangle^{4\rho} \Big(\frac{1}{\xi_{1}^{2}} + \frac{1}{\xi_{1}^{2+4\rho}} + \frac{1}{\xi_{1}^{2+4\rho}} \int_{1}^{3\xi_{1}^{3}/2} \frac{x^{2\rho} dx}{(1+x)^{2b}} \Big) d\xi_{1} \\ &= C(\rho, b) < \infty. \end{split}$$

Analogously we can prove that $I_{1,1} = \infty$ if $b \leq \rho + 1/3$. In $I_{1,2}$ we have $\xi_1/2 \leq \xi_2 \leq \xi_1$, so

$$I_{1,2} \lesssim \int_{1}^{\infty} \langle \xi_{1} \rangle^{4\rho} d\xi_{1} \int_{\xi_{1}/2}^{\xi_{1}} \frac{\langle \xi_{1} - \xi_{2} \rangle^{2\rho} d\xi_{2}}{\langle (\xi_{1} - \xi_{2}) \xi_{1}^{2} \rangle^{2b}} \\ = \int_{1}^{\infty} \langle \xi_{1} \rangle^{4\rho} d\xi_{1} \int_{0}^{\xi_{1}/2} \frac{\langle x \rangle^{2\rho} dx}{\langle \xi_{1}^{2} x \rangle^{2b}} \\ \lesssim C(\rho, b), \quad b > \rho + 1/3.$$

The propositions will be useful for proving Lemmas 2.2 and 2.4.

Proposition 1. Let $0 \le \rho < 1/4$, $b > 1/3 + 2\rho/3$, then we have

$$J_1 = \xi^{2+4\rho} \int_{\mathbb{R}^2} \frac{d\xi_1 d\xi_2}{\langle \xi^3(z+F) \rangle^{2b}} \le C,$$

where C is a constant independent of ξ and z.

Proof. If $\xi_1 \leq 0$, $\xi_2 \leq 0$, then $|z+F| \geq |\xi_1+\xi_2| |\xi_1\xi_2|$. Therefore by Lemma 2.3 and by symmetry, it is enough to consider $\xi_1 \geq 0$. We have $|z+F| = |\xi_1| |(\xi_2 + (\xi_1 - 2)/2)^2 - (\xi_1 - 2)^2/4 - z/\xi_1|$. Let $l^2 = (\xi_1 - 2)^2/4 + z/\xi_1$, $c(\rho) = (2 + 4\rho)/3$, then making change of variable $\eta = \xi_2 + (\xi_1 - 2)/2$ and using (2.2) and (2.3) we have

$$J_{1} = \xi^{2+4\rho} \int_{0}^{\infty} d\xi_{1} \int_{\mathbb{R}} \frac{d\eta}{\langle \xi^{3}\xi_{1}(\eta^{2} - l^{2}) \rangle^{2b}} \\ \lesssim \int_{0}^{\infty} d\xi_{1} \int_{\mathbb{R}} \frac{l \, dx}{[|\xi_{1}|l^{2}|x^{2} - 1|]^{c(\rho)}} \\ \lesssim \int_{0}^{\infty} \frac{d\xi_{1}}{|\xi_{1}|^{c(\rho)}|\xi_{1} - 2|^{(1+8\rho)/3}} \int_{\mathbb{R}} \frac{dx}{|x^{2} - 1|^{c(\rho)}} \\ \lesssim 2^{-(20\rho+1)/3}, \quad 0 < \rho < 1/4.$$

The case $\rho = 0$ follows from the case $0 < \rho < 1/4$, taking the limit.

Remark. When z < 0, we make $\xi_1 := -\xi_1$, $\xi_2 := -\xi_2$ then $|z + F| = |\xi_1||(\xi_2 + (\xi_1 + 2)/2)^2 - (\xi_1 + 2)^2/4 + z/\xi_1|$ and the proof is similar.

Proposition 2. Let $|\xi| > 1$, b > 1/2, $0 \le \rho < 1/4$. Then

$$J_2 = \xi^{2+4\rho} \int_0^\infty \xi_1^{4\rho} d\xi_1 \int_{\mathbb{R}} \frac{d\xi_2}{\langle \xi^3(z+F) \rangle^{2b}} \le C,$$

where C is a constant independent of ξ and z.

Proof. By Proposition 1 we can suppose $\xi_1 > 4$, so $(\xi_1 - 2) > \xi_1/2$. Using (2.4) and making change of variables as above, we have

$$J_2 \lesssim \frac{\xi^{2+4\rho}}{|\xi|^3} \int_4^\infty \frac{\xi_1^{4\rho}}{\xi_1 l} d\xi_1 \le C.$$

Proof of Lemma 2.4. Case $|\xi| \leq 1$. Let

$$A_{1} = \{(\xi_{1}, \xi_{2})/|\xi_{1}| > 2, |\xi_{2}| > 2\}, \quad A_{2} = \{(\xi_{1}, \xi_{2})/|\xi_{1}| \le 2, |\xi_{2}| \le 2\}, \\ A_{3} = \{(\xi_{1}, \xi_{2})/|\xi_{1}| \le 2, |\xi_{2}| > 2\}, \quad A_{4} = \{(\xi_{1}, \xi_{2})/|\xi_{1}| > 2, |\xi_{2}| \le 2\}.$$

Consider $I(\xi, 0) = \sum_{j=1}^{4} I_j(\xi, 0)$, where $I_j(\xi, 0)$ is defined in the region A_j . Obviously $I_2(\xi, 0) \leq C$. In A_1 we have $|\xi - \xi_1| > |\xi_1|/2$ and $|\xi + \xi_2| > |\xi_2|/2$, therefore Lemma 2.3 gives $I_1(\xi, 0) \leq C$. In A_3 we have $|\xi + \xi_2| > |\xi_2|/2$, and consequently

$$\begin{split} I_{3}(\xi,0) \lesssim &\frac{1}{\langle \xi \rangle^{2\rho}} \int_{A_{3}} \frac{\langle \xi_{2} \rangle^{4\rho} d\xi_{1} d\xi_{2}}{\langle (\xi_{1} - \xi_{2}) \xi_{2} (\xi - \xi_{1}) \rangle^{2b}} \\ &= \frac{1}{\langle \xi \rangle^{2\rho}} \int_{A_{3} \cap \{ |\xi_{1} - \xi_{2}| > |\xi_{2}| \}} + \frac{1}{\langle \xi \rangle^{2\rho}} \int_{A_{3} \cap \{ |\xi_{1} - \xi_{2}| \le |\xi_{2}| \}} \\ &= I_{3,1}(\xi,0) + I_{3,2}(\xi,0). \end{split}$$

In the first integral, for $\rho < 1/4$, b > 1/2 we have

$$I_{3,1}(\xi,0) \lesssim \frac{1}{\langle \xi \rangle^{2\rho}} \int_{|\xi_2|>2} \langle \xi_2 \rangle^{4\rho} d\xi_2 \int_{|\xi_1|\le 2} \frac{d\xi_1}{\langle \xi_2^2(\xi-\xi_1) \rangle^{2b}}$$
$$\lesssim \frac{1}{\langle \xi \rangle^{2\rho}} \int_{|\xi_2|>2} \frac{\langle \xi_2 \rangle^{4\rho} d\xi_2}{\xi_2^2} \le C.$$

To estimate $I_{3,2}(\xi, 0)$ we make the change of variables $\eta_2 = \xi_1 - \xi_2$, $\eta_1 = \xi_1$ and as $|\xi_1| \leq 2$ we obtain the same estimate as that for $I_{3,1}(\xi, 0)$.

By symmetry we can estimate $I_4(\xi, 0)$ in the same manner as $I_3(\xi, 0)$. **Case** $|\xi| > 1$. Let us consider $I(\xi, 0)$ in the form (2.6) and let $B_1 = \{|\xi_1 + \xi_2| > 4\}$ and $B_2 = \{|\xi_1 + \xi_2| \le 4\}$, then $I(\xi, 0) = I_1(\xi) + I_2(\xi)$, where $I_j(\xi)$ is defined in B_j . In B_1 we have

$$|2 - (\xi_1 + \xi_2)| > |\xi_1 + \xi_2|/2, \quad |1 - (\xi_1 + \xi_2)| \le 5|\xi_1 + \xi_2|/4, \tag{2.8}$$

moreover $B_1 \subset \{|\xi_1| \geq 2\} \cup \{|\xi_2| \geq 2\} =: B_{1,1} \cup B_{1,2}$ and therefore $I_1(\xi) \leq I_{1,1}(\xi) + I_{1,2}(\xi)$, where $I_{1,j}(\xi)$ is defined in $B_{1,j} \cap B_1$. In $B_{1,1}$ we have $|\xi_1|/2 \leq |1 - \xi_1| \leq 3|\xi_1|/2$, therefore using (2.8), we obtain that $I_{1,1}(\xi) \leq I(0,0) \leq C$ if $\rho < 1/4, \rho + 1/3 < b$. In similar manner we have $I_{1,2}(\xi) \leq I(0,0) \leq C$.

 $\rho < 1/4, \ \rho + 1/3 < b$. In similar manner we have $I_{1,2}(\xi) \lesssim I(0,0) \leq C$. From definition of B_2 we have $H_{\rho} \lesssim \langle \xi \rangle^{2\rho} \langle \xi + \xi | \xi_1 | \rangle^{4\rho}$, so using symmetry and Propositions 1 and 2, we have $I_2(\xi) \leq C < \infty$ if $0 \leq \rho < 1/4, \ b > \rho + 1/3$. \Box

Proof of Lemma 2.2. Let $0 \le \rho < 1/4$, b > 7/12, $b' < -\rho/3$. Using symmetry and Lemma 2.4 it is sufficient to prove

$$J = p(\xi, z) \int_0^\infty \int_{\mathbb{R}} \frac{H_{\rho}(\xi, \xi_1, \xi_2) d\xi_1 d\xi_2}{\langle \xi^3(z + F(\xi_1, \xi_2))^{2b}} \le C < \infty.$$

By Lemma 2.4 we can suppose $|\xi|^3 z \ge 1$; since if $|\xi|^3 z < 1$,

$$\langle \xi^3(z+F) \rangle^{-2b} \le 2^{2b} \langle \xi^3 F \rangle^{-2b}.$$

Also by symmetry we can suppose $|\xi_2| \leq |\xi_1|$. Therefore

$$H_{\rho}(\xi,\xi_1,\xi_2) \lesssim 1 + |\xi|^{6\rho} + |\xi|^{6\rho} |\xi_1|^{6\rho}.$$

Using Proposition 1 we can suppose $|\xi_1| > 4$ $(l^{-1} \le |\xi_1|^{-1})$. **Case** $|\xi||\xi_1| \le 1$. We have $H_\rho \le \langle \xi \rangle^{6\rho}$ and therefore $J \le C < \infty$, by Proposition 1. **Case** $|\xi||\xi_1| > 1$.

i) If $|\xi_1|^3 \leq z$, $|\xi_1| \leq z^{1/3}$, we have $H_{\rho}(\xi,\xi_1,\xi_2) \lesssim 1 + |\xi|^{6\rho} + |z|^{2\rho/3} |\xi|^{6\rho} |\xi_1|^{4\rho}$.

Therefore using (2.4), in this region we have

$$\begin{aligned} \frac{\xi^{2+6\rho}|z|^{2\rho/3}}{\langle\xi^{3}z\rangle^{-2b'}} \int_{1/|\xi|}^{|z|^{1/3}} |\xi_{1}|^{4\rho} d\xi_{1} \int_{\mathbb{R}} \frac{d\eta}{\langle\xi^{3}\xi_{1}(\eta^{2}-l^{2})\rangle^{2b}} \lesssim &\frac{\xi^{2+6\rho}|z|^{2\rho/3}}{\langle\xi^{3}z\rangle^{-2b'}|\xi|^{3}} \int_{1/|\xi|}^{\infty} \frac{|\xi_{1}|^{4\rho} d\xi_{1}}{|\xi_{1}|^{2}} \\ \lesssim &\frac{(|\xi|^{3}z)^{2\rho/3}}{\langle\xi^{3}z\rangle^{-2b'}} \\ \leq C. \end{aligned}$$

ii) If $|\xi_1|^3 \ge z$, $|\xi_1| \ge z^{1/3}$, we can proceed as follows. By Lemma 2.4 we can suppose $|z + F| \le |F|/2$, so $|F| \le 2z$, $|(2 - (\xi_1 + \xi_2))\xi_1\xi_2| \le 2z$. This implies that $|1 - \xi_2||1 - (\xi_1 + \xi_2)| \le 1 + |\xi_1| + z^{2/3}$. Therefore

$$\begin{split} H_{\rho} \lesssim &(\langle \xi \rangle^{4\rho} + |\xi|^{6\rho}) + |\xi|^{4\rho} |\xi_{1}|^{4\rho} + |\xi|^{6\rho} |\xi_{1}|^{2\rho} + |\xi|^{4\rho} |\xi_{1}|^{2\rho} + |\xi|^{6\rho} |\xi_{1}|^{4\rho} \\ &+ |\xi|^{4\rho} z^{4\rho/3} + |\xi|^{6\rho} z^{4\rho/3} + |\xi|^{6\rho} z^{4\rho/3} |\xi_{1}|^{2\rho} =: \sum_{j=1}^{8} l_{j}. \end{split}$$

We have,

$$\frac{|\xi|^{6\rho}}{\langle\xi\rangle^{2\rho}} \le |\xi|^{4\rho}.\tag{2.9}$$

To estimate the term that contains $l_1 = \langle \xi \rangle^{4\rho} + |\xi|^{6\rho}$, we use (2.9) and Proposition 1.

For terms l_j , j = 2, ..., 5, we use (2.9) and Propositions 1 and 2 if $|\xi| > 1$. If $|\xi| < 1$, we integrate in the region $\xi_1 > 1/|\xi|$ as above.

In $l_6 = |\xi|^{4\rho} z^{4\rho/3}$, we have

$$\frac{|\xi|^2 |\xi|^{4\rho} z^{4\rho/3}}{\langle \xi^3 z \rangle^{-2b'} |\xi|^3 \langle \xi \rangle^{2\rho}} \int_{z^{1/3}}^{\infty} \frac{d\xi_1}{\xi_1^2} \lesssim \frac{1}{(|\xi|^3 z)^{(1-4\rho)/3}} \le C.$$

We estimate $l_7 = |\xi|^{6\rho} z^{4\rho/3}$, as in l_6 using (2.9). Finally in $l_8 = |\xi|^{6\rho} z^{4\rho/3} |\xi_1|^{2\rho}$, we have

$$\frac{|\xi|^{2+6\rho} z^{4\rho/3}}{\langle \xi^3 z \rangle^{-2b'} \langle \xi \rangle^{2\rho} |\xi|^3} \int_{z^{1/3}}^{\infty} \frac{|\xi_1|^{2\rho} d\xi_1}{\xi_1^2} \lesssim \frac{(|\xi|^3 z)^{(6\rho-1)/3}}{\langle \xi^3 z \rangle^{-2b'}} \le C.$$

Remark. In the case $\alpha \neq 0$ under little modifications, the proofs of Propositions 1 and 2 and the proofs of Lemmas 2.2, 2.3 and 2.4 are similar to the case $\alpha = 0$. For example in order to prove Lemma 2.3 with $\alpha \neq 0$ we proceed as follows

In (2.5) we have $g(\xi, \xi_1, \xi_2) = (\xi_1 - \xi_2)\xi_2(2\alpha - 3\beta\xi_1)$. In order to obtain symmetry in ξ_1 and ξ_2 , we consider the change of variable $2\alpha - 3\beta\xi_1 := 3\beta\xi_1$. In this way we have

$$I(0,0) \lesssim C\left(\frac{\alpha}{\beta}\right) \int_{\mathbb{R}^2} \frac{\langle \xi_1 + \xi_2 \rangle^{2\rho} \langle \xi_1 \rangle^{2\rho} \langle \xi_2 \rangle^{2\rho} d\xi_1 d\xi_2}{\left\langle \beta \left(\frac{2\alpha}{\beta} - (\xi_1 + \xi_2)\right) \xi_1 \xi_2 \right\rangle^{2\rho}}.$$
(2.10)

Now using symmetry, the rest of the proof is the same as that of Lemma 2.3, if we replace the lower limit 1 in the integrals in (2.7) by $4\alpha/3\beta$.

Proof of Theorem 1.2

Consider a cut-off function $\psi \in \mathcal{C}^{\infty}$, such that $0 \leq \psi \leq 1$,

$$\psi(t) = \begin{cases} 1 & \text{if } |t| \le 1\\ 0 & \text{if } |t| \ge 2, \end{cases}$$

and let $\psi_T(t) := \psi(t/T)$. To prove Theorem 1.2 we need the following result.

Proposition 3. Let $-1/2 < b' \le 0 \le b \le b' + 1$, $T \in [0, 1]$. Then

$$\|\psi_1(t)U(t)u_0\|_{\{s,b\}} = C\|u_0\|_{\mathbf{H}^s},$$
(2.11)

$$\|\psi_T(t)\int_0^t U(t-t')F(t',\cdot))dt'\|_{\{s,b\}} \le CT^{1-b+b'}\|F(u)\|_{\{s,b'\}},$$
(2.12)

where $F(u) := i\gamma |u|^2 u$.

at.

The proof of (2.11) is obvious, and the proof of (2.12) is practically done in [8]. Let us consider (1.8) in its equivalent integral form:

$$u(t) = U(t)u_0 - \int_0^t U(t - t')F(u)(t', \cdot)dt'.$$
(2.13)

Note that, if for all $t \in \mathbb{R}$, u(t) satisfies:

$$u(t) = \psi_1(t)U(t)u_0 - \psi_T(t) \int_0^t U(t - t')F(u)(t', \cdot)dt',$$

then u(t) satisfies (2.13) in [-T, T]. Let a > 0 and

$$X_a = \{ v \in X^{s,b}; \|v\|_{\{s,b\}} \le a \}.$$

For $v \in X_a$ fixed, let us define

$$\Phi(v) = \psi_1(t)U(t)u_0 - \psi_T(t) \int_0^t U(t - t')F(v)(t', \cdot)dt'$$

Let $\epsilon=1-b+b'>0,\,b-1< b'< s/3$ (this implies 7/12< b<11/12) using Proposition 3 and Theorem 1.3 we obtain

$$\|\Phi(v)\|_{s,b} \le C \|u_0\|_{\mathbf{H}^{\mathbf{s}}} + CT^{\epsilon} \|F(v)\|_{s,b'} \le C \|u_0\|_{\mathbf{H}^{\mathbf{s}}} + CT^{\epsilon} a^3 \le a_3$$

where $a = 2C ||u_0||_{\mathbf{H}^{s}}$ and $T^{\epsilon} \le 1/(2Ca^2)$.

We can prove that Φ is a contraction in an analogous manner. The proof of Theorem 1.2 follows by using a standard argument, see for example [11, 12].

Acknowledgment. The author wants to thank the anonymous referee for his/her valuable suggestions, also to M. Panthee and J. Salazar for their help in improving the presentation of this article.

References

- M. J. Ablowitz, J. Hammack, D. Henderson, C.M. Schober Long-time dynamics of the modulational instability of deep water waves, Phisica D., (2001), 416-433.
- [2] X. Carvajal, Propriedades das soluções de uma equação de Schrödinger não linear de alta ordem, PhD Thesis, Instituto de matemática pura e aplicada, IMPA, Rio de Janeiro, Brazil, (2002).
- [3] X. Carvajal, F. Linares, A higher order nonlinear Schrödinger equation with variable coefficients, Differential and Integral Equations, 16, 9, (2003), 1111–1130

XAVIER CARVAJAL

- [4] X. Carvajal, F. Linares, Some properties for a higher order nonlinear Schrödinger equation, Preprint.
- [5] X. Carvajal, M. Panthee, Unique continuation property for a higher oder nonlinear Schrödinger equation, Preprint.
- [6] T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger Equations in H^s, Nonlinear Anal. 14 (1990), 807–836.
- [7] P. A. Clarson and C. M. Cosgrove, Painlevé analysis of the non-linear Schrödinger family of equations, Journal of Physics A: Math. and Gen. 20 (1987), 2003-2024.
- [8] J. Ginibre, Y. Tsutsumi, G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), 384–436.
- [9] E. M. Gromov, V.V.Tyutin, D.E. Vorontzov Short vector solitons, Physics letters A, 287, (2001), 233-239.
- [10] A. Hasegawa and Y. Kodama, Nonlinear pulse propagation in a monomode dielectric guide, IEEE Journal of Quantum Electronics, 23 (1987), 510–524.
- [11] C. E. Kenig, G. Ponce and L. Vega, Well-Posedness and Scattering Results for the Generalized Korteweg-de Vries Equation via the Contraction Principle, Comm. on Pure and Applied Math. 66 (1993), 527–620.
- [12] C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603.
- [13] C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Mathematical Journal, 106 (2001), 617–633.
- [14] Y. Kodama, Optical solitons in a monomode fiber, Journal of Statistical Phys. 39 (1985), 597–614.
- [15] C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, C.R.A.S. Paris, Serie I 315, (1992), 165–168.
- [16] C. Laurey, The Cauchy Problem for a Third Order Nonlinear Schrödinger Equation, Nonlinear Analysis, TMA 29 (1997), 121–158.
- [17] C. Laurey, On a Nonlinear Dispersive Equation with Time Dependent Coefficients, Advances in Differential Equations, 6 (2001), 577–612.
- [18] P. V. Mamyshev, Generation and compression of femtosecond solitons in optical fibers, Optical Solitons-Theory and experiment, J.R. Taylor Ed Cambridge Studies in Modern Optics, 10 (1992), 266–313.
- [19] T. Osawa, Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, Differential Integral Equations, 11 (1998), 201-222.
- [20] K. Porsezian, K. Nakkeeran Singularity Structure Analysis and Complete Integrability of the Higher Order Nonlinear Schrödinger equations, Chaos, Solitons and Fractals (1996), 377-382.
- [21] K. Porsezian, P. Shanmugha, K. Sundaram, and A. Mahalingam; Phys. Rev. 50E,1543 (1994).
 [22] G. Staffilani, On the Generalized Korteweg-de Vries-Type Equations, Differential and Integral
- Equations, **10** (1997), 777–796.
- [23] C. Sulem, P. L. Sulem The nonlinear Schrödinger equation: sel-focusing and wave collapse, Applied Mathematical Scienses, Springer Verlag 139 (1999), 350 pages.
- [24] H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Eq. 4 (1999), 561–680.
- [25] T. Tao, Multilinear weighted convolution of L² functions, and applications to nonlinear dispersive equations, submitted, Amer. J. Math.
- [26] Y. Tsutsumi, L²-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), 115–125.

Xavier Carvajal

IMECC-UNICAMP, CAIXA POSTAL:6065, 13083-859, BARÃO GERALDO, CAMPINAS, SP, BRAZIL *E-mail address:* carvajal@ime.unicamp.br

10