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LOCAL WELL-POSEDNESS FOR A HIGHER ORDER
NONLINEAR SCHRÖDINGER EQUATION IN SOBOLEV

SPACES OF NEGATIVE INDICES

XAVIER CARVAJAL

Abstract. We prove that the initial value problem associated with

∂tu + iα∂2
xu + β∂3

xu + iγ|u|2u = 0, x, t ∈ R,

is locally well-posed in Hs for s > −1/4.

1. Introduction

In this work, we study a particular case of the initial value problem (IVP)

∂tu+ iα∂2
xu+ β∂3

xu+ F (u) = 0, x, t ∈ R,
u(x, 0) = u0(x) .

(1.1)

Here u is a complex valued function, F (u) = iγ|u|2u+δ|u|2∂xu+εu2∂xu, γ, δ, ε ∈ C
and α, β ∈ R are constants.

Hasegawa and Kodama [10, 14] proposed (1.1) as a model for propagation of
pulse in optical fiber. We will study the IVP (1.1) in Sobolev space Hs(R) under
the condition δ = ε = 0, β 6= 0 (see case (iv) in Theorem 1.1 below). When
γ, δ, ε ∈ R, it was shown in [16] that the flow associated to the IVP (1.1) leaves the
following quantity

I1(v) =
∫

R
|v|2(x, t) dx, (1.2)

conserved in time. Also, when δ − γ = ε 6= 0 we have the following quantity
conserved:

I2(v) = c1

∫
R
|∂xv|2(x, t) dx+ c2

∫
R
|v|4(x, t)dx+ c3

∫
R
v(x, t)∂xv(x, t)dx, (1.3)

where c1 = 3β ε, c2 = −ε(ε + δ)/2 and c3 = i(α(ε + δ) − 3βγ). These quantities
were used in [16] to establish global well-posedness for (1.1) in Hs(R), s ≥ 1. Note
that the quantity i

∫
R v(x, t)∂xv(x, t)dx in (1.3) is real since

∂t( i
∫

R
v(x, t)∂xv(x, t)dx) = 2ε Im(

∫
R
[v(x, t)∂xv(x, t)]2dx).
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We say that the IVP (1.1) is locally well-posed inX (Banach space) if the solution
uniquely exists in certain time interval [−T, T ] (unique existence), the solution
describes a continuous curve in X in the interval [−T, T ] whenever initial data
belongs to X (persistence), and the solution varies continuously depending upon
the initial data (continuous dependence) i.e. continuity of application u0 7→ u(t)
from X to C([−T, T ];X). We say that the IVP (1.1) is globally well-posed in X if
the same properties hold for all time T > 0. If some hypothesis in the definition of
local well-posed fails, we say that the IVP is ill-posed.

Particular cases of (1.1) are the following:
• Cubic nonlinear Schrödinger equation (NLS), (α = ∓1, β = 0, γ = −1, δ = ε = 0).

iut ± uxx + |u|2u = 0, x, t ∈ R. (1.4)

The best known local result for the IVP associated to (1.4) is in Hs(R), s ≥ 0,
obtained by Tsutsumi [26].
• Nonlinear Schrödinger equation with derivative (α = −1, β = 0, γ = 0, δ = 2ε).

iut + uxx + iλ(|u|2u)x = 0, x, t ∈ R. (1.5)

The best known local result for the IVP associated to (1.5) is in Hs(R), s ≥ 1/2,
obtained by Takaoka [24].
• Complex modified Korteweg-de Vries (mKdV) equation (α = 0, β = 1, γ = 0,
δ = 1, ε = 0).

ut + uxxx + |u|2ux = 0, x, t ∈ R. (1.6)
If u is real, (1.6) is the usual mKdV equation and Kenig et al. [11] proved the IVP
associated to it is locally well-posed in Hs(R), s ≥ 1/4.
• When α 6= 0 is real and β = 0, we obtain a particular case of the well-known
mixed nonlinear Schrödinger equation

ut = iαuxx + λ(|u|2)xu+ g(u), x, t ∈ R, (1.7)

where g satisfies some appropriate conditions. Ozawa and Tsutsumi in [19] proved
that for any ρ > 0, there is a positive constant T (ρ) depending only on ρ and g,
such that the IVP (1.7) is locally well-posed in H1/2(R), whenever the initial data
satisfies

‖u0‖H1/2 ≤ ρ.

There are other dispersive models similar to (1.1). The interested readers can
see the following works and the references therein [1, 7, 20, 21, 23].

Laurey [17, 16] proved that the IVP associated to (1.1) is locally well-posed in
Hs(R), s > 3/4. Staffilani [22] improved this result by proving the IVP associated
to (1.1) is locally well-posed in Hs(R), s ≥ 1/4.

When α, β are functions of t, we proved in [2, 3] local well-posedness in Hs(R),
s ≥ 1/4. Also we studied in [2, 5] the unique continuation property for the solution
of (1.1). Regarding the ill-posedness of the IVP (1.1), we proved in [4] the following
theorem.

Theorem 1.1. The mapping data-solution u0 7→ u(t) for the IVP (1.1) is not C3

at origin in the following cases:
(i) β = 0, α 6= 0, δ = ε = 0, γ 6= 0 for s < 0.
(ii) β = 0, α 6= 0, δ 6= 0 or ε 6= 0 for s < 1/2.
(iii) β 6= 0, δ 6= 0 or ε 6= 0 for s < 1/4.
(iv) β 6= 0, δ = ε = 0, γ 6= 0 for s < −1/4.
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In this work, we consider the case (iv) and prove the following result.

Theorem 1.2. Let β 6= 0 real and γ 6= 0 complex, then the following IVP

∂tu+ iα∂2
xu+ β∂3

xu+ iγ|u|2u = 0, x, t ∈ R,
u(x, 0) = u0,

(1.8)

is locally well-posed in Hs(R), s > −1/4.

The following trilinear estimate will be fundamental in the proof of Theorem 1.2.

Theorem 1.3. Let −1/4 < s ≤ 0, b > 7/12, b′ < s/3, then we have

‖uvw‖Xs,b′ ≤ C‖u‖Xs,b‖v‖Xs,b‖w‖Xs,b, (1.9)

where

‖u‖Xs,b = ‖〈ξ〉s〈τ − φ(ξ)〉bû‖L2
ξL2

τ
, 〈ξ〉 = 1 + |ξ|, φ(ξ) = αξ2 + βξ3.

Theorem 1.4. The trilinear estimate (1.9) fails if s < −1/4 and b ∈ R.

Remarks. • When γ ∈ R, as (1.1) preserves L2 norm, Theorem 1.2 permits to
obtain global existence in L2.
• From Lemma 2.3 we note that b = 7/12+ is the best possible for s = −1/4+, in
the trilinear estimate (1.9).
• The trilinear estimate is valid for all s > 0, as it can be seen by combining
〈ξ〉s ≤ 〈ξ − (ξ2 − ξ1)〉s〈ξ2〉s〈ξ1〉s and the estimate (1.9) for s = 0.
• We will use the notation ‖u‖{s,b} := ‖u‖Xs,b.

• When α = 0, β = 1, we have the usual bilinear estimate due to Kenig et al. [12],

‖(uv)x‖{−3/4+,−1/2+} ≤ C‖u‖{−3/4+,1/2+}‖v‖{−3/4+,1/2+}.

Also we have the 1/4 trilinear estimate due to Tao [25],

‖(uvw)x‖{1/4,−1/2+} ≤ C‖u‖{1/4,1/2+}‖v‖{1/4,1/2+}‖w‖{1/4,1/2+}.

2. Proofs of Main Result

Proof of Theorem 1.4. As in [12] consider the set

B := {(ξ, τ);N ≤ ξ ≤ N +N−1/2, |τ − φ(ξ)| ≤ 1},

where φ(ξ) = αξ2 + βξ3. We have |B| ∼ N−1/2. Let us consider v̂ = χB , it is not
difficult to see that ‖v‖{s,b} ≤ Ns|B|1/2. Moreover

F(|v|2v) := χB ∗ χB ∗ χ−B &
1
N
χA,

where A is a rectangle contained in B such that |A| ∼ N−1/2.
Therefore

‖ |v|2v‖{s,b′} = ‖〈ξ〉s〈τ − φ(ξ)〉b
′
F(|v|2v)‖L2

ξL2
τ

& Ns 1
N
N−1/4 = Ns−5/4.

As a consequence, for large N the trilinear estimate fails if 3(s − 1/4) < s − 5/4,
i.e. if s < −1/4. �
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Proof of Theorem 1.3. In Lemma 2.1 below, we gather some elementary es-
timates needed in the proof of Theorem 1.3, we need the following results from
elementary calculus.

Lemma 2.1. (1) If b > 1/2, a1, a2 ∈ R then∫
R

dx

〈x− a1〉2b〈x− a2〉2b
∼

1
〈a1 − a2〉2b

. (2.1)

(2) If 0 < c1, c2 < 1, c1 + c2 > 1, a1 6= a2, then∫
R

dx

|x− a1|c1 |x− a2|c2
.

1
|a1 − a2|(c1+c2−1)

. (2.2)

(3) Let a ∈ R, c1 ≤ c2, then

|x|c1

〈ax〉c2
≤ 1
|a|c1

. (2.3)

(4) Let a, η ∈ R, b > 1/2, then∫
R

dx

〈a(x2 − η2)〉2b
.

1
|aη|

. (2.4)

Now, let f(ξ, τ) = 〈ξ〉s 〈τ − ξ3〉bû, g(ξ, τ) = 〈ξ〉s 〈τ − ξ3〉bv̂, h(ξ, τ) = 〈ξ〉s,
〈τ − ξ3〉bŵ, η = (ξ, τ), x = (ξ1, τ1), y = (ξ2, τ2). We have

‖uvw‖{s,b′} =‖
∫

R4
f(η + x− y)g(y)h(x)K(η, x, y)dxdy‖L2

η

≤‖K(η, x, y)‖L∞η L2
x,y
‖f‖L2‖g‖L2‖h‖L2 ,

where

K(η, x, y) =
〈ξ + ξ1 − ξ2〉ρ〈ξ2〉ρ〈ξ1〉ρ

r(ξ, τ)〈τ1 − φ(ξ1)〉b〈τ2 − φ(ξ2)〉b〈τ + τ1 − τ2 − φ(ξ + ξ1 − ξ2)〉b

and r(ξ, τ) = 〈ξ〉ρ〈τ − φ(ξ)〉−b′ , ρ = −s. Using (2.1) we obtain

I(ξ, τ) := ‖K‖2
L2

x,y
∼

1
r(ξ, τ)2

∫
R2

Gρ(ξ, ξ1, ξ2) dξ1dξ2
〈τ − φ(ξ + ξ1 − ξ2)− φ(ξ2) + φ(ξ1)〉2b

=
1

r(ξ, τ)2

∫
R2

Gρ(ξ, ξ1, ξ2) dξ1dξ2
〈τ − φ(ξ) + g(ξ, ξ1, ξ2)〉2b

where
Gρ(ξ, ξ1, ξ2) := 〈ξ + ξ1 − ξ2〉2ρ〈ξ1〉2ρ〈ξ2〉2ρ,

g(ξ, ξ1, ξ2) = (ξ1 − ξ2)(ξ + ξ2)(2α+ 3β(ξ − ξ1)).
(2.5)

Assuming y = τ − φ(ξ), to get Theorem 1.3 it is sufficient to prove the following
lemma.

Lemma 2.2. Let 0 ≤ ρ < 1/4, b > 7/12, b′ < −ρ/3. Then

I(ξ, y) :=
1

〈ξ〉2ρ〈y〉−2b′

∫
R2

Gρ(ξ,−ξ1,−ξ2)dξ1dξ2
〈y + g(ξ, ξ1, ξ2)〉2b

≤ C(ρ, b, b′) <∞,

where C(ρ, b, b′) is a constant independent of ξ and y.

To prove Lemma 2.2 we need to prove the following lemmas.
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Lemma 2.3. Let ρ < 1/4. Then

I(0, 0) =
∫

R2

Gρ(0,−ξ1,−ξ2)dξ1dξ2
〈g(0, ξ1, ξ2)〉2b

=

{
C(ρ, b) <∞ if ρ+ 1/3 < b

∞ if ρ+ 1/3 ≥ b,

where C(ρ, b) is a constant.

We have that if b = 7/12 and ρ = −s ≥ 1/4 then I(0, 0) = ∞, therefore Lemma
2.3 shows that b = 7/12+ is the best possible when s = −1/4+.

Lemma 2.4. Let 0 ≤ ρ < 1/4, b > 7/12. Then

I(ξ, 0) =
1

〈ξ〉2ρ

∫
R2

Gρ(ξ,−ξ1,−ξ2)dξ1dξ2
〈g(ξ, ξ1, ξ2)〉2b

≤ C(ρ, b),

where C(ρ, b) is a constant independent of ξ.

For clarity in exposition, we consider the case α = 0, β = 1, i.e. φ(ξ) = ξ3 (see
the observation at the end of the proof of Lemma 2.2).

In the definition of I(ξ, y) if we make the change of variables ξ − ξ1 := ξξ1,
ξ + ξ2 := ξξ2 and y = ξ3z, then I(ξ, y) becomes

I(ξ, z) = p(ξ, z)
∫

R2

Hρ(ξ, ξ1, ξ2)dξ1dξ2
〈ξ3(z + F (ξ1, ξ2))〉2b

, (2.6)

where p(ξ, z) = ξ2〈ξ3z〉2b′〈ξ〉−2ρ, F (ξ1, ξ2) = (2− (ξ1 + ξ2))ξ1ξ2 and

Hρ(ξ, ξ1, ξ2) = 〈ξ(1− (ξ1 + ξ2))〉2ρ〈ξ(1− ξ1)〉2ρ〈ξ(1− ξ2)〉2ρ.

From here onwards we will suppose z > 0, because if z < 0 we can obtain the
same result by symmetry (see Remark after Proposition 1).

Proof of Lemma 2.3. By symmetry it is sufficient to prove that the integrals

I1(0, 0) :=
∫ ∞

0

∫ ∞

0

Gρ(0,−ξ1,−ξ2)dξ1dξ2
〈g(0, ξ1, ξ2)〉2b

,

I2(0, 0) :=
∫ ∞

0

∫ ∞

0

Gρ(0,−ξ1, ξ2)dξ1dξ2
〈g(0, ξ1,−ξ2)〉2b

are finite. We will prove that I1(0, 0) is finite only; the same proof works for I2(0, 0).
Also, by symmetry we can suppose that 0 ≤ ξ2 ≤ ξ1. We have∫ ∞

1

dξ1

∫ ξ1

0

dξ2
Gρ(0,−ξ1,−ξ2)
〈g(0, ξ1, ξ2)〉2b

=
∫ ∞

1

dξ1

∫ ξ1/2

0

dξ2 +
∫ ∞

1

dξ1

∫ ξ1

ξ1/2

dξ2

=I1,1 + I1,2.

(2.7)

Since 0 ≤ ξ2 ≤ ξ1, we have Gρ(0,−ξ1,−ξ2) ≤ 〈ξ1〉4ρ〈ξ2〉2ρ. In I1,1 we have ξ1/2 <
ξ1 − ξ2 < ξ1, therefore if b > ρ+ 1/3,

I1,1 .
∫ ∞

1

〈ξ1〉4ρdξ1

∫ ξ1/2

0

〈ξ2〉2ρdξ2
〈3ξ21ξ2〉2b

.
∫ ∞

1

〈ξ1〉4ρ
( 1
ξ21

+
1

ξ2+4ρ
1

+
1

ξ2+4ρ
1

∫ 3ξ3
1/2

1

x2ρdx

(1 + x)2b

)
dξ1

=C(ρ, b) <∞.
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Analogously we can prove that I1,1 = ∞ if b ≤ ρ + 1/3. In I1,2 we have ξ1/2 ≤
ξ2 ≤ ξ1, so

I1,2 .
∫ ∞

1

〈ξ1〉4ρdξ1

∫ ξ1

ξ1/2

〈ξ1 − ξ2〉2ρdξ2
〈(ξ1 − ξ2)ξ21〉2b

=
∫ ∞

1

〈ξ1〉4ρdξ1

∫ ξ1/2

0

〈x〉2ρdx

〈ξ21x〉2b

.C(ρ, b), b > ρ+ 1/3.

�

The propositions will be useful for proving Lemmas 2.2 and 2.4.

Proposition 1. Let 0 ≤ ρ < 1/4, b > 1/3 + 2ρ/3, then we have

J1 = ξ2+4ρ

∫
R2

dξ1dξ2
〈ξ3(z + F )〉2b

≤ C,

where C is a constant independent of ξ and z.

Proof. If ξ1 ≤ 0, ξ2 ≤ 0, then |z+F | ≥ |ξ1 +ξ2||ξ1ξ2|. Therefore by Lemma 2.3 and
by symmetry, it is enough to consider ξ1 ≥ 0. We have |z + F | = |ξ1||(ξ2 + (ξ1 −
2)/2)2 − (ξ1 − 2)2/4 − z/ξ1|. Let l2 = (ξ1 − 2)2/4 + z/ξ1, c(ρ) = (2 + 4ρ)/3, then
making change of variable η = ξ2 + (ξ1 − 2)/2 and using (2.2) and (2.3) we have

J1 =ξ2+4ρ

∫ ∞

0

dξ1

∫
R

dη

〈ξ3ξ1(η2 − l2)〉2b

.
∫ ∞

0

dξ1

∫
R

l dx

[|ξ1|l2|x2 − 1|]c(ρ)

.
∫ ∞

0

dξ1
|ξ1|c(ρ)|ξ1 − 2|(1+8ρ)/3

∫
R

dx

|x2 − 1|c(ρ)

. 2−(20ρ+1)/3, 0 < ρ < 1/4.

The case ρ = 0 follows from the case 0 < ρ < 1/4, taking the limit. �

Remark. When z < 0, we make ξ1 := −ξ1, ξ2 := −ξ2 then |z + F | = |ξ1||(ξ2 +
(ξ1 + 2)/2)2 − (ξ1 + 2)2/4 + z/ξ1| and the proof is similar.

Proposition 2. Let |ξ| > 1, b > 1/2, 0 ≤ ρ < 1/4. Then

J2 = ξ2+4ρ

∫ ∞

0

ξ4ρ
1 dξ1

∫
R

dξ2
〈ξ3(z + F )〉2b

≤ C,

where C is a constant independent of ξ and z.

Proof. By Proposition 1 we can suppose ξ1 > 4, so (ξ1 − 2) > ξ1/2. Using (2.4)
and making change of variables as above, we have

J2 .
ξ2+4ρ

|ξ|3

∫ ∞

4

ξ4ρ
1

ξ1 l
dξ1 ≤ C.

�

Proof of Lemma 2.4. Case |ξ| ≤ 1. Let

A1 = {(ξ1, ξ2)/|ξ1| > 2, |ξ2| > 2}, A2 = {(ξ1, ξ2)/|ξ1| ≤ 2, |ξ2| ≤ 2},
A3 = {(ξ1, ξ2)/|ξ1| ≤ 2, |ξ2| > 2}, A4 = {(ξ1, ξ2)/|ξ1| > 2, |ξ2| ≤ 2} .
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Consider I(ξ, 0) =
∑4

j=1 Ij(ξ, 0), where Ij(ξ, 0) is defined in the region Aj . Obvi-
ously I2(ξ, 0) ≤ C. In A1 we have |ξ − ξ1| > |ξ1|/2 and |ξ + ξ2| > |ξ2|/2, therefore
Lemma 2.3 gives I1(ξ, 0) ≤ C. In A3 we have |ξ + ξ2| > |ξ2|/2, and consequently

I3(ξ, 0) .
1

〈ξ〉2ρ

∫
A3

〈ξ2〉4ρdξ1dξ2
〈(ξ1 − ξ2)ξ2(ξ − ξ1)〉2b

=
1

〈ξ〉2ρ

∫
A3∩{|ξ1−ξ2|>|ξ2|}

+
1

〈ξ〉2ρ

∫
A3∩{|ξ1−ξ2|≤|ξ2|}

=I3,1(ξ, 0) + I3,2(ξ, 0).

In the first integral, for ρ < 1/4, b > 1/2 we have

I3,1(ξ, 0) .
1

〈ξ〉2ρ

∫
|ξ2|>2

〈ξ2〉4ρdξ2

∫
|ξ1|≤2

dξ1
〈ξ22(ξ − ξ1)〉2b

.
1

〈ξ〉2ρ

∫
|ξ2|>2

〈ξ2〉4ρdξ2
ξ22

≤ C.

To estimate I3,2(ξ, 0) we make the change of variables η2 = ξ1 − ξ2, η1 = ξ1 and as
|ξ1| ≤ 2 we obtain the same estimate as that for I3,1(ξ, 0).

By symmetry we can estimate I4(ξ, 0) in the same manner as I3(ξ, 0).
Case |ξ| > 1. Let us consider I(ξ, 0) in the form (2.6) and let B1 = {|ξ1 + ξ2| > 4}
and B2 = {|ξ1 + ξ2| ≤ 4}, then I(ξ, 0) = I1(ξ) + I2(ξ), where Ij(ξ) is defined in Bj .
In B1 we have

|2− (ξ1 + ξ2)| > |ξ1 + ξ2|/2, |1− (ξ1 + ξ2)| ≤ 5|ξ1 + ξ2|/4, (2.8)

moreover B1 ⊂ {|ξ1| ≥ 2} ∪ {|ξ2| ≥ 2} =: B1,1 ∪ B1,2 and therefore I1(ξ) ≤
I1,1(ξ) + I1,2(ξ), where I1,j(ξ) is defined in B1,j ∩ B1. In B1,1 we have |ξ1|/2 ≤
|1 − ξ1| ≤ 3|ξ1|/2, therefore using (2.8), we obtain that I1,1(ξ) . I(0, 0) ≤ C if
ρ < 1/4, ρ+ 1/3 < b. In similar manner we have I1,2(ξ) . I(0, 0) ≤ C.

From definition of B2 we have Hρ . 〈ξ〉2ρ 〈ξ + ξ|ξ1|〉4ρ, so using symmetry and
Propositions 1 and 2, we have I2(ξ) ≤ C <∞ if 0 ≤ ρ < 1/4, b > ρ+ 1/3. �

Proof of Lemma 2.2. Let 0 ≤ ρ < 1/4, b > 7/12, b′ < −ρ/3. Using symmetry and
Lemma 2.4 it is sufficient to prove

J = p(ξ, z)
∫ ∞

0

∫
R

Hρ(ξ, ξ1, ξ2)dξ1dξ2
〈ξ3(z + F (ξ1, ξ2)〉2b

≤ C <∞.

By Lemma 2.4 we can suppose |ξ|3z ≥ 1; since if |ξ|3z < 1,

〈ξ3(z + F )〉−2b ≤ 22b〈ξ3F 〉−2b.

Also by symmetry we can suppose |ξ2| ≤ |ξ1|. Therefore

Hρ(ξ, ξ1, ξ2) . 1 + |ξ|6ρ + |ξ|6ρ|ξ1|6ρ.

Using Proposition 1 we can suppose |ξ1| > 4 (l−1 ≤ |ξ1|−1).
Case |ξ||ξ1| ≤ 1. We have Hρ . 〈ξ〉6ρ and therefore J ≤ C < ∞, by Proposition
1.
Case |ξ||ξ1| > 1.
i) If |ξ1|3 ≤ z, |ξ1| ≤ z1/3, we have Hρ(ξ, ξ1, ξ2) . 1 + |ξ|6ρ + |z|2ρ/3|ξ|6ρ|ξ1|4ρ.
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Therefore using (2.4), in this region we have

ξ2+6ρ|z|2ρ/3

〈ξ3z〉−2b′

∫ |z|1/3

1/|ξ|
|ξ1|4ρdξ1

∫
R

dη

〈ξ3ξ1(η2 − l2)〉2b
.
ξ2+6ρ|z|2ρ/3

〈ξ3z〉−2b′ |ξ|3

∫ ∞

1/|ξ|

|ξ1|4ρdξ1
|ξ1|2

.
(|ξ|3z)2ρ/3

〈ξ3z〉−2b′

≤C.

ii) If |ξ1|3 ≥ z, |ξ1| ≥ z1/3, we can proceed as follows. By Lemma 2.4 we can
suppose |z + F | ≤ |F |/2, so |F | ≤ 2z, |(2− (ξ1 + ξ2))ξ1ξ2| ≤ 2z. This implies that
|1− ξ2||1− (ξ1 + ξ2)| . 1 + |ξ1|+ z2/3. Therefore

Hρ .(〈ξ〉4ρ + |ξ|6ρ) + |ξ|4ρ|ξ1|4ρ + |ξ|6ρ|ξ1|2ρ + |ξ|4ρ|ξ1|2ρ + |ξ|6ρ|ξ1|4ρ

+ |ξ|4ρz4ρ/3 + |ξ|6ρz4ρ/3 + |ξ|6ρz4ρ/3|ξ1|2ρ =:
8∑

j=1

lj .

We have,

|ξ|6ρ

〈ξ〉2ρ
≤ |ξ|4ρ. (2.9)

To estimate the term that contains l1 = 〈ξ〉4ρ + |ξ|6ρ, we use (2.9) and Proposition
1.

For terms lj , j = 2, . . . , 5, we use (2.9) and Propositions 1 and 2 if |ξ| > 1. If
|ξ| < 1, we integrate in the region ξ1 > 1/|ξ| as above.

In l6 = |ξ|4ρz4ρ/3, we have

|ξ|2|ξ|4ρz4ρ/3

〈ξ3z〉−2b′ |ξ|3〈ξ〉2ρ

∫ ∞

z1/3

dξ1
ξ21

.
1

(|ξ|3z)(1−4ρ)/3
≤ C.

We estimate l7 = |ξ|6ρz4ρ/3, as in l6 using (2.9). Finally in l8 = |ξ|6ρz4ρ/3|ξ1|2ρ, we
have

|ξ|2+6ρz4ρ/3

〈ξ3z〉−2b′〈ξ〉2ρ|ξ|3

∫ ∞

z1/3

|ξ1|2ρdξ1
ξ21

.
(|ξ|3z)(6ρ−1)/3

〈ξ3z〉−2b′
≤ C.

�

Remark. In the case α 6= 0 under little modifications, the proofs of Propositions
1 and 2 and the proofs of Lemmas 2.2, 2.3 and 2.4 are similar to the case α = 0.
For example in order to prove Lemma 2.3 with α 6= 0 we proceed as follows

In (2.5) we have g(ξ, ξ1, ξ2) = (ξ1 − ξ2)ξ2(2α − 3βξ1)). In order to obtain sym-
metry in ξ1 and ξ2, we consider the change of variable 2α − 3βξ1 := 3βξ1. In this
way we have

I(0, 0) . C

(
α

β

) ∫
R2

〈ξ1 + ξ2〉2ρ〈ξ1〉2ρ〈ξ2〉2ρdξ1dξ2〈
β

(
2α
β
− (ξ1 + ξ2)

)
ξ1ξ2

〉2ρ . (2.10)

Now using symmetry, the rest of the proof is the same as that of Lemma 2.3, if we
replace the lower limit 1 in the integrals in (2.7) by 4α/3β.



EJDE-2004/13 LOCAL WELL-POSEDNESS 9

Proof of Theorem 1.2

Consider a cut-off function ψ ∈ C∞, such that 0 ≤ ψ ≤ 1,

ψ(t) =

{
1 if |t| ≤ 1
0 if |t| ≥ 2,

and let ψT (t) := ψ(t/T ). To prove Theorem 1.2 we need the following result.

Proposition 3. Let −1/2 < b′ ≤ 0 ≤ b ≤ b′ + 1, T ∈ [0, 1]. Then

‖ψ1(t)U(t)u0‖{s,b} = C‖u0‖Hs , (2.11)

‖ψT (t)
∫ t

0

U(t− t′)F (t′, ·))dt′‖{s,b} ≤ CT 1−b+b′‖F (u)‖{s,b′}, (2.12)

where F (u) := iγ|u|2u.

The proof of (2.11) is obvious, and the proof of (2.12) is practically done in [8].
Let us consider (1.8) in its equivalent integral form:

u(t) = U(t)u0 −
∫ t

0

U(t− t′)F (u)(t′, ·)dt′. (2.13)

Note that, if for all t ∈ R, u(t) satisfies:

u(t) = ψ1(t)U(t)u0 − ψT (t)
∫ t

0

U(t− t′)F (u)(t′, ·)dt′,

then u(t) satisfies (2.13) in [−T, T ]. Let a > 0 and

Xa = {v ∈ Xs,b; ‖v‖{s,b} ≤ a}.
For v ∈ Xa fixed, let us define

Φ(v) = ψ1(t)U(t)u0 − ψT (t)
∫ t

0

U(t− t′)F (v)(t′, ·)dt′.

Let ε = 1 − b + b′ > 0, b − 1 < b′ < s/3 (this implies 7/12 < b < 11/12) using
Proposition 3 and Theorem 1.3 we obtain

‖Φ(v)‖s,b ≤ C‖u0‖Hs + CT ε‖F (v)‖s,b′ ≤ C‖u0‖Hs + CT εa3 ≤ a,

where a = 2C‖u0‖Hs and T ε ≤ 1/(2Ca2).
We can prove that Φ is a contraction in an analogous manner. The proof of

Theorem 1.2 follows by using a standard argument, see for example [11, 12].
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