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POSITIVE SOLUTIONS FOR SINGULAR SEMI-POSITONE
NEUMANN BOUNDARY-VALUE PROBLEMS

YONG-PING SUN, YAN SUN

Abstract. In this paper, we study the singular semi-positone Neumann bound-

ary-value problem

−u′′ + m2u = λf(t, u) + g(t, u), 0 < t < 1,

u′(0) = u′(1) = 0,

where m is a positive constant. Under some suitable assumptions on the

functions f and g, for sufficiently small λ, we prove the existence of a positive
solution. Our approach is based on the Krasnasel’skii fixed point theorem in

cones.

1. Introduction

In this paper, we shall study the following singular semi-positone Neumann
boundary-value problem (NBVP)

−u′′ + m2u = λf(t, u) + g(t, u), 0 < t < 1,

u′(0) = u′(1) = 0,
(1.1)

where m > 0 is a constant, λ > 0 is a parameter, f : (0, 1) × [0,+∞) → [0,+∞)
and g : [0, 1]× [0,+∞) → (−∞,+∞) are continuous.

We say problem (1.1) is singular because f may be singular at t = 0 and/or t = 1.
When g(t, u) 6≡ 0, problem (1.1) is a semi-positone problem, this situation arises
naturally in chemical reaction theory [8]. In recent years, attention has been paid
to (1.1) in the case of g(t, u) ≡ 0; see, for example, [11, 12, 13] and the references
therein. Attention has been paid also to the semi-positone boundary-value problem;
see, for example, [6, 7, 9] and the references therein. As far as the authors know,
there are no existence results for the singular semi-positone NBVP. Recently, Xu [9]
studied the existence of positive solutions for the singular semi-positone boundary-
value problem

u′′ + f(t, u) + q(t) = 0, 0 < t < 1,

u(0) = u(1) = 0,
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where f : (0, 1)× [0,+∞) → [0,+∞) and q : (0, 1) → (−∞,+∞) are continuous.
Motivated by the papers mentioned above, we study the existence of positive

solutions for the singular semi-positone NBVP (1.1), and give an explicit interval
for λ. Our results can be regarded as an extension and improvement of the corre-
sponding results of [12, 13]. The paper is organized as follows. In Section 2, we
present some lemmas that will be used to prove the main result and Krasnasel’skii
fixed point theorem in cones. In Section 3, we prove the main result of this paper.

2. Preliminaries

We consider problem in the Banach space E = C[0, 1] equipped with the norm
‖u‖ = supt∈[0,1] |u(t)|. Let G(t, s) be the Green’s function for the Boundary-value
problem

−u′′ + m2u = 0, 0 < t < 1,

u′(0) = u′(1) = 0 .
(2.1)

Then

G(t, s) =
1
ρ

{
ϕ(s)ϕ(1− t), 0 ≤ s ≤ t ≤ 1,

ϕ(t)ϕ(1− s), 0 ≤ t ≤ s ≤ 1,

where ρ = 1
2m(em−e−m), ϕ(t) = 1

2 (emt+e−mt). It is obvious that ϕ(t) is increasing
on [0, 1], and

G(t, s) ≤ G(s, s), 0 ≤ t, s ≤ 1.

Lemma 2.1. Let G(t, s) be the Green’s function for the NBVP (2.1).
(1) Assume that 0 < θ < 1

2 , then

G(t, s) ≥ MθG(s, s), θ ≤ t ≤ 1− θ, 0 ≤ s ≤ 1.

where

Mθ =
emθ + e−mθ

em + e−m
.

(2)
G(t, s) ≥ Cϕ(t)ϕ(1− t)G(t0, s), t, t0, s ∈ [0, 1],

where C = 1/ϕ2(1).

Proof. (1) Let t ∈ [θ, 1− θ]. For s ≤ t,

G(t, s)
G(s, s)

=
ϕ(1− t)
ϕ(1− s)

≥ ϕ(θ)
ϕ(1)

=
emθ + e−mθ

em + e−m
= Mθ.

If t ≤ s, then
G(t, s)
G(s, s)

=
ϕ(t)
ϕ(s)

≥ ϕ(θ)
ϕ(1)

=
emθ + e−mθ

em + e−m
= Mθ.

Thus
G(t, s) ≥ MθG(s, s), θ ≤ t ≤ 1− θ, 0 ≤ s ≤ 1.

(2) When t, t0 ≤ s,

G(t, s)
G(t0, s)

=
ϕ(t)ϕ(1− s)
ϕ(t0)ϕ(1− s)

=
ϕ(t)ϕ(1− t)
ϕ(t0)ϕ(1− t)

≥ 1
ϕ2(1)

ϕ(t)ϕ(1− t) = Cϕ(t)ϕ(1− t).
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If t ≤ s ≤ t0,

G(t, s)
G(t0, s)

=
ϕ(t)ϕ(1− s)
ϕ(s)ϕ(1− t0)

=
ϕ(t)ϕ(1− t)
ϕ(s)ϕ(1− t)

· ϕ(1− s)
ϕ(1− t0)

≥ 1
ϕ2(1)

ϕ(t)ϕ(1− t) = Cϕ(t)ϕ(1− t).

If t0 ≤ s ≤ t,

G(t, s)
G(t0, s)

=
ϕ(s)ϕ(1− t)
ϕ(t0)ϕ(1− s)

=
ϕ(t)ϕ(1− t)
ϕ(t)ϕ(1− s)

· ϕ(s)
ϕ(t0)

≥ 1
ϕ2(1)

ϕ(t)ϕ(1− t) = Cϕ(t)ϕ(1− t).

For s ≤ t, t0,

G(t, s)
G(t0, s)

=
ϕ(s)ϕ(1− t)
ϕ(s)ϕ(1− t0)

=
ϕ(t)ϕ(1− t)
ϕ(t)ϕ(1− t0)

≥ 1
ϕ2(1)

ϕ(t)ϕ(1− t) = Cϕ(t)ϕ(1− t).

Therefore,

G(t, s) ≥ Cϕ(t)ϕ(1− t)G(t0, s), t, t0, s ∈ [0, 1].

This completes the proof. �

Lemma 2.2. Let y ∈ C((0, 1), [0,∞)), 0 <
∫ 1

0
y(s)ds < ∞. Then the NBVP

−w′′ + m2w = y(t), 0 < t < 1,

w′(0) = w′(1) = 0,
(2.2)

has a unique solution w and there exists a constant Cy such that

C‖w‖ϕ(t)ϕ(1− t) ≤ w(t) ≤ Cyϕ(t)ϕ(1− t), 0 ≤ t ≤ 1. (2.3)

Proof. It is obvious that w(t) =
∫ 1

0
G(t, s)y(s)ds is the unique solution of (2.2).

First, let t0 ∈ (0, 1) such that ‖w‖ = w(t0) =
∫ 1

0
G(t0, s)y(s)ds. By Lemma 2.1, we

have

w(t) =
∫ 1

0

G(t, s)y(s)ds

≥
∫ 1

0

Cϕ(t)ϕ(1− t)G(t0, s)y(s)ds

= Cϕ(t)ϕ(1− t)
∫ 1

0

G(t0, s)y(s)ds

= Cϕ(t)ϕ(1− t)‖w‖,
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which is the first inequality of (2.3). On the other hand,

w(t) =
∫ 1

0

G(t, s)y(s)ds

=
1
ρ

∫ t

0

ϕ(s)ϕ(1− t)y(s)ds +
1
ρ

∫ 1

t

ϕ(t)ϕ(1− s)y(s)ds

≤ 1
ρ
ϕ(1− t)ϕ(t)

∫ t

0

y(s)ds +
1
ρ
ϕ(t)ϕ(1− t)

∫ 1

t

y(s)ds

=
1
ρ
ϕ(1− t)ϕ(t)

∫ 1

0

y(s)ds.

By setting

Cy =
1
ρ

∫ 1

0

y(s)ds,

then the second inequality of (2.3) is proved. �

Remark 2.3. From Lemma 2.2 we know, if y(t) ≡ M , then Cy = CM = M
ρ .

We make the following assumptions
(H1) f(t, u) ≤ p(t)q(u), where p : (0, 1) → [0,+∞) and q : [0,+∞) → [0,+∞)

are continuous.
(H2) |g(t, u)| ≤ M , where M > 0 is a constant.
(H3) 0 <

∫ 1

0
G(s, s)p(s)ds < +∞.

(H4) limu→+∞
f(t,u)

u = +∞ uniformly on any compact subinterval of (0, 1).
Let

C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥ 0, 0 ≤ t ≤ 1},
K = {u : u ∈ C+[0, 1], min

θ≤t≤1−θ
u(t) ≥ Mθ‖u‖}.

It is obvious that C+[0, 1] and K are cones of E. Let v(t) be the solution of the
boundrary-value problem

−v′′ + m2v = M, 0 < t < 1,

v′(0) = v′(1) = 0.

By Lemma 2.2, v(t) ≤ CMϕ(t)ϕ(1− t) = M
ρ ϕ(t)ϕ(1− t). Set

[y(t)]∗ =

{
y(t), y(t) ≥ 0,

0, y(t) < 0,
0 < t < 1,

F (t, u) = λf(t, [u− v]∗) + g(t, [u− v]∗) + M, 0 ≤ t ≤ 1.

Consider the boundary-value problem

−u′′ + m2u = F (t, u), 0 < t < 1,

u′(0) = u′(1) = 0.
(2.4)

It is no difficulty to prove that u = u0 − v is a positive solution of (1.1) if and only
if u0 is a positive solution of (2.4) and u0(t) > v(t), 0 < t < 1.

Define an operator Tλ : C+[0, 1] → C+[0, 1] by

(Tλu)(t) = λ

∫ 1

0

G(t, s)F (s, u(s))ds, u ∈ K.
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Lemma 2.4. Let (H1)–(H3) hold. Then Tλ : K → K is a completely continuous
operator.

Proof. For any u ∈ K, t ∈ [0, 1], we have

(Tλu)(t) = λ

∫ 1

0

G(t, s)F (s, u(s))ds ≤ λ

∫ 1

0

G(s, s)F (s, u(s))ds.

thus

‖Tλu‖ ≤ λ

∫ 1

0

G(s, s)F (s, u(s))ds.

On the other hand, by Lemma 2.1,

min
θ≤t≤1−θ

(Tλu)(t) = min
θ≤t≤1−θ

λ

∫ 1

0

G(t, s)F (s, u(s))ds

≥ Mθλ

∫ 1

0

G(s, s)F (s, u(s))ds

≥ Mθ‖Tλu‖.
Therefore, Tλ(K) ⊂ K. For a natural number n ≥ 2, define

Fn(t, x) =


min{F (t, x), F ( 1

n , x)}, 0 < t ≤ 1
n ,

F (t, x), 1
n < t < 1− 1

n ,

min{F (t, x), F ( 1
n , x)}, 1− 1

n ≤ t < 1,

and

(Tnu)(t) = λ

∫ 1

0

G(t, s)Fn(t, u(s))ds, ∀u ∈ E.

It is easy to prove that Tn is completely continuous. Let D ⊂ E be a bounded
set, then there is a constant L > 0 such that ‖u‖ ≤ L for all u ∈ D, hence
[u(s)− x(s)]∗ ≤ u(s) ≤ ‖u‖ ≤ L. We have∣∣∣(Tλu)(t)− (Tnu)(t)

∣∣∣
≤ λ

∫ 1/n

0

G(t, s)
∣∣∣F (s, u(s))− F (

1
n

, u(s))
∣∣∣ds

+ λ

∫ 1

1− 1
n

G(t, s)
∣∣∣F (s, u(s))− F (1− 1

n
, u(s))

∣∣∣ds

≤ 2λ
( ∫ 1/n

0

G(t, s)[p(s)q(u(s)) + M ]ds +
∫ 1

1− 1
n

G(t, s)[p(s)q(u(s)) + M ]ds
)

≤ 2λ max
0≤x≤L

q(x)
( ∫ 1/n

0

G(s, s)p(s)ds +
∫ 1

1− 1
n

G(s, s)p(s)ds
)

+ 2M
( ∫ 1/n

0

G(s, s)ds +
∫ 1

1− 1
n

G(s, s)ds
)

→ 0(n →∞).

Therefore, Tn converge uniformly to Tλ on any bounded subset of E. This implies
that Tλ is a completely continuous operator. �

The following Krasnosel’skii fixed point theorem in a cone plays an important
role in proving the main result [10].
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Theorem 2.5. Let E be Banach space and K ⊂ E be a cone in E. Suppose Ω1

and Ω2 are open subset of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 \Ω1) → K
be a completely continuous operator such that

(A) ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω2 or
(B) ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω2 and ‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω1.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

3. Main Result

In this section, we present and prove our main result.

Theorem 3.1. Suppose (H1)–(H4)hold, then (1.1) has at least one positive solution
u ∈ C(0, 1) ∩ C2[0, 1] if

0 < λ ≤
[

max
0≤t≤r

q(τ)
∫ 1

0

G(s, s)p(s)ds)
]−1

,

where r = max
{
1 + 2M

∫ 1

0
G(s, s)ds, M

ρC

}
.

Proof. By Lemma 2.4, we know that Tλ is a completely continuous operator. Let

Ω1 = {u ∈ C[0, 1] : ‖u‖ < r}.

For all u ∈ K ∩ ∂Ω1, t ∈ [0, 1], we have

(Tλu)(t) = λ

∫ 1

0

G(t, s)F (t, u(s))ds

=
∫ 1

0

G(t, s)(λf(s, [u(s)− x(s)]∗) + g(s, [u(s)− x(s)]∗) + M)ds

≤
∫ 1

0

G(t, s)λp(s)q([u(s)− x(s)]∗)ds + 2M

∫ 1

0

G(t, s)ds

≤ λ max
0≤τ≤r

q(τ)
∫ 1

0

G(s, s)p(s)ds + 2M

∫ 1

0

G(s, s)ds

≤ 1 + 2M

∫ 1

0

G(s, s)ds ≤ r = ‖u‖.

This implies
‖Tλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω1. (3.1)

On the other hand, choose N large enough such that

1
2
λMθNCϕ2(θ)

∫ 1−θ

θ

G(s, s)ds ≥ 1.

By (H4), there exists a constant B > 0 such that

f(s, u)
u

> N, for (s, u) ∈ [θ, 1− θ]× [B,∞).

Set

Ω2 = {u ∈ C[0, 1] : ‖u‖ < R}, R = max
{

2r,
2M

ρC
,

2B

Cϕ2(θ)

}
.
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For any u ∈ K ∩ ∂Ω2, s ∈ [0, 1],

u(s)− v(s) ≥ u(s)− CMϕ(s)ϕ(1− s) = u(s)− M

ρ
ϕ(s)ϕ(1− s)

= u(s)− M

ρCR
C‖u‖ϕ(s)ϕ(1− s) ≥ u(s)− 1

2
u(s) =

1
2
u(s) ≥ 0.

Thus

min
θ≤s≤1−θ

(u(s)− v(s)) ≥ min
θ≤s≤1−θ

1
2
u(s)

≥ min
θ≤s≤1−θ

C

2
‖u‖ϕ(s)ϕ(1− s)

≥ CR

2
ϕ2(θ) ≥ B.

Therefore, for t ∈ [θ, 1− θ],

(Tλu)(t) = λ

∫ 1

0

G(t, s)F (s, u(s))

=
∫ 1

0

G(t, s)(λf(s, [u(s)− v(s)]∗) + g(s, [u(s)− v(s)]∗) + M)ds

≥
∫ 1−θ

θ

G(t, s)λf(s, [u(s)− v(s)]∗)ds

≥ λMθ

∫ 1−θ

θ

G(s, s)N(u(s)− v(s))ds

≥ λMθ

∫ 1−θ

θ

G(s, s)N
u(s)
2

ds

≥ λMθ

∫ 1−θ

θ

G(s, s)N
C

2
‖u‖ϕ(s)ϕ(1− s)ds

≥ 1
2
λMθNCϕ2(θ)

∫ 1−θ

θ

G(s, s)ds‖u‖ ≥ ‖u‖.

Thus

‖Tλu‖ ≥ ‖u‖, for u ∈ K ∩ ∂Ω2. (3.2)

Applying (B) of Theorem 2.5 to (3.1) and (3.2) yields that Tλ has a fixed point u0

with r ≤ ‖u0‖ ≤ R. By Lemma 2.1 it follows that

u0(t) ≥ C‖u0‖ϕ(t)ϕ(1− t)

= Crϕ(t)ϕ(1− t)

=
rρC

M
· M

ρ
ϕ(t)ϕ(1− t)

≥ M

ρ
ϕ(t)ϕ(1− t) = v(t).

Set u(t) = u0(t) − v(t), then u(t) is a C[0, 1] ∩ C2(0, 1) positive solution to (1.1).
This completes the proof. �
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