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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR
ELLIPTIC BOUNDARY-VALUE PROBLEMS WITH
NONSYMMETRICAL CRITICAL NONLINEARITY

GENG DI

Abstract. In this paper, we study a semilinear elliptic boundary-value prob-
lem involving nonsymmetrical term with critical growth on a bounded smooth

domain in Rn. We show the existence of infinitely many weak solutions un-
der the presence of some symmetric sublinear term, the corresponding critical

values of the variational functional are negative and go to zero.

1. Introduction and Main Results

In the present paper, we consider the following Dirichlet problem, for the Laplace
equation,

−∆u = g(x, u) + f(x, u), in Ω
u = 0, on ∂Ω ,

(1.1)

where Ω is a bounded smooth domain in Rn and n ≥ 3.
We assume that the nonlinear term g(x, u) ∈ C(Ω× R) is odd symmetric:

g(x,−u) = −g(x, u), for all (x, u) ∈ Ω× (−∞,+∞). (1.2)

The other nonlinear term f(x, u) in (1.1) is a non-symmetric perturbation. When
f(x, u) = 0, multiple solutions (usually infinitely many solutions) may be expected.
As pointed out by many authors, the symmetry is not necessary to guarantee the
multiplicity of solutions for (1.1); we refer to Rabinowitz [6], Struwe [7] and Dong
& Li [5] and the references therein. Some relevant results can be found in [1], [2]
and [4]. In these papers authors assumed that the nonlinear terms did not have
critical growth, which enables the Palais-Smale condition to be verified in a simple
method on a large scale. There arises a natural question whether there still exist
multiple solutions even when the symmetric term is non-critical and the perturbed
nonlinearity is critical. In this paper, we will partly answer this question.
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As a special case of (1.1), we consider the problem

−∆u = |u|p−1u± |u|
n+2
n−2 , in Ω

u = 0, on ∂Ω.
(1.3)

Then we have the following result.

Theorem 1.1. Suppose 1 > p > max{0, (n(n−2)−4)/(n(n−2)+4)}. Then (1.3)
possesses infinitely many (weak) solutions.

In order to get a more general conclusion, we impose the following assumptions
on g(x, u) and f(x, u).

(G1) There exist positive constants C0, C1 and a nonnegative constant C2 such
that

C0|u|p ≤ |g(x, u)| ≤ C1|u|p + C2|u|q,
where p ∈ (0, 1) and q ∈ [p, 1).

(G2) There exists a positive constant µ ∈
(

1
2 ,

1
1+p

)
such that

0 ≤ µug(x, u) ≤ G(x, u) =
∫ u

0

g(x, τ)dτ, for all (x, u) ∈ Ω× (−∞,+∞);

Moreover, we suppose that f ∈ C1(Ω× R) and satisfies
(F) There exists a positive constant C3 such that for all (x, u) ∈ Ω×(−∞,+∞),

|f(x, u)| ≤ C3|u|(n+2)/(n−2), |f ′u(x, u)| ≤ C3(1 + |u|4/(n−2)).

Remark. The growth of f(x, u) is allowed to be critical, that is, when 1 ≤ s <
2∗ = 2n/(n− 2), the embedding of the Sobolev space H1

0 (Ω) ↪→ Ls(Ω) is compact;
if s = 2∗, the embedding is only continuous but not compact. The best Sobolev
embedding constant as s = 2∗ is denoted by S, namely,

S = inf{‖∇u‖2
2;u ∈ H1

0 (Ω) and ‖u‖2∗ = 1}. (1.4)

We introduce a variational functional for (1.1) as

I(u) =
1
2

∫
Ω

|∇u|dx−
∫

Ω

G(x, u)dx−
∫

Ω

F (x, u)dx ,

where ‖u‖ =
√∫

Ω
|∇u|2dx is the norm in H1

0 (Ω), and F (x, u) =
∫ u

0
f(x, τ)dτ . The

weak solutions of (1.1) are the critical points of the functional I(u). Our main
result in this paper is the following theorem.

Theorem 1.2. Suppose that the exponent p in the assumption (G1) satisfies

max{0, n(n− 2)− 4
n(n− 2) + 4

} < p < 1. (1.5)

Then under hypotheses (G1), (G2) and (F), problem (1.1) possesses infinitely many
(weak) solutions. The corresponding critical values of I(u) are negative and ap-
proach zero.

The difficulty we have to overcome is that the functional I(u) does not satisfy the
Palais-Smale condition. On the other hand, the sublinear term in (1.1) suggests that
the critical values of I(u) should be negative. With those observations, following the
ideas developed by Rabinowitz [6], we define a new functional J(u) as a truncation
of I(u), The new functional verifies the compactness condition and possesses a series
of negative critical values which coincide with those of I(u).
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This paper is organized as follows: In Section 2, we introduce the new functional
J(u) and show that J(u) approaches, in some sense, to an even functional. By
carefully determining the positive constants which appear in J(u), we can show, in
Section 3, that the new functional verifies the Palais-Smale condition. Section 4 is
devoted to make out the structure of the series of critical values for the functional
J(u). A crucial step in this section is the proof that the series of these critical
values are negative. With some growth estimates of the critical values we prove
that most of the critical values of J(u) near the origin are also the critical values
of I(u). This allows us to prove Theorem 1.1 and 1.2, which is done in Section 5.

2. A New Functional

If u ∈ H1
0 (Ω) is a critical point of the functional of I(u), that is, I ′(u) = 0, then

〈I ′(u), u〉 = 0. With this notation as above, it is not difficult to verify the following
inequality

‖u‖2 ≤ 1
µ

∫
Ω

G(x, u)dx+ C3‖u‖2∗

2∗ . (2.1)

Set Φ(t) ∈ C∞[0,+∞) such that 0 ≤ Φ(t) ≤ 1 and Φ(t) = 1 in [0, 1] and Φ(t) = 0
in [2µ′,+∞), where µ′ ∈ (1/2, µ). (by assumption µ < 1

p+1 < 1) Furthermore we
can choose Φ satisfying

|Φ′(t)| ≤ 2
2µ′ − 1

.

For u ∈ H1
0 (Ω)\{0}, we define

φ(u) = Φ
( ‖u‖2

1
µ

∫
Ω
G(x, u)dx+A‖u‖2∗

2∗

)
,

where A ≥ C3 is a constant to be determined later.
Set Ψ(t) ∈ C∞[0,+∞) such that 0 ≤ Ψ(t) ≤ 1 and Ψ(t) = 1 in [0, R2/2] and

Ψ(t) = 0 in [R2,+∞), where R2 ≤ 1 and the positive constant R is to be determined
later. moreover we can choose Ψ satisfying

|Ψ′(t)| ≤ 4
R2

.

For u ∈ H1
0 (Ω), we define

ψ(u) = Ψ
(
‖u‖2

)
.

Before proceeding, we have the following estimates.

Lemma 2.1. For u ∈ H1
0 (Ω) \ {0}, we have

|〈ψ′(u), u〉| ≤ 8, |〈φ′(u), u〉| ≤M0, (2.2)

where M0 is independent of u and A.

Proof. For u ∈ H1
0 (Ω)\{0}, let

t = ‖u‖2
( 1
µ

∫
Ω

G(x, u)dx+A‖u‖2∗

2∗

)−1

.

Then by the definition of φ(u), we have

〈φ′(u), u〉 = Φ′(t)t
[
2− t

‖u‖2

∫
Ω

(g(x, u)u
µ

+ 2∗A|u|
4

n−2u
)
dx

]
. (2.3)
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If t 6∈ [1, 2µ′], then Φ′(t) = 0, the conclusion of the lemma holds true. Without loss
of generality, we can assume that 1 ≤ t ≤ 2µ′, that is,

1
µ

∫
Ω

G(x, u)dx+A‖u‖2∗

2∗ ≤ ‖u‖2 ≤ 2µ′
( 1
µ

∫
Ω

G(x, u)dx+A‖u‖2∗

2∗

)
. (2.4)

From hypotheses (G1) and (G2),

|〈φ′(u), u〉| ≤ 4µ′

2µ′ − 1
[2 + 2∗] = M0.

In a similar way, we have 〈ψ′(u), u〉 = 2Ψ′(‖u‖2)‖u‖2 = 2Ψ′(s)s, where s = ‖u‖2.
If s 6∈ [R2/2, R2], then Ψ′(s) = 0, the conclusion of the lemma is true, so we can
suppose that R2/2 ≤ s ≤ R2. Thus

|〈ψ′(u), u〉| ≤ 2|Ψ′(s)|‖u‖2 ≤ 8.

�

Remark. The significance of the lemma is that the bounds for the estimates in
(2.2) are independent of R and A. Therefore, we can take A = (M0 + 9)C3 in
advance and choose R > 0 small in the sequel.

Now, we introduce the new functional, which is a truncation of I(u), as follows:
For u ∈ H1

0 (Ω)\{0}, define

J(u) =
1
2

∫
Ω

|∇u|dx−
∫

Ω

G(x, u)dx− φ(u)ψ(u)
∫

Ω

F (x, u)dx,

and J(0) = 0. The first fact about the functional J(u) is that J(u) is continuous
differentiable.

Proposition 2.2. J ∈ C1(H1
0 (Ω),R).

Proof. Since I(u) ∈ C1(H1
0 (Ω),R), what we have to prove is that the last term in

J(u) is continuous differentiable at 0 in the sense of Frèchet’s means. In fact, by
denoting

F(u) = φ(u)ψ(u)
∫

Ω

F (x, u)dx, for u ∈ H1
0 (Ω)\{0},

it is easy to verify that 0 is a removable singular point of F(u) and by defining
F(0) = 0 the functional F(u) becomes continuous at 0. Moreover, for any η ∈
H1

0 (Ω) and u ∈ H1
0 (Ω)\{0},

〈F ′(u), η〉 = [〈φ′(u), η〉ψ(u)+〈ψ′(u), η〉φ(u)]
∫

Ω

F (x, u)dx+φ(u)ψ(u)
∫

Ω

f(x, u)ηdx.

Then by the assumption (F), the Hölder inequality and (1.4), we have

|〈ψ′(u), η〉φ(u)|
∫

Ω

|F (x, u)|dx ≤ 2C3‖u‖2∗

2∗ |(u, η)H1
0
| ≤ 2C3S

(1+2∗)/2‖u‖1+2∗‖η‖;

φ(u)ψ(u)
∫

Ω

|f(x, u)η|dx ≤ C3‖u‖(n+2)/(n−2)
2∗ ‖η‖2∗

≤ C3S
2∗/2‖u‖(n+2)/(n−2)‖η‖.
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Thus, we can estimate as follows:

|〈φ′(u), η〉|φ(u)
∫

Ω

|F (x, u)|dx

≤ 2C3‖u‖2∗

2∗ψ(u)
(2µ′ − 1)t

[
|(u, η)H1

0
|+

∫
Ω

( |g(x, u)|
µ

+ 2∗A|f(x, u)|
)
|η|dx

]
≤ C

‖u‖4/(n−2)ψ(u)
2µ′ − 1

[
‖u‖+ ‖u‖p + ‖u‖q + ‖u‖(n+2)/(n−2)

]
‖η‖

≤ C‖u‖(n+2)/(n−2)‖η‖,

where C depends only on S, |Ω|, C1, C2, C3 and µ′. Thus we can get the estimate
of F ′:

‖F ′(u)‖H−1(Ω) ≤M1

[
‖u‖1+2∗ + ‖u‖+ ‖u‖p + ‖u‖q + ‖u‖2∗−1

]
,

which implies F ′(u) → 0 as u → 0. With the additional definition F ′(0) = 0, the
above limit implies that F ′(u) is continuous at 0. �

Lemma 2.3. If the positive constant R is small enough, for all u ∈ suppφ∩suppψ
we have

|J(u)| ≥M2‖u‖1+p
1+p, (2.5)

where M2 is a positive constant independent of u.

Proof. Suppose that u ∈ suppψ = B̄R(0) ⊂ H1
0 (Ω). Then when R is small enough,

from the Sobolev inequality it follows that

2µ′A‖u‖2∗

2∗ ≤
1
2
‖u‖2.

Moreover, if u ∈ suppφ, by the assumption (G1), we have

‖u‖2 ≤ 2µ′
( 1
µ

∫
Ω

G(x, u)dx+A‖u‖2∗

2∗

)
≤ 4

µ′

µ

[
C1‖u‖1+p

1+p + C2‖u‖1+q
1+q

]
. (2.6)

Without loss of generality, we can suppose that q > p and C2 > 0. According to
the interpolation inequality, we have

‖u‖1+q ≤ ‖u‖r
1+p‖u‖1−r

2∗ , (2.7)

where r = (1 + p)(2n− (1 + q)(n− 2))/(1 + q)(2n− (1 + p)(n− 2)). Hence we get

‖u‖1+q
1+q ≤ S

1−r
2 ‖u‖r(1+p)

1+p

[
‖u‖1+p

1+p +‖u‖1+q
1+q

] (1−r)(1+q)
2 ≤ C

[
‖u‖α

1+p +‖u‖β
1+q

]
, (2.8)

where C is depend only on S, and α = (1 + q)[r + (1 − r)(1 + p)/2] and β =
(1 + q)[r + (1 − r)(1 + q)/2]. It is clear that α < β. On the other hand, a simple
calculate shows that α = (1 + p)(n− np+ 2q+ 2)/(n− np+ 2p+ 2) > 1 + p. Then
if R is small enough, (2.8) becomes

‖u‖1+q
1+q ≤

1
2C2

‖u‖1+p
1+p.

Thus we can write (2.6) as

‖u‖2 ≤ 8C1
µ

µ′
‖u‖1+p

1+p. (2.9)
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With (2.9) we can estimate J(u) as follows

|J(u)| ≥
(
1− µ′

µ

)
µ

∫
Ω

ug(x, u)dx− (µ′A+ C3)‖u‖2∗

2∗

≥ (µ− µ′)C0‖u‖1+p
1+p − C‖u‖2∗

≥ (µ− µ′)C0‖u‖1+p
1+p − C‖u‖(1+p)2∗/2

1+p

≥ 1
2
(µ− µ′)C0‖u‖1+p

1+p,

where C depends only on S, A and µ. Then the lemma follows with M2 = (µ −
µ′)C0/2 > 0. �

Although J(u) in generally is not an even functional, J(u) approaches in some
sense to such a functional as shown in the following result.

Proposition 2.4. There exists a positive constant M3 independent of u, such that

|J(u)− J(−u)| ≤M3|J(u)|θ, for all u ∈ H1
0 (Ω), (2.10)

where θ = 2∗/2 = n/(n− 2).

Proof. From the definition of J(u), the embedding theorem, and (2.9), we have

|J(u)− J(−u)| = φ(u)ψ(u)
∣∣ ∫

Ω

F (x, u)dx−
∫

Ω

F (−u)dx
∣∣

≤ 2φ(u)ψ(u)C3‖u‖2∗

2∗

≤ C‖u‖(1+p)2∗/2
1+p

≤M3|J(u)|2
∗/2.

The proposition follows with θ = 2∗/2. Note that M3 is depend only on C3 and
S. �

3. Verification of Palais-Smale Condition

Because the functional I(u) contains critical growth nonlinearity, a well-known
fact is that the functional violates Palais-Smale condition. However, all energy
values of the functional where this condition may fail can be characterized, we
refer to Struwe [7]. The factors φ(u) and ψ(u) in the new functional J(u) will
change the situation, that is, J(u) remains most critical points of I(u) and satisfies
Palais-Smale condition as shown in this section.

Lemma 3.1. There exists a suitable constant R > 0 such that for any M > 0,
there exists C(M) > 0, if |J(u)| ≤M , then

‖u‖2 ≤ C(M).

Proof. From the assumptions on f(x, u) and g(x, u) it follows that

|J(u)| ≥ 1
2
‖u‖2 − C

[
‖u‖1+p + ‖u‖1+q + φ(u)ψ(u)‖u‖2∗

]
(3.1)

If ‖u‖2 > R2, then ψ(u) = 0. Without loss of generality, we can suppose that
‖u‖2 ≤ R2. Set R > 0 small enough such that

Cφ(u)ψ(u)‖u‖2∗ ≤ 1
4
‖u‖2 for all u ∈ H1

0 (Ω). (3.2)
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Then (3.1) becomes

|J(u)| ≥ 1
4
‖u‖2 − C

[
‖u‖1+p + ‖u‖1+q

]
. (3.3)

Therefore, from |J(u)| ≤ M it follows that there exists C(M) such that ‖u‖2 ≤
C(M). �

Proposition 3.2. For some suitable positive constants A and R, the functional
J(u) satisfies the Palais-Smale condition, that is, for any sequence {um} in H1

0 (Ω)
such that |J(um)| ≤M and

J ′(um) → 0 as m→∞ in H−1(Ω),

then there exists subsequence of {um} which is convergent in H1
0 (Ω).

Proof. Suppose that {um} is a sequence in H1
0 (Ω) with |J(um)| ≤M and J ′(um) →

0 in H−1(Ω). What we have to prove is that {um} possesses a convergent subse-
quence. Without loss of generality, we can assume that there exists a positive
constant ε such that ‖um‖2 ≥ ε. From lemma 3.1 it follows that the sequence {um}
is bounded in H1

0 (Ω) since |J(um)| ≤M . Thus there exist a subsequence (denoted
still by {um}) and u in H1

0 (Ω) such that

um ⇀ u in H1
0 (Ω),

um → u strongly in Lt(Ω) for t ∈ [1, 2∗),
um → u almost everywhere in Ω.

Denote

sm =
‖um‖2

1
µ

∫
Ω
G(x, um)dx+A‖um‖2∗

2∗
, tm = ‖um‖2.

With this notation, for any η ∈ C∞0 (Ω) we have

〈J ′(um), η〉 = [1− I1(um)]
∫

Ω

∇um · ∇ηdx− [1− I2(um)]
∫

Ω

g(x, um)ηdx

− φ(um)ψ(um)
∫

Ω

f(x, um)ηdx− I3(um)
∫

Ω

|um|
4

n−2umηdx,

where

I1(um) = 2
[ ψ(um)Φ′(sm)

1
µ

∫
Ω
G(x, um)dx+A‖um‖2∗

2∗
+ φ(um)Ψ′(tm)

] ∫
Ω

F (x, um)dx

I2(um) =
‖um‖2Φ′(sm)ψ(um)

µ
(

1
µ

∫
Ω
G(x, um)dx+A‖um‖2∗

2∗

)2

∫
Ω

F (x, um)dx

I3(um) = 2∗A
‖um‖2Φ′(sm)ψ(um)

µ
(

1
µ

∫
Ω
G(x, um)dx+A‖um‖2∗

2∗

)2

∫
Ω

F (x, um)dx.

By Brezis-Lieb’s result [3] (also see (3.9)), we can write

‖um‖2 = ‖u‖2 + δ′ + o(1), ‖um‖2∗

2∗ = ‖u‖2∗

2∗ + δ + o(1), (3.4)

where (subsequence, if necessary)

δ′ = lim
m→∞

‖um − u‖2, and δ = lim
m→∞

‖um − u‖2∗

2∗ . (3.5)
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It is easy to verify that∫
Ω

G(x, um)dx→
∫

Ω

G(x, u)dx,
∫

Ω

f(x, um)ηdx→
∫

Ω

f(x, u)ηdx. (3.6)

Denote

‖u‖2 + δ′ = t0,
‖u‖2 + δ′

1
µ

∫
Ω
G(x, u)dx+A(‖u‖2∗

2∗ + δ)
= s0.

Moreover (subsequence, if necessary)

lim
m→∞

∫
Ω

F (x, um)dx = r0.

With this notion, we obviously have

ψ(um) = Ψ(tm) → Ψ(t0), Ψ′(tm) → Ψ′(t0),

φ(um) = Φ(sm) → Φ(s0), Φ′(sm) → Φ′(s0).

Therefore, as m approaches infinity, we obtain

I1(um) → I1 = 2
( Ψ(t0)Φ′(s0)

1
µ

∫
Ω
G(x, u)dx+A(‖u‖2∗

2∗ + δ)
+ Φ(s0)Ψ′(t0)

)
r0

I2(um) → I2 =
(‖u‖2 + δ′)Φ′(s0)Ψ(t0)

µ
(

1
µ

∫
Ω
G(x, u)dx+A(‖u‖2∗

2∗ + δ)
)2 r0

I3(um) → I3 = 2∗A
(‖u‖2 + δ′)Φ′(s0)Ψ(t0)

µ
(

1
µ

∫
Ω
G(x, u)dx+A(‖um‖2∗

2∗ + δ)
)2 r0,

which implies
〈J ′(um), η〉 → 〈J̃(u), η〉,

where

〈J̃(u), η〉 = [1− I1]
∫

Ω

∇u · ∇ηdx− [1− I2]
∫

Ω

g(x, u)ηdx

− Φ(s0)ψ(t0)
∫

Ω

f(x, u)ηdx− I3

∫
Ω

|u|
4

n−2uηdx.

From 〈J ′(um), η〉 = o(1), we have 〈J̃(u), v〉 = 0 for all v in H1
0 (Ω). It follows that

〈J ′(um)− J̃(u), um − u〉 = 〈J ′(um), um − u〉 → 0. (3.7)

On the other hand, we have

〈J ′(um)− J̃(u), um − u〉

= (1− I1)‖um − u‖2 + o(1)− (1− I2)
∫

Ω

[
g(x, um)− g(x, u)

]
(um − u)dx

−Ψ(t0)Φ(s0)
∫

Ω

[
f(x, um)− f(x, u)

]
(um − u)dx

− I3

∫
Ω

[
|um|

4
n−2um − |u|

4
n−2u

]
(um − u)dx

= (1− I1)‖um − u‖2 + o(1)−Ψ(t0)Φ(s0)
∫

Ω

f(x, um − u)(um − u)dx

− I3

∫
Ω

|um − u|2
∗
dx.

(3.8)
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where we have used the fact
∫
Ω
[f(x, um)−f(x, u)](um−u)dx=

∫
Ω
f(x, um−u)(um−

u)dx + o(1), which proof can be founded in the next lemma. Before proceeding
furthermore, we first claim that |I1| ≤ 1/2 and |I3| ≤ 1/4. In fact, if um 6∈
suppφ ∩ suppψ, then I1(um) = I3(um) = 0, we are done. In the contrary case,
that is, um ∈ suppφ ∩ suppψ, we can suppose that u ∈ suppΨ′. Otherwise, we
have I3(um) = 0 and I1(um) = φ(um)Ψ′(tm)

∫
Ω
F (x, um)dx, the desired result easy

follows. Without loss generality, we can suppose that tm ∈ Ψ′, namely

1 ≤ ‖um‖2
( 1
µ

∫
Ω

G(x, um)dx+A‖um‖1+p
1+p

)−1

≤ 2µ′,

R2

2
≤ ‖um‖2 ≤ R2.

By the choice of Φ and Ψ, we can estimate I1(um) as

|I1(um)| ≤
[ 4C3(2µ′ − 1)−1

1
µ

∫
Ω
G(x, um)dx+A‖um‖2∗

2∗
+

4C3

R2

]
‖um‖2∗

2∗

≤ 4C3S
− 2∗

2
( 2µ′

2µ′ − 1
+ 1

)
‖u‖

4
n−2

≤ 4C3S
n

2−n

2µ′ − 1
R

4
n−2 .

Let R be small enough, then |I1(um)| < 1/2, which implies that |I1| ≤ 1/2.
In a similar way, we can estimate I3 as

|I3(um)| ≤ 4
2∗AC3µ

′

2µ′ − 1

( ∫
Ω

G(x, um)dx+A‖um‖2∗

2∗

)−1

‖um‖2∗

2∗

≤ 2∗AC3S
n

2−n
8µ′2

2µ′ − 1
‖u‖

n
n−2

≤ 2∗AC3S
n

2−n
8µ′2

2µ′ − 1
R

n
n−2 .

After the constant A being fixed, we can set R be small enough such that |I3(um)| <
1/4, which implies that |I3| ≤ 1/4.

Let us go back to (3.7) and (3.8). If um ∈ BR(0) = suppψ and for R small
enough

o(1) ≥ 1
2
‖um − u‖2 −Ψ(t0)Φ(s0)S

n
2−n ‖um − u‖2∗ − 1

4
‖um − u‖2∗

≥ 1
4
‖um − u‖2.

Where we have used the fact

‖um − u‖2∗ ≤ (‖um‖
n

n−2 + ‖u‖
n

n−2 )‖um − u‖2 ≤ 2R
n

n−2 ‖um − u‖2.

If um 6∈ suppψ, we still have

o(1) ≥ 1
2
‖um − u‖2.

As a consequence, for a subsequence, um → u strongly in H1
0 (Ω). �
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Lemma 3.3. Suppose that h(x, u) ∈C1(Ω × (−∞,+∞)) and |h′u(x, u)| ≤ C(1 +
|u|4/(n−2)). If um ⇀ u weakly in H1

0 (Ω), then∫
Ω

[h(x, um)− h(x, u)](um − u)dx =
∫

Ω

h(x, um − u)(um − u)dx+ o(1) (3.9)

Proof. The hypothesis on the growth of h implies that h(x, um) and h′(x, um)um

are bounded in L2n/(n+2)(Ω). The compact embedding theorem for Sobolev spaces
yields that for a subsequence,

h(x, um) → h(x, u), h′u(x, um)um → h′u(x, u)u strongly in L
2n

n+2 (Ω). (3.10)

Furthermore we can deduce that∫
Ω

[h(x, um)− h(x, u)]udx = o(1), and
∫

Ω

h(x, u)(um − u)dx = o(1).

Consequently∫
Ω

[h(x, um)− h(x, u)](um − u)dx =
∫

Ω

[h(x, um)um − h(x, u)u]dx+ o(1).

On the other hand, as n→∞,∫
Ω

[
h(x, um)um − h(x, um − u)(um − u)

]
dx

=
∫

Ω

∫ 1

0

d

dt
{h(x, um − (1− t)u)(um − (1− t)u)} dt dx

=
∫

Ω

∫ 1

0

[h′u(x, um − (1− t)u)(um − (1− t)u)u+ h(x, um − (1− t)u)u] dt dx

=
∫ 1

0

∫
Ω

[h′u(x, um − (1− t)u)(um − (1− t)u)u+ h(x, um − (1− t)u)u] dx dt

→
∫ 1

0

∫
Ω

[h′u(x, tu)tu2 + h(x, tu)u]dt dx

=
∫ 1

0

∫
Ω

d

dt
{h(x, tu)(tu)} dt dx =

∫
Ω

h(x, u)u dx,

where the weak convergence limit is a consequence of (3.10). �

Remark. If f is convex, we can infer that the first inequality in (F) implies the
second one. Moreover, a revised proof as in Brezis-Lieb’s paper [3] can be used to
establish that differentiability of f is not necessary.

4. The Construction of Critical Values

In this section, we establish a series of minimax sequences of the functional J(u)
and prove at last that there is a subsequence of them which is the infinitely many
critical values of the functional I(u).

Denote the eigenvalue of −∆ with vanish boundary value by λk, k = 1, 2, . . . ,
and the normalized eigenfunction corresponding to λk by ek. Set

Ek = span{e1, e2, . . . , ek},
Sk = {u ∈ Ek; ‖u‖ = 1}

S+
k+1 = {u = tek+1 + w; ‖u‖ = 1, w ∈ Ek, t ≥ 0}.
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Define the map sets as follows:

Λk = {h ∈ C(Sk,H
1
0 (Ω));h is odd map},

Γk = {h ∈ C(S+
k+1,H

1
0 (Ω));h|Sk

∈ Λk}.

With these sets of maps, we can define minimax sequence of J(u) as follows:

bk = inf
h∈Λk

max
u∈Sk

J(h(u)), ck = inf
h∈Γk

max
u∈S+

k+1

J(h(u)).

For δ > 0, we set

Γk(δ) = {h ∈ Γk; J(h(u)) ≤ bk + δ, u ∈ Sk}
ck(δ) = inf

h∈Γk(δ)
max

u∈S+
k+1

J(h(u)).

It is easy to prove that the above notation are well-defined and bk ≤ ck ≤ bk+1,
ck ≤ ck(δ).

From the definition of J(u) and the assumptions (G1) and (F), it follows that,
if R > 0 is small,

J(u) ≤ 1
2
‖u‖2 − C0‖u‖p+1

p+1 + φ(u)ψ(u)C3‖u‖2∗

2∗ ≤ ‖u‖2 − C0‖u‖p
p.

By setting H(u) = ρu, we obviously have H ∈ Λk. Since H(Sk) ⊂ Ek, we can find
out ρ = ρk and Ck > 0 such that for any u ∈ Sk,

J(H(u)) = J(ρku) ≤ ρ2
k − C0Ckρ

p
k < 0, (4.1)

which implies that J(u) < 0 for all u in (Bρk
(0) ∩ Ek)\{0} and bk < 0 for k =

1, 2, . . . . Furthermore, for any δ > 0, it is clear that ck(δ′) ≤ ck + δ, where δ′ =
ck− bk + δ. However, an important fact is that ck(δ) < 0 for each k and each δ > 0.
Before giving the proof of the fact, we first claim that the functional J(u) possesses
no critical point with nonnegative critical value except the origin. In fact, suppose
u ∈ K = {u ∈ H1

0 (Ω); J ′(u) = 0} and J(u) ≥ 0, then

0 ≤ J(u) = J(u)− 1
2
〈J ′(u), u〉

≤ (
1
2
− µ)

∫
Ω

g(x, u)udx+ φ(u)ψ(u)
∣∣∣ ∫

Ω

(
F (x, u) + f(x, u)u

)
dx

∣∣∣
+

[
|〈φ′(u), u〉|ψ(u) + |〈ψ′(u), u〉|φ(u)

] ∫
Ω

|F (x, u)|dx

≤ (
1
2
− µ)C0‖u‖1+p

1+p + C3

[
φ(u)ψ(u) +M0ψ(u) + 8φ(u)

]
‖u‖2∗

2∗

≤ 1
2
(
1
2
− µ)C0‖u‖1+p

1+p ≤ 0,

for suitable small R, which leads to u = 0.

Lemma 4.1. For k = 1, 2, . . . , and δ > 0 we have ck(δ) < 0.

Proof. Without loss of generality, we suppose that bk + δ < 0. From the definition
of ck(δ) it follows that there exits h ∈ Λk such that

max
u∈Sk

J(h(u)) ≤ bk +
δ

2
. (4.2)
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Denote the orthogonal projective operator from H1
0 (Ω) to Em by Pm. Since h(Sk)

is a compact set in H1
0 (Ω), it is not difficult to show that there exists a positive

integer m (m ≥ k) such that

max
u∈Sk

J(Pmh(u)) ≤ bk + δ. (4.3)

Note that Pmh ∈ Λk. The fact that the functional J(u) possesses no critical point
with nonnegative critical value except the origin implies that Bρ/2(0) ⊂ H1

0 (Ω)
is a neighborhood of K0, where Ka = {u ∈ H1

0 (Ω); J(u) = a, J ′(u) = 0}. Let
ε̄ = −(bk + δ)/2 and ρ = min{ρm+1,dist(0, J−ε̄)}, where ρm+1 is determined as
in (4.1). Therefore, the deformation theorem can be used to find out a positive
ε ∈ (0, ε̄) and a continuous map η ∈ C(H1

0 (Ω)× [0, 1],H1
0 (Ω)), such that

(i) η(u, 1) = u, for all u 6∈ J−1(−ε̄, ε̄)
(ii) η(Jε\Bρ/2(0), 1) ⊂ J−ε.

The idea in the following is to seek a contractible subset of Jε and to expend the
map Pmh in the subset before it can be deformed into J−ε with the deformation
map η.

Indeed, in view of Pmh(Sk) ⊂ Em, it is natural for us to consider the functional
J̃ , the restriction of J on Em, namely J̃ = J |Em . It is clear that J̃ ∈ C1(Em,R)
and by the same argument as previous shown, one can obtain that J̃ possesses
no critical point with nonnegative critical value except the origin. Thus that fact
implies that the level set J̃σ = {u ∈ Em; J̃(u) < σ} is a deformation retract of
Em for any σ > 0, so is J̃ε contractible, for the positive ε found in the previous
deformation theorem. Hence the map Pmh can be extended as

P̃mh : S+
k+1 → J̃ε.

Let T be a map from Em to Em+1 defined by

T (u) =

{
u, u 6∈ B̄ρ(0) ∩ Em

u+
√
ρ2 − ‖u‖2em+1, u ∈ B̄ρ(0) ∩ Em.

It is clear that T is continuous, and

(T ◦ P̃mh)[S+
k+1] ∩Bρ/2(0) = ∅.

Since P̃mh[S+
k+1] ⊂ J̃ε ⊂ Jε, we also have T (P̃mh[S+

k+1]) ⊂ Jε.
Denote H(·) = η(T ◦ P̃mh(·), 1) and A = H(S+

k+1). From (i) it follows that
H|S+

k+1
= Pmh ∈ Λk which implies that H ∈ Γk(δ). Moreover from (ii) it follows

that A = H(S+
k+1) ⊂ J−ε. Therefore,

max
u∈A

J(u) ≤ −ε < 0

which implies that ck(δ) < 0. �

Lemma 4.2. Set dk = |bk|. Then there exists a positive constant M4 such that for
all k large enough

dk ≤M4k
− 2

n
1+p
1−p , (4.4)

where M4 is independent of k.
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Proof. For any fixed h ∈ Λk (k ≥ 2), from Borsuk-Ulam Theorem it follows that

h(Sk) ∩ E⊥k−1 6= ∅.

Take w ∈ h(Sk), denote ρ = ‖w‖. In E⊥k−1, we have

‖u‖2 ≥ λk‖u‖2
2.

With the properties of φ(u) and ψ(u), we can estimate J(w) as follows:

J(w) ≥ 1
2
‖w‖2 − C1‖w‖1+p

1+p − C2‖w‖1+q
1+q − C3φ(w)ψ(w)‖w‖2∗

2∗

≥ 1
4
‖w‖2 − C‖w‖1+p

2

≥ 1
4
ρ2 − Cλ

− 1+p
2

k ρ1+p = Q(ρ).

Hence

max
u∈h(Sk)

J(u) ≥ J(w) ≥ inf
u∈∂Bρ(0)∩E⊥k−1

J(u) ≥ inf
ρ≥0

Q(ρ) ≥ −M5λ
− 1+p

1−p

k .

On the other hand, λk ≥ M6k
2/n; see for example [6]). By the arbitrariness of h,

we get bk ≥ −M4k
2(1+p)/n(p−1). �

Lemma 4.3. If ck = bk for all k large enough, then

dk ≥M7k
− 1

θ−1 ,

where θ = 2∗/2 = n/(n− 2) and 1/(θ− 1) = (n− 2)/2 and M7 is independent of k.

Proof. Suppose that for some k0, we have bk = ck (k = k0, k0 + 1, . . . ). Then for
any ε ∈ (0,−bk), there exists a map H ∈ Γk such that

bk ≤ J(H(u0)) = max
u∈S+

k+1

J(H(u)) ≤ ck + ε = bk + ε. (4.5)

Define H̄ : Sk+1 → H1
0 (Ω) as

H̄ =

{
H(u), u ∈ S+

k+1

−H(−u), −u ∈ S+
k+1.

Since Sk+1 = S+
k+1 ∪ (−S+

k+1), it is clear that H̄ ∈ Λk+1, that is,

bk+1 ≤ max
u∈Sk+1

J(H̄(u)) = max
{

max
u∈S+

k+1

J(H(u)), max
−u∈S+

k+1

J(−H(−u))
}
. (4.6)

We claim that
bk+1 ≤ bk + ε+M3|bk+1|θ. (4.7)

In fact, if
max

u∈S+
k+1

J(H(u)) ≥ max
−u∈S+

k+1

J(−H(−u)),

then (4.6) implies bk+1 ≤ bk + ε which leads to (4.7). On the contrary, we can use
Lemma 2.10

J(−v) ≤ J(v) +M3|J(−v)|θ, for all v ∈ H1
0 (Ω), (4.8)

where θ = 2∗/2. Let v0 be in H(S+
k+1) such that

J(−v0) = max
v∈H(S+

k+1)
J(−v),
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then (4.8) becomes J(−v0) ≤ bk + ε+M3|J(−v0)|θ, or

bk+1 ≤ bk + ε+M3

∣∣ max
v∈H(S+

k+1)
J(−v)

∣∣θ. (4.9)

If maxv∈H(S+
k+1)

J(−v) ≤ 0, then (4.7) can be drawn directly from the above in-

equality. Otherwise, we can take some v = v0 ∈ H(S+
k+1) such that

bk+1 ≤ J(−v0) ≤ 0,

we still get (4.7) in the same way. Now by letting ε→ 0 we get

bk+1 ≤ bk +M3|bk+1|θ, for k ≥ k0. (4.10)

With induction, we can show the lemma from (4.10), we omit the details. �

5. Proof of The Main Theorems

Lemma 5.1. If ck > bk, then for δ ∈ (0, ck − bk), ck(δ) is a critical value of the
functional J(u).

Proof. If this is not the case, that is, ck > bk, but for δ ∈ (0, ck − bk), ck(δ) is not
a critical value of the functional J(u). Set ε̄ = ck − bk − δ. Then ε̄ > 0. From the
deformation theorem it follows that there exist a positive constant ε ∈ (0, ε̄) and a
continuous map η(·, ·) ∈ C(H1

0 (Ω)× [0, 1],H1
0 (Ω)) such that

(i) η(u, t) = u, for all u 6∈ J−1(ck(δ)− ε̄, ck(δ) + ε̄)
(ii) η(Jck(δ)+ε, 1) ⊂ Jck(δ)−ε.

By the definition of ck(δ), there exists H ∈ Γk(δ) such that

max
u∈S+

k+1

J(H(u)) ≤ ck(δ) + ε. (5.1)

For u in Sk, we also have J(H(u)) ≤ bk + δ = ck − ε̄ ≤ ck(δ)− ε̄. Set

H̄(u) = η(H(u), 1), for all u ∈ Sk.

From (i) it follows that H̄ ∈ Γk(δ), but (ii) implies that H̄(Jck(δ)+ε) ⊂ Jck(δ)−ε,
which arises a contradiction. �

Lemma 5.2. Suppose that 1/(θ − 1) = (n− 2)/2 > 2(1 + p)/(1− p)n. Then there
exists a subsequence ckj of ck (j = 1, 2, . . . ) such that

ckj
> bkj

, j = 1, 2, . . . . (5.2)

Proof. With Lemma 4.2 and Lemma 4.3, if for all k large enough ck = bk, then we
have

M7k
− 1

θ−1 ≤ dk ≤M4k
− 2

n
1+p
1−p . (5.3)

Since 1/(θ−1) < 2(1+p)/n(1−p), the above inequality will lead to a contradiction
for large k. Hence the subsequence ckj

satisfying (5.2) must exist. �

Lemma 5.3. Suppose that p satisfies p > max{0, (n(n − 2) − 4)/(n(n − 2) + 4)}.
Let ukj

be the critical points of J(u) corresponding to the critical values ckj
(δj),

where δj = (ckj
− bkj

)/2. Then we have

‖ukj
‖ → 0 as j →∞.
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Proof. By the previous lemmas, for the subsequence {ckj
}∞j=1, we have

−M4k
− 2

n
1+p
1−p

j ≤ bkj
< ckj

≤ ckj
(δj) = J(ukj

) < 0, (5.4)

where δj = (ckj
− bkj

)/2 ∈ (0, ckj
− bkj

).
Since ukj is the critical point of the functional J(u), corresponding to J(ukj ) =

ckj (δj), that is, ukj ∈ Kckj
(δj), we have 〈J ′(ukj ), ukj 〉 = 0. By the result of Lemma

2.1, we can estimate ‖ukj‖ as follows:

‖ukj
‖2 ≤ 1

µ

∫
Ω

G(x, ukj
)dx+

[∣∣〈φ′(ukj
), ukj

〉
∣∣ψ(ukj

)

+
∣∣〈ψ′(ukj ), ukj 〉

∣∣φ(ukj ) + ψ(ukj )φ(ukj )
]
C3‖ukj‖2∗

2∗

≤ 1
µ

∫
Ω

G(x, ukj
)dx+A‖ukj

‖2∗

2∗ ,

where we have used A = (M0 + 9)C3. The above inequality implies that

φ(ukj
) = 1 and 〈φ′(ukj

), ukj
〉 = 0. (5.5)

With this fact and 〈J ′(ukj
), ukj

〉 = 0 we infer that

‖ukj
‖2

=
∫

Ω

g(x, ukj
)ukj

dx+ 〈ψ(ukj
), ukj

〉
∫

Ω

F (x, ukj
)dx+ ψ(ukj

)
∫

Ω

f(x, ukj
)ukj

dx.

Therefore, J(ukj ) becomes

J(ukj
) ≤

( 1
2µ

− 1
) ∫

Ω

G(x, ukj
)dx+

(∣∣〈ψ′(ukj
), ukj

〉
∣∣φ(ukj

) +
ψ(ukj )

2

)
C3‖ukj

‖2∗

2∗

≤ 1
2

( 1
2µ

− 1
)
c0‖ukj‖

1+p
1+p < 0.

By (5.4) we have
‖ukj

‖1+p
1+p → 0 as j →∞. (5.6)

Then the desired result follows easily from (5.4). �

Proof of Theorem 1.2 and Theorem 1.1. We have found a sequence {ukj
}∞j=1 of crit-

ical points of the functional J(u) with the critical values {ckj
((ckj

− bkj
)/2)}∞j=1.

The facts that ck(δ) < 0 (Lemma 4.1) and bk < 0 and bk → 0 imply that there
are infinitely many critical values of J(u). With Lemma 5.3 we conclude that the
corresponding critical points ukj

→ 0 as j →∞, thus, as j is large enough, we have
φ(ukj

) = 1 and ψ(ukj
) = 1, which means that those ukj

are also the critical points
of the functional I(u) for all large j, and hence, they are also the weak solutions
of (1.1), which conclude the Theorem 1.2. The Theorem 1.1 easily follows from
Theorem 1.2. �
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