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EXISTENCE OF MULTIPLE SOLUTIONS FOR A CLASS OF
SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

XIAO-BAO SHU, YUAN-TONG XU

Abstract. By means of variational structure and Z2 group index theory, we

obtain multiple solutions for the second-order differential equation

d

dt
(p(t)

du

dt
) + q(t)u + f(t, u) = 0, 0 < t < 1,

subject to one of the following two sets of boundary conditions:

u′(0) = u(1) + u′(1) = 0 or u(0) = u(1) = 0 .

1. Introduction

Erbe and Mathsen [6] study the boundary-value problem

−(ru′)′ + qu = λf(t, u), 0 < t < 1,

αu(0)− βu′(0) = 0 = γu(1) + δu′(1),

where λ > 0 is a parameter, α, β, γ, δ ≥ 0 and αδ + αγ + βγ > 0, f ∈ C((0, 1) ×
R,R), r ∈ C([0, 1], (0,∞)) and q ∈ C([0, 1], [0,∞)).

In this paper we are interested in the study of second-order ordinary differential
equation

d

dt
(p(t)

du

dt
) + q(t)u + f(t, u) = 0, 0 < t < 1, (1.1)

subject to one of the following two sets of boundary conditions

u′(0) = 0 = γu(1) + u′(1) (1.2)

or
u(0) = u(1) = 0 (1.3)

By means of variational structure and Z2 group index theory, we obtain multiple
solutions of boundary-value problems for (1.1) and lower bound estimate of number
for the solutions.
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A critical point of f is a point x0 where f ′(x0) = θ and a critical value is a number
c such that f(x0) = c for some critical point x0. Next, we recall the definition of
the Palais-Smale condition.
Definition Let E be real Banach space and f ∈ C1(E,R). We say that f sat-
isfies the Palais-Smale condition if every sequence {xn} ⊂ E such that {f(xn)} is
bounded and f ′(xn) → θ as n →∞ has a converging subsequence.

Let K = {x ∈ E : f ′(x) = θ}, Kc = {x ∈ E : f ′(x) = θ, f(x) = c} and
fc = {x ∈ E : f(x) ≤ c}. The class of subsets of X \{θ} ⊂ E closed and symmetric
with respect to the origin will be denoted by

∑
. Next, we recall the concept of

genus.
Definition Let E be a real Banach space, and Σ = {A : A ⊂ E \ {θ} is a closed,
symmetric set}. Define γ : Σ → Z+ ∪ {+∞} as follows

γ(A) =


min{n ∈ Z : there exists an odd continuous map ϕ : A → Rn \ {θ}};
0 If A = ∅;
+∞ If there is no odd continuous map ϕ : A → Rn \ {θ} for n ∈ Z.

Then we say γ is the genus of
∑

. Denote i1(f) = lima→−0 γ(fa) and i2(f) =
lima→−∞ γ(fa).

We know that if A ∈
∑

and if there exists an odd homeomorphism of n−sphere
onto A then γ(A) = n + 1; If X is a Hilbert space, and E is an n−dimensional
subspace of X, and A ∈

∑
is such that A ∩ E⊥ = ∅ then γ(A) ≤ n.

The following Lemmas play an important role in proving our main results.

Lemma 1.1 ([5]). Let f ∈ C1(E, R) be an even functional which satisfies the
Palais-Smale condition and f(θ) = 0. Then

(P1) If there exists an m-dimensional subspace X of E and ρ > 0 such that

sup
x∈X∩Sρ

f(x) < 0,

then we have i1(f) ≥ m

(P2) If there exists a j-dimensional subspace X̃ of E such that

inf
x∈X̃⊥

f(x) > −∞,

we have i2(f) ≤ j

If m ≥ j, (P1) and (P2) hold, then f has at least 2(m− j) distinct critical points.

Lemma 1.2 ([9]). Let f ∈ C1(X, R) be an even functional which satisfies the
Palais-Smale condition and f(θ) = 0. If

(F1) There exists ρ > 0, α > 0 and a finite dimensional subspace E of X, such
that f |E⊥∩Sρ

≥ α

(F2) For all finite dimensional subspace Ẽ of X, there is a r = r(Ẽ) > 0, such
that f(x) ≤ 0 for x ∈ Ẽ\Br

Then f possesses an unbounded sequence of critical values.

2. Main Results

In this paper, we use Lemma 1.1 and 1.2 to study the boundary-value problems
(1.1)-(1.2) and (1.1)-(1.3)

Theorem 2.1. Let f , p(t) and q(t) satisfy the following conditions:
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(i) p(t) ∈ C[0, 1] and 0 < m ≤ p(t) ≤ M for t ∈ [0, 1]
(ii) f ∈ C([0, 1]× R, R)
(iii) limu→0

f(t,u)
u = ξ(t) > 0 uniformly for t ∈ [0, 1], λ = min0≤t≤1 ξ(t)

(iv) There exists α > 0 such that f(t, α) ≤ 0
(v) f(t, u) is odd in u
(vi) −λ

2 < q(t) + p(t) ≤ 0, for all 0 ≤ t ≤ 1.

Then (1.1)-(1.2), has at least 2n nontrivial solutions in C2[0, 1] whenever

2n2(M + p(1)|γ|)(1 + π2) < λ ≤ 2(n + 1)2(M + p(1)|γ|)(1 + π2)

and γ > − m
2p(1)

Proof. Set h : [0, 1]× R → R,

h(t, u) =


f(t, α) if u > α,

f(t, u) if |u| ≤ α,

f(t,−α) if u < −α

Let us consider the functional defined on H1
0 (0, 1) by

I(u) =
∫ 1

0

[
1
2
p(t)|u′(t)|2 − 1

2
q(t)|u(t)|2 −G(t, u(t))]dt +

p(1)
2

γu2(1), (2.1)

Where G(t, u) =
∫ u

0
h(t, v)dv. The norm ‖ ·‖ and inner product (·, ·) can be defined

respectively by

‖u‖ = (
∫ 1

0

(|u′(t)|2 + |u(t)|2)dt)1/2; (u, v) =
∫ 1

0

(u′(t)v′(t) + u(t)v(t))dt .

Thus H1
0 (0, 1) = W 1,2

0 (0, 1) will be a Hilbert space.
Let E = H1

0 (0, 1), since h(t, u) is an odd continuous map in u, we know that
I ∈ C1(E,R) is even in u and I(θ) = 0.

First, we will show that the critical points of the I(u) are the solutions of (1.1)-
(1.2) in C2[0, 1]. Since

I(u + sv) = I(u) + s{
∫ 1

0

[p(t)u′(t)v′(t)− q(t)u(t)v(t)− h(t, u + θ(t)sv)v(t)]dt

+ p(1)γu(1)v(1)}+
s2

2
{
∫ 1

0

(p(t)|v′(t)|2

− q(t)|v(t)|2)dt + p(1)γv2(1)} ∀u, v ∈ E, 0 < θ(t) < 1
(2.2)

We have, for all u, v ∈ E,

(I ′(u), v) =
∫ 1

0

[p(t)u′(t)v′(t)− q(t)u(t)v(t)− h(t, u(t))v]dt + p(1)γu(1)v(1) . (2.3)

By I ′(u) = 0, one gets∫ 1

0

[p(t)u′(t)v′(t)− q(t)u(t)v(t)− h(t, u(t))v]dt + p(1)γu(1)v(1) = 0 (2.4)
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for all v ∈ E. On the other hand,∫ 1

0

p(t)u′(t)v′(t)dt +
∫ 1

0

d

dt
(p(t)

du

dt
)vdt

=
∫ 1

0

p(t)u′(t)v′(t)dt +
∫ 1

0

p(t)u′′(t)v(t)dt +
∫ 1

0

p′(t)u′(t)v(t)dt

= p(1)v(1)u′(1)− p(0)u′(0)v(0) = 0

(2.5)

So, it is easy to see that∫ 1

0

v[
d

dt
(p(t)

du

dt
) + q(t)u(t) + h(t, u(t))]dt

= p(1)v(1)(u′(1) + γu(1))− p(0)u′(0)v(0) = 0

Hence we obtain
d

dt
(p(t)

du

dt
) + q(t)u(t) + h(t, u(t)) = 0

Thus the critical points of I(u) are the solutions of (1.1)-(1.2) in C2[0, 1].
For convenience, we transform (2.1) into

I(u) =
∫ 1

0

[
1
2
p(t)(|u′(t)|2 + |u(t)|2)

− 1
2
(q(t) + p(t))|u(t)|2 −G(t, u(t))]dt +

p(1)
2

γu2(1) .

By condition (iv) of Theorem 2.1, we have uh(u) ≤ 0 when |u(t)| ≥ α. So∫ 1

0

G(t, u) =
∫ 1

0

∫ u

0

h(t, v)dvdt ≤
∫ 1

0

∫ α

−α

|h(t, v)|dv dt .

Denote by c the value of
∫ 1

0

∫ α

−α
|h(t, v)|dvdt. On the other hand, q(t) + p(t) ≤ 0,

then −
∫ 1

0
(q(t) + p(t))|u(t)|2dt ≥ 0. So, we have

I(u) ≥ m

2
‖u‖2 − c +

p(1)
2

γu2(1) ∀u ∈ E.

Next, we show that I(u) has lower bound. We divide our proof into two parts
(I) When γ ≥ 0, it is easy to see

I(u) ≥ m

2
‖u‖2 − c ∀u ∈ E (2.6)

(II) When − m
2p(1) < γ < 0, we divide again our proof into two parts in order to

show I(u) has lower bound: (a) If there exist t0 ∈ [0, 1] such that u(t0) = 0, then

|u(1)| = |
∫ 1

t0

u′(s)ds| ≤
∫ 1

0

|u′(s)|ds ≤
√

2‖u‖ .

So, we get

I(u) ≥ 1
2
(m + 2γp(1))‖u‖2 − c ∀u ∈ E, (2.7)

(b) If does not exist t1 ∈ [0, 1] such that u(t1) = 0, then u(t) > 0 or u(t) < 0, for
all t ∈ [0, 1]. We might as well let u(t) > 0 for all t ∈ [0, 1].

When max0≤t≤1 u(t) ≤ 1,we have u(1) ≤ 1 and

I(u) ≥ m

2
‖u‖2 − c +

1
2
γp(1),
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i.e., I(u) has lower bound.
When max0≤t≤1 |u(t)| > 1, since u ∈ C2[0, 1], there exist t2 ∈ [0, 1] such that

u(t2) = min0≤t≤1 u(t). So

u(1)− u(t2) = |
∫ 1

t2

u′(s)ds| ≤
∫ 1

0

|u′(s)|ds

i.e.

u(1) ≤ u(t2) +
∫ 1

0

|u′(s)|ds ≤ (
∫ 1

0

u2(t)dt)
1
2 + (

∫ 1

0

|u′(t)|2) 1
2

≤
√

2(
∫ 1

0

u2(t)dt +
∫ 1

0

|u′(t)|2)1/2 =
√

2‖u‖

As in the proof of (I), we have

I(u) ≥ 1
2
(m + 2γp(1))‖u‖2 − c. ∀u ∈ E. (2.8)

By (a) and (b), it is easy to see I(u) has lower bound when − m
2p(1) < γ < 0. From

(I) and (II), we get that I(u) has lower bound for all u ∈ H1
0 (0, 1), i.e., i2(I) = 0.

Next, we verify that I(u) satisfies the Palais-Smale condition. Suppose that
{un} ⊂ E with and

c1 ≤ I(un) ≤ c2, (2.9)

I ′(un) → 0 as n →∞ . (2.10)

Then

sup{
∫ 1

0

[p(t)u′nv′ − q(t)unv − h(t, un(t))v]dt + γp(1)un(1)v(1)} → 0,

as n →∞, ∀u, v ∈ E, ‖v‖ = 1
(2.11)

with ‖zn‖ = ‖I ′(xn)‖. Let us denote εn = ‖zn‖, then εn → 0 as n → ∞. Replace
v by un in above equality. By (2.3) and (2.11), we have∫ 1

0

[p(t)|u′n(t)|2 − q(t)|un(t)|2]dt =
∫ 1

0

h(t, un)un(t)dt + 〈zn, un〉.

The above equality is equivalent to∫ 1

0

p(t)[|u′n(t)|2 + |un(t)|2]dt

=
∫ 1

0

[(q(t) + p(t))|un(t)|2 + h(t, un)un(t)]dt + 〈zn, un〉

So, there exist ξ ∈ [0, 1] such that

p(ξ)‖un‖2 =
∫ 1

0

[(q(t) + p(t))|un(t)|2 + h(t, un)un(t)]dt + 〈zn, un〉 . (2.12)

Next, we show that {un} satisfying condition (2.9) and (2.10) is bounded. We
divide again our proof into two parts.
(c) When γ ≥ 0, by (2.6), one gets

‖un‖2 ≤ 2
m

(I(un) + c) ≤ 2
m

(c2 + c),

i.e., ‖un‖ ≤
√

2
m (c2 + c).



6 X. B. SHU & Y. T. XU EJDE-2004/137

(d) When − m
2p(1) < γ < 0, by the above proof and (2.7) and (2.8), we have

‖un‖2 ≤ 2
m + 2γp(1)

(I(un) + c) ≤ 2
1 + 2γp(1)

(c2 + c)

or

‖u‖2 ≤ 2
m

[c2 + c− 1
2
γp(1)]

i.e.,

‖un‖ ≤

√
2

m + 2γp(1)
(c2 + c) or ‖u‖ ≤

√
2
m

(c2 + c− 1
2
γp(1)).

By (c) and (d), it is easy to see {un} is bounded in the space H1
0 (0, 1). Reflexivity of

H1
0 (0, 1) implies that there exists a subsequence of {un} which is weak convergent

in H1
0 (0, 1). We still denote it by {un} and suppose that un ⇀ u0 in H1

0 (0, 1) as
n →∞. On the one hand, by boundedness of {un} and (2.12), we have

p(ξ)‖un‖2 −
∫ 1

0

[(q(t) + p(t))|un(t)|2 + h(t, un)un(t)]dt → 0 as n →∞

Note that the weak convergent of {un} in H1
0 (0, 1) implies the uniform convergence

of {un} in C([0, 1], R) [8, Proposition 1.2 ]. Hence

p(ξ)‖un‖2 →
∫ 1

0

[(q(t) + p(t))|u0(t)|2 + h(t, u0)u0(t)]dt as n →∞

This means that {un} converges in H1
0 (0, 1). So the P.S. condition holds.

Thirdly, we show that Theorem 2.1 holds by Lemma 1.1. Denote βk(t) =√
2

kπ cos kπt, k = 1, 2, 3, . . . , n, . . . , then∫ 1

0

|βk(t)|2dt =
1

k2π2
,

∫ 1

0

|β′k(t)|2dt = 1

Definite n-dimensional linear space

En = span{β1(t), β2(t), . . . βn(t)}.

It is obvious that En is a symmetric set. Suppose ρ > 0, then

En ∩ Sρ =
{ n∑

k=0

bkβk :
n∑

k=0

b2
k(1 +

1
k2π2

) = ρ2
}

Let g(t, u) = 1
ξ(t)h(t, u) − u, by condition (iii) of Theorem 2.1, limu→0

g(u)
u = 0,

uniformly for t ∈ [0, 1]. We choose ε such that

0 < ε <
1
n2

− 2(M + p(1)|γ|)(1 + π2)
λ

.

By condition (iii) of Theorem 2.1, there exist δ > 0 such that |g(t, u)| ≤ ε|u|
whenever |u| ≤ δ. We can choose ρ such that 0 < ρ < min{α, δ}, and have

max
0≤t≤1

u(t) ≤
n∑

k=0

√
2

kπ
|bk| ≤ ‖u‖ = ‖

n∑
k=0

bkβk‖

= (
n∑

k=0

b2
k(1 +

1
k2π2

))1/2 = ρ < min{α, δ}
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when u ∈ En ∩ Sρ. So

G(t, u) = ξ(t)
∫ u

0

[v + g(t, v))]dv

=
1
2
ξ(t)|u(t)|2 + ξ(t)

∫ u

0

g(t, v)dv

≥ 1
2
ξ(t)|u(t)|2 − ξ(t)

∫ u

0

εvdv

=
1
2
ξ(t)(1− ε)|u(t)|2

≥ λ(1− ε)|u(t)|2

From q(t) + p(t) ≥ −λ
2 , we get that

−
∫ 1

0

(q(t) + p(t))|u(t)|2dt ≤ λ

2

n∑
k=0

b2
k

k2π2

So

I(u) =
∫ 1

0

[
1
2
p(t)(|u′(t)|2 + |u(t)|2)− 1

2
(q(t) + p(t))|u(t)|2]dt

−
∫ 1

0

G(t, u)dt +
p(1)
2

γu2(1)

≤ M

∫ 1

0

[
1
2
(|u′(t)|2 + |u(t)|2)− 1

2
λ(1− ε)|u(t)|2]dt

+
λ

4

n∑
k=0

b2
k

k2π2
+

p(1)
2

|γ|‖u‖2
C

≤ M

2

n∑
k=0

b2
k(1 +

1
k2π2

)− 1
4
λ(1− 2ε)(

n∑
k=0

b2
k

k2π2
) +

p(1)
2

|γ|(
n∑

k=0

√
2|bk|
kπ

)2

≤ M + p(1)|γ|
2

n∑
k=0

b2
k(1 +

1
k2π2

)− 1
4
λ(1− 2ε)

n∑
k=0

b2
k

k2π2

<
M + p(1)|γ|

2

n∑
k=0

b2
k(1 +

1
π2

)− 1
4
λ(1− ε)

n∑
k=0

b2
k

n2π2

≤ λ

2
(
M + p(1)|γ|

λ

π2 + 1
π2

− 1
2n2π2

+ ε)
n∑

k=0

b2
k

≤ λ

2π2
(
(M + p(1)|γ|)(1 + π2)

λ
− 1

2n2
+ ε)

n∑
k=0

b2
k

≤ λ

4π2
(
2(M + p(1)|γ|)(1 + π2)

λ
− 1

n2
+ ε)

n∑
k=0

b2
k < 0

By Lemma 1.1 and the above result, we have i1(I) ≥ n and I has 2n distinct critical
points, i.e., boundary-value problem (1.1)-(1.2) has at least 2n nontrivial solutions
in C2[0, 1]. �
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Next we consider the boundary-value problem (1.1)-(1.3). Similar to Theorem
2.1, we have the following result.

Theorem 2.2. Let f , p(t) and q(t) satisfy the following conditions:
(i) p(t) ∈ C[0, 1] and 0 < m ≤ p(t) ≤ M for t ∈ [0, 1]
(ii) f ∈ C([0, 1]× R, R)
(iii) limu→0

f(t,u)
u = ξ(t) > 0 uniformly for t ∈ [0, 1], λ = min0≤t≤1 ξ(t)

(iv) There exists α > 0, such that f(t, α) ≤ 0
(v) f(t, u) is odd in u
(vi) −λ

2 < q(t) + p(t) ≤ 0 for all 0 ≤ t ≤ 1.

Then (1.1)-(1.3) has at least 2n nontrivial solutions in C2[0, 1] whenever

2n2M(1 + π2) < λ ≤ 2(n + 1)2M(1 + π2).

Next, we consider the boundary-value problem (1.1)-(1.2).

Theorem 2.3. Let f , p(t) and q(t) satisfy the following conditions:
(i) p(t) ∈ C[0, 1] and 0 < m ≤ p(t) ≤ M for t ∈ [0, 1]
(ii) f ∈ C([0, 1]× R, R)
(iii) There exists T such that lim supu→0

f(t,u)
u ≤ T

(iv) There exists θ > 2M
m ≥ 2 and α > 0 such that

0 < G(t, u) =
∫ u

0

f(t, v)dv ≤ 1
θ
uf(t, u), ∀|u| ≥ α

(v) f(t, u) is odd in u
(vi) q(t) ∈ C[0, 1], q(t) + p(t) ≤ 0 for all 0 ≤ t ≤ 1.

If γ > − mθ−2M
2(θ−2)p(1) , then (1.1)-(1.2) has infinite nontrivial solutions in C2[0, 1].

Proof. It is easy to see that for u ∈ H1
0 (0, 1), the functional

I(u) =
∫ 1

0

[
1
2
p(t)|u′(t)|2 − 1

2
q(t)|u(t)|2G(t, u(t))]dt +

p(1)
2

γu2(1) (2.13)

is well defined. The solutions of boundary-value problems (1.1)-(1.2) are the critical
points of the functional I(u). Note that I(u) is equivalent to

I(u) =
∫ 1

0

[
1
2
p(t)(|u′(t)|2 + |u(t)|2)− 1

2
(q(t)+p(t))|u(t)|2−λG(t, u)]dt+

p(1)
2

γu2(1)

We show that Theorem 2.3 holds by using Lemma 1.2. Since f(t, u) is an odd
continuous map in u, we know that I ∈ C1(E,R) is even in u and I(θ) = 0.
Moreover, As in the proof of Theorem 2.1, one gets

(I ′(u), v) =
∫ 1

0

[p(t)u′(t)v′(t)− q(t)u(t)v(t))− f(t, u)v(t)]dt + γp(1)u(1)v(1),

for all u, v ∈ E. The above equality is equivalent to∫ 1

0

f(t, u)v(t)dt =
∫ 1

0

p(t)(u′(t)v′(t) + u(t)v(t))dt

−
∫ 1

0

(p(t) + q(t))u(t)v(t)dt− (I ′(u), v) + p(1)γu(1)v(1).
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Next, we verify that I(u) satisfies the Palais-Smale condition. Suppose that un ⊂ E
with

c1 ≤ I(un) ≤ c2, (2.14)

I ′(un) → 0 as n →∞ (2.15)

Now, we show that {un} of satisfying (2.14) and (2.15) is bounded. Denote E1 =
{t ∈ [0, 1]||un(t)| ≥ α}, E2 = [0, 1] \ E1. We divide our proof into two parts .
(A) When − mθ−2M

2(θ−2)p(1) < γ < 0, by (iv), we have

I(un) =
∫ 1

0

p(t)
2

(|un(t)|2 + |u′n(t)|2)dt−
∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt

−
∫ 1

0

G(t, un(t))dt +
p(1)
2

γu2
n(1)

≥ m

2
‖un‖2 −

∫
E1

G(t, un(t))dt−
∫

E2

G(t, un(t))dt

+
p(1)
2

γu2
n(1)−

∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt

≥ m

2
‖un‖2 −

∫
E1

1
θ
un(t)f(t, un(t))dt− c3

+
p(1)
2

γu2
n(1)−

∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt

≥ m

2
‖un‖2 −

∫ 1

0

1
θ
un(t)f(t, un(t))dt− c4

+
p(1)
2

γu2
n(1)−

∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt

=
m

2
‖un‖2 − 1

θ
(
∫ 1

0

p(t)(|u′n(t)|2 + |un(t)|2)dt− (I ′(un), un)

+ p(1)γu2
n(1))− c4 +

p(1)
2

γu2
n(1)− (

1
2
− 1

θ
)
∫ 1

0

(q(t) + p(t))|un(t)|2dt

≥ (
m

2
− M

θ
)‖un‖2 +

1
θ
(I ′(un), un)− c4 + (

1
2
− 1

θ
)p(1)γu2

n(1)

≥ (
m

2
− M

θ
)‖un‖2 +

1
θ
‖I ′(un)‖‖un‖ − c4 + (

1
2
− 1

θ
)p(1)γu2

n(1)

Remarks: (1) for the rest of this article, ci > 0. (2) The above equality makes use
of −( 1

2 −
1
θ )

∫ 1

0
(q(t) + p(t))|un(t)|2dt ≥ 0

To show that {un} is bounded, we divide again our proof into two parts.
(I’) When max0≤t≤1 |u(t)| ≤ 1, as in the proof of Theorem 2.1, we have u2(1) ≤ 1
and

I(un) ≥ (
m

2
− M

θ
)‖un‖2 +

1
θ
‖I ′(un)‖‖un‖ − c4 + (

1
2
− 1

θ
)γ

(
m

2
− M

θ
)‖un‖2 ≤ I(un)− 1

θ
‖I ′(un)‖‖un‖+ c4 − (

1
2
− 1

θ
)γ

Using θ > 2M
m , (2.14) and (2.15), it is not difficulty to see that {‖un‖} is bounded.
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(II’) When max0≤t≤1 |u(t)| > 1, as in the proof of Theorem 2.1, we have u2(1) ≤
2‖u‖2 and

[(
m

2
− M

θ
) + (

1
2
− 1

θ
)2p(1)γ]‖un‖2 ≤ I(un)− 1

θ
‖I ′(un)‖‖un‖+ c4 ≤ c5‖un‖+ c5 .

Since θ > 2M
m ≥ 2 and γ > − mθ−2M

2(θ−2)p(1) , it follows that {‖un‖} is bounded. From
(I’) and (II’), we get that {‖un‖} is bounded when − mθ−2M

2(θ−2)p(1) < γ < 0.
(B) when γ > 0, as in the proof of (A), it is not difficult to see that

I(un) =
∫ 1

0

p(t)
2

(|un(t)|2 + |u′n(t)|2dt−
∫ 1

0

G(t, un(t))dt

+
p(1)
2

γu2
n(1)−

∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt

≥ m

2
‖un‖2 −

∫ 1

0

1
θ
un(t)f(t, un(t))dt

+
p(1)
2

γu2
n(1)−

∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt

≥ (
m

2
− M

θ
)‖un‖2 +

1
θ
‖I ′(un)‖‖un‖ − c4 + (

1
2
− 1

θ
)p(1)γu2

n(1)

≥ (
m

2
− M

θ
)‖un‖2 +

1
θ
‖I ′(un)‖‖un‖ − c4

(We remark that the above equality use ( 1
2 −

1
θ )p(1)γu2(1) ≥ 0 ) and

(
m

2
− M

θ
)‖un‖2 ≤ I(un)− 1

θ
‖I ′(un)‖‖un‖+ c4 ≤ c5‖un‖+ c5.

So, we get that {‖un‖} is bounded when γ > 0.
From (A) and (B), we obtain that {un} satisfying (2.14) and (2.15) is bounded.

So the P.S. condition holds.
Thirdly, we show that Theorem 2.3 holds by using Lemma 1.2. First, we verify

condition (F1) of Lemma 1.2. Let βj(t) = cos jt, j = 1, 2, . . . . Consider the n-
dimensional subspace

En = span{β1(t), β2(t), . . . , βn(t)}

and let X = V ⊥. By (ii), we have δ > 0 such that |f(t, u(t))| ≤ T |u|, whenever
|u| ≤ δ.

Let ρ with ρ = δ. For any u ∈ Sρ ∩X, we have ‖u‖C ≤ ‖u‖ = ρ = δ. From∫ 1

0

|u(t)|2dt ≤ 1
n2

∫ 1

0

|u′(t)|2dt

it is easy to see ∫ 1

0

|u(t)|2dt ≤ ρ2

n2 + 1
So, when γ > 0, we have

I(un) =
∫ 1

0

p(t)
2

(|un(t)|2 + |u′n(t)|2)dt−
∫ 1

0

G(t, un(t))dt

+
p(1)
2

γu2
n(1)−

∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt



EJDE-2004/137 MULTIPLE SOLUTIONS FOR ODE’S 11

≥ m

2
‖u‖2 −

∫ 1

0

G(t, u(t))dt

≥ m

2
ρ2 −

∫ 1

0

(
∫ |u(t)|

0

Tvdv)dt

≥ m

2
ρ2 − T

2(n2 + 1)
ρ2 =

1
2
(m− T

n2 + 1
)ρ2 > 0 .

Note that in the above equality, we use n2 > max{ T
m , T

m+p(1)γ } and

−
∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt > 0.

When − mθ−2M
2(θ−2)p(1) < γ < 0, we get

I(un) =
∫ 1

0

p(t)
2

(|un(t)|2 + |u′n(t)|2)dt−
∫ 1

0

G(t, un(t))dt

+
p(1)
2

γu2
n(1)−

∫ 1

0

1
2
(q(t) + p(t))|un(t)|2dt

≥ m

2
‖u‖2 −

∫ 1

0

G(t, u(t))dt +
p(1)
2

γu2
n(1)

≥ m + p(1)γ
2

ρ2 −
∫ 1

0

(
∫ |u(t)|

0

Tvdv)dt

≥ m + p(1)γ
2

ρ2 − T

2(n2 + 1)
ρ2

=
1
2
(m + p(1)γ − T

n2 + 1
)ρ2 > 0 .

Note that the above equality uses n2 > max{ T
m , T

m+p(1)γ }.
We sum up the conclusions above to obtain that I(u) > 0 for all u ∈ Sρ ∩ X,

i.e., condition (F1) of Lemma 1.2 holds.
Finally, we verify condition (F2) of Lemma 1.2. By (iv), one gets

G(t, u(t)) ≥ c7|u|θ − c8.

For all finite dimensional subspace E1 of E, there exist c9 such that( ∫ 1

0

|u(t)|θdt
)1/θ

≥ c9‖u‖, ∀u ∈ E1.

On the other hand, since p(t) ∈ C1[0, 1], q(t) ∈ C[0, 1] and p(t) + q(t) ≤ 0, there
exist a positive number Q such that −Q = min0≤t≤1 p(t) + q(t), so

−
∫ 1

0

(p(t) + q(t))|u(t)|2dt ≤ Q

∫ 1

0

|u(t)|2dt < Q‖u‖2.

When u ∈ E1 and − mθ−2M
2(θ−2)p(1) < γ < 0, from the above result, it is easy to obtain

I(u) =
∫ 1

0

[
p(t)
2

(|u′(t)|2 + |u(t)|2)−G(t, u(t))]dt

+
p(1)
2

γu2(1)−
∫ 1

0

1
2
(q(t) + p(t))|u(t)|2dt
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≤ M + Q

2
‖u‖2 −

∫ 1

0

G(t, u(t))dt

≤ M + Q

2
‖u‖2 − c7

∫ 1

0

|u(t)|θdt + c8

≤ M + Q

2
‖u‖2 − c7c

θ
9‖u‖θ + c8

= (
M + Q

2
− c7c

θ
9‖u‖θ−2)‖u‖2 + c8 .

When u ∈ E1 and γ ≥ 0, as in the proof of (I’) and (II’), we have the following two
results.
(1) when max0≤t≤1 |u(t)| ≤ 1, we have

I(u) =
∫ 1

0

[
p(t)
2

(|u′(t)|2 + |u(t)|2)−G(t, u(t))]dt

+
p(1)
2

γu2(1)−
∫ 1

0

1
2
(q(t) + p(t))|u(t)|2dt

≤ M + Q

2
‖u‖2 − c7

∫ 1

0

|u(t)|θdt + c8 +
p(1)
2

γ

≤ M + Q

2
‖u‖2 − c7c

θ
9‖u‖θ + c8 +

p(1)
2

γ

= (
M + Q

2
− c7c

θ
9‖u‖θ−2)‖u‖2 + c8 +

p(1)
2

γ

(2) when max0≤t≤1 |u(t)| > 1, we have u2(1) ≤ 2‖u‖2 and

I(u) =
∫ 1

0

[
p(t)
2

(|u′(t)|2 + |u(t)|2)−G(t, u(t))]dt

+
p(1)
2

γu2(1)−
∫ 1

0

1
2
(q(t) + p(t))|u(t)|2dt

≤ M + Q + 2γ

2
‖u‖2 − c7

∫ 1

0

|u(t)|θdt + c8

≤ M + Q + 2γ

2
‖u‖2 − c7c

θ
9‖u‖θ + c8

= (
M + Q + 2γ

2
− c7c

θ
9‖u‖θ−2)‖u‖2 + c8

We sum up the conclusions above to obtain that I(u) ≤ 0, for all u ∈ E1\BR

when R = R(E1) is adequately big, i.e., condition (F2) of Lemma 1.2 holds. So
I possesses infinite critical point, i.e. the boundary-value problem (1.1)-(1.2) has
infinitely many nontrivial solutions in C2[0, 1]. �

Using a technique similar to the one above, we can show that the following
theorem.

Theorem 2.4. Let f , p(t) and q(t) be the function satisfying the following condi-
tions:

(i) p(t) ∈ C[0, 1] and 0 < m ≤ p(t) ≤ M for t ∈ [0, 1]
(ii) f ∈ C([0, 1]× R, R)
(iii) There exists T such that lim supu→0

f(t,u)
u ≤ T
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(iv) There exists θ > 2M
m ≥ 2 and α > 0 such that

0 < G(t, u) =
∫ u

0

f(t, v)dv ≤ 1
θ
uf(t, u), ∀|u| ≥ α

(v) f(t, u) is odd in u
(vi) q(t) ∈ C[0, 1], q(t) + p(t) ≤ 0 for 0 ≤ t ≤ 1.

Then boundary-value problem (1.1)-(1.3) has infinitely solutions in C2[0, 1].

3. Examples

Example 3.1. For 0 < t < 1, consider the boundary-value problem
d

dt
((6 + sin t)

du

dt
) + (−100 + cos t)u + (1000(1 + t2) sinu− 10u3) = 0,

u′(0) = 0, u(1) + u′(1) = 0
(3.1)

Note that

f(t, u) = 1000(1 + t2) sinu− 10u3, p(t) = 6 + sin t, q(t) = −100 + cos t

So f(t, u) satisfy conditions (ii) and (v) of Theorem 2.1. In addition,

0 < 5 ≤ p(t) = 6 + sin t ≤ 7 ∀t ∈ [0, 1].

then (i) and (vi) of Theorem 2.1 hold. When |u(t)| = 4, we have

f(t, 4) = 1000(1 + t2) sin 4− 10× 43 < 0 ,

i.e., (iv) of Theorem 2.1 holds. On the other that limu→0
f(t,u)

u = 1 + t2 uniformly
for t ∈ [0, 1], λ = min0≤t≤1 1 + t2 = 1000, i.e., (iii) holds, and

2× 12 × (13 + sin 1)(1 + π2) < λ < 2× 22 × (13 + sin 1)(1 + π2)

By Theorem 2.1 we have (3.1) has at least 2 nontrivial solutions in C2[0, 1].

Example 3.2. For 0 < t < 1, consider boundary-value problem
d

dt
((6 + sin t)

du

dt
) + (−100 + cos t)u + (1000(1 + t2) sinu− 10u3) = 0,

u(0) = u(1) = 0,
(3.2)

As in Example 3.1, it is easy to verify all conditions of Theorem 2.2 hold and

2× 22 × 7(1 + π2) < λ < 2× 32 × 7(1 + π2)

By Theorem 2.2, we have (3.2) has at least 4 nontrivial solutions in C2[0, 1].

Example 3.3. Consider the boundary-value problem
d

dt
((6 + sin t)

du

dt
) + (−9 + t2)u(t) + t(u3(t) + u(t)) = 0, 0 < t < 1,

u′(0) = 0, u(1) + u′(1) = 0
(3.3)

It is easy to see that

f(t, u) = t(u3(t) + u(t)), p(t) = 6 + sin t q(t) = −9 + t2

So, f(t, u) satisfies conditions (ii) and (v) of Theorem 2.3. In addition

lim sup
u→0

f(t, u)
u

= lim sup
u→0

t(u3 + u)
u

= 1
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i.e., conditions (iii) of Theorem 2.3 hold. Moreover,∫ u

0

f(t, v)dv =
∫ u

0

t(v3 + v)dv = t(
1
4
u4 +

1
2
u2) ≤ 1

3
ut(u3 + u) ∀|u(t)| >

√
2

0 < 5 ≤ p(t) ≤ 7, θ = 3 >
2M

m
=

14
5

So conditions (iv) holds. On the other hand, it is easy to see that

p(t) + q(t) = 6 + sin t + (−9 + t2) = −3 + t2 + sin t ≤ 0 ∀t ∈ [0, 1]

So conditions (i) and (vi) of Theorem 2.3 hold. By Theorem 2.3, we obtain that
(3.3) has infinitely many nontrivial solutions in C2[0, 1].

Example 3.4. Consider boundary-value problem
d

dt
((6 + sin t)

du

dt
) + (−9 + t2)u(t) + t(u3(t) + u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(3.4)

As in Example 3.3, it is easy to verify that all conditions of Theorem 2.4 hold.
By Theorem 2.4, we obtain that (3.4) has infinitely many nontrivial solutions in
C2[0, 1].
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