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EXISTENCE OF SOLUTIONS FOR NONCONVEX FUNCTIONAL
DIFFERENTIAL INCLUSIONS

VASILE LUPULESCU

ABSTRACT. We prove the existence of solutions for the functional differential
inclusion 2’ € F(T'(t)z), where F is upper semi-continuous, compact-valued
multifunction such that F(T'(t)z) C OV (z(t)) on [0,T], V is a proper convex
and lower semicontinuous function, and (T'(t)z)(s) = z(t + s).

1. INTRODUCTION

Let R™ be the m-dimensional Euclidean space with the norm || - || and the scalar
product (-,-). When I is a segment in R, we denote by C(I,R™) the Banach space
of continuous functions from I to R™ with the norm ||z(.)||s := sup{||z(t)]|;t € I}.
When o is a positive number, we put C, := C([—0,0],R™) and for any ¢ € [0,T],
T > 0, we define the operator T'(¢) from C([—o,T],R™) to C, as (T(t)x)(s) :=
z(t+s), s € [—0,0].

Let © be a nonempty subset in C,. For a given multifunction F : Q — 28" we
consider the following functional differential inclusion:

o' € F(T(t)z). (1.1)

We recall that a continuous function z(.) : [—o,T] — R™ is said to be a solution
of (L.1) if x(.) is absolutely continuous on [0,7], T(t)x € Q for all ¢ € [0,7] and
x'(t) € F(T(t)x) for almost all ¢ € [0,T]; see [g].

The functional differential equation with F single-valued, has been studied
by many authors; for results, references, and applications, see for example [9] [10].

The existence of solutions for the functional differential inclusion was proved
by Haddad [§] when F' is upper semicontinuous with convex compact values. The
nonconvex case in Banach space has been studied by Benchohra and Ntouyas [2].
The case when F' is lower semicontinuous with compact value has been studied by
Fryszkowski [7].

In this paper we prove the existence of solutions for functional differential in-
clusion when F' is upper semicontinuous, compact valued multifunction such
that F(¢) C OV (1(0)) for every ¢ € Q and V is a proper convex and lower semi-
continuous function. Our existence result contains Peano’s existence theorem as a
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particular case. On the other hand, our result may be considered as an extension
of the previous result of Bressan, Cellina and Colombo [3].

2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

For z € R™ and r > 0 let B(z,r) := {y € R™;|ly — z|| < r} be the open

ball centered at x with radius r, and let B(x,r) be its closure. For ¢ € C, let
By (o) = {1 € Co; | — ¢lloc <7} and Bo(p,7) :={ € Co; [[¢ —pl|oc < 7}. For
x € R™ and for a closed subset A C R™ we denote by d(x, A) the distance from z to
A given by d(z, A) := inf{||ly — z||;y € A}. Given a function V : R™ — RU {+o0}
let
DV):={z eR™:V(x) < +o0}

be its effective domain. We say that V is proper function if D(V') is nonempty.

Let V : R™ — R be a proper convex and lower semicontinuous function. The
multifunction dV : R™ — 28" defined by

WV (z) :={{eR™V(y) =V(z) = Ly —z), YyeR™} (2.1)
is called subdifferential (in the sense of convex analysis) of the function V.

We say that a multifunction F : Q C C, — 2% is upper semicontinuous if for
every ¢ € ) and for every € > 0 there exists § > 0 such that

F(¢) C F(p) + B(0,g), V¢ € QN Bo(p,0).
The definition of the upper semicontinuous multifunctions is the same as [6, Defi-
nition 1.2].
For a multifunction F : Q — 28" we consider the functional differential inclusion
(1.1) under the following assumptions:

(H1) Q C C, is an open set and F' is upper semicontinuous with compact values;
(H2) There exists a a proper convex and lower semicontinuous function V : R™ —
R such that

F(y) C oV (1(0)) for every ¢ € L. (2.2)

Remark. A convex function V' : R™ — R is continuous in the whole space R™ [I1],
Corollary 10.1.1] and almost everywhere differentiable [11, Theorem 25.5]. There-
fore, (H2) restricts strongly the multivaluedness of F.

Our main result is the following:

Theorem 2.1. If F : Q — 28" and V : R™ — R satisfy assumptions (H1) and
(H2) then for every ¢ € Q) there exists T > 0 and x(.) : [—0,T] — R™ a solution
of the functional differential inclusion (1.1) such that T(0)x = ¢ on [—0,0].

3. PROOF OF THE MAIN RESULT

Let ¢ € Q be arbitrarily fixed. Since the multifunction  — 0V (x) is locally
bounded [4, Proposition 2.9], there exists 7 > 0 and M > 0 such that V is Lipschitz
continuous with constant M on B(¢(0),r). Since € is an open set we can choose r
such that B, (@, r) C 2. Moreover, by [1, Proposition 1.1.3], F is locally bounded;
therefore, we can assume that

sup{[lyll : y € F(¢), ¥ € B(p,7)} < M. (3.1)

Since ¢ is continuous on [—o, 0] we can choose > 0 such that

le(t) — @(s)|| < r/4 for all t,s € [—o,0] with |t — s| <. (3.2)
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Let 0 < T < min{n,r/4M}. We shall prove the existence of a solution of
defined on the interval [—o, T]. For this, we define a family of approximate solutions
and we prove that a subsequence converges to a solution of .

First, for a fixed n € N*, we set

xn(t) = p(t), t € [—0,0]. (3.3)
Furthermore, we partition [0, 7] by points t} := %, j=0,1,...,n, and, for every
t € [t),t211], we define
o (t) = oy + (t — 1)y, (3.4)
where 29 = z,,(0) := (0) and
T
o) =i 4 yJ L (3.5)
yh € F(T(t%)wn) (3.6)
for every j € {1,2,...,n}. It is easy to see that for every j € {1,2,...,n} we have
. T )
wh=00) + —(Wh+yn+ - Fyh ), (3.7)
By (3.1)) and (8.7) we infer ||zJ — ¢(0)]] < %M < r/4, proving that
n(t]) = ], € B(p(0),7/4) (3.8)
for every ] e {1, 2 ,n}.
By (3.1)) and ( we have that
» iT
ln(t) = 20 ()] = lln(t) — || < 2 TM< 1 (3.9)

for every j € {0,1,...,n}. Hence, from (3.8) and we deduce that

2 (t) = (O] < [l (t) — 2 (E)I] + IIwn(ti;) —»(0)] < g

and so ,
xn(t) € B(p(0), 5), for every ¢ € [0, 7). (3.10)

Moreover, by (3.1)), (3.4) and (3.6, we have ||«],(¢)|| < M for every t € [0,7] and
so the sequence (z7,) is bounded in L?([0, T],R™).

n

For t, s € [0, T], we have

[ (t) = zn(s)] < |/ 2, (7)lldr| < Mt — s

so that the sequence () is equiuniformly continuous. Hence, by Theorem 0.3.4 in
[1], there exists a subsequence, still denoted by (z,), and an absolute continuous
function x : [0,T] — R™ such that:
(i) (zn) converges uniformly on [0,7] to z;
(ii) (z!,) converges weakly in L*([0,7],R™) to z’.
Moreover, since by all functions z,, agree with ¢ on [—o, 0], we can obviously
say that x, — x on [—o,T], if we extend z in such a way that z = ¢ on [—0,0].
Also, it is clearly that T(0)z = ¢ on [—0,0].
Further on, if we define 6,,(t) = tJ, for all ¢t € [tJ,,tJ 1] then, by and (3.6)),
we have
2 (t) € F(T(0,(t))zy), a.e. on [0,T]. (3.11)
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and, by (3.8),
2 (00 (1)) € B(p(0), g), for every t € [0, T). (3.12)

Also, since [6,,(t) — t| < L for every t € [0,T], then 6,(t) — ¢ uniformly on
[0,T]. Moreover, by the uniformly converges of (z,) and (6,), we deduce that
2 (0,,(t)) — x(t) uniformly on [0, 7.

Now, we have to estimate ||(T(6,(t))xn)(s) — ¢(s)| for each s € [—0,0]. If
—0,(t) < s <0, then 6,(t) + s > 0 and so there exists j € {0,1,...,n — 1} such
that 6,,(t)+s € [t7,¢F1]. Thus, by (3.2), and by the fact that |0,,(t) —t| < T
and |s| < T, we have

(T (On(8))2n)(5) = p(s)]| = [l2n (0 () + 5) — @(s)]]
< zn(On(t) +5) = @(0)[ + [le(s) = w(0)]

< ﬁ <
<"
If —0 <5< —0,(t) then s + 0,(t) <0 and by (3.2) we have
r
1T On(E))zn)(5) = (s)]l = llp(On(t) + 5) — @(s)] < 7 <
Therefore,
T(0,(t))xy, € B(p,r), for every t € [0,T]. (3.13)

Let us denote the modulus continuity of a function ¢ defined on interval I of R by

w(va,E) = SUP{”?/)(t) - ¢(5)||737t € I, ‘3 - t| < 5}7 e>0.

Then we have:

[T(On(t)an — T(D)anlloo = sup_ [[an(Bn(t) +5) = 2n(t+ s)|

—0<s<0
T
< ny | 7T77
< wlan,[-0,7], )

T T
< —0o,0], — 0,T], —
< Wi, [20,0], ) +w(wn, 0,7], )

T T
S W((P, [_07 0]7 7) + 7M;

n n

hence
IT(0n(t)xn — T(t)xn|lco < 6n for every t € [0,T], (3.14)

where 4, := w(p, [-0,0], %) + %M Thus, by continuity of ¢, we have §,, — 0 as
n — oo and hence

1 T(6,(t)zn — T(t)Tnlloo — 0 as n — oo.
Therefore, since the uniform convergence of z,, to « on [—o,T] implies
T(t)xy, — T(t)z uniformly on [—o,0], (3.15)

we deduce that
T(0,(t)xn, — T(t)x inC,. (3.16)

Moreover, by (3.13) and (3.16)), we have that T'(t)x € B, (¢,r) C Q. Also, by (3.11))
and (3.14]), we have

d((T(t)xn, 2, (t)), graph(F)) < 6, for every t € [0.T]. (3.17)




EJDE-2004/141 EXISTENCE OF SOLUTIONS 5

By (H2), (ii), and [Il Theorem 1.4.1], we obtain
z'(t) € coF (T(t)z) C OV (z(t)) a.e. on [0,T], (3.18)

where co stands for the closed convex hull.
Since the functions ¢ — x(t) and t — V(x(t)) are absolutely continuous, we

obtain from [4, Lemma 3.3] and (3.18) that

d L2 .
%V(m(t)) = ||z’ (¢)||* a.e. on [0,T];

therefore,

T
V(z(T)) = V(x(0)) :A I’ (£) ]| *dt. (3.19)
On the other hand, since
@ (t) = y1, € F(T(t,)zn) C OV (2a(t],))
for every t € [tJ ,tJ71] and for every j € {0,1,...,n — 1}, it follows that

V(@n (")) = V(za(t])) 2 (@, (1), xn(_ti;“) — 2 (13)) |

=@, [ ama) = [T @R

n

By adding the n inequalities above, we obtain

T
V(zn(T)) = V(2(0)) 2/0 2, (8[|t

and passing to the limit as n — oo, we obtain

T
vm@»—wumpﬂmwgén%wwﬁ. (3.20)

n—o0o

Therefore, by b(3.19) and (3.20)),

T T
/wmwﬁymw/nmm%
0 n—oco Jo

and, since (/) converges weakly in L2([0,T],R™) to 2/, by applying [5, Proposition
I11.30], we obtain that (z,) converges strongly in L?([0, 7], R™). Hence there exists
a subsequence, still denote by («!,), which converges pointwiese a.e. to a’.

Since, by (H1), the graph of F' is closed [I, Proposition 1.1.2], by 7

lim d((T(t)zn,z),(t)), graph(F)) = 0,

we obtain
2'(t) € F(T(t)z) a.e. on [0,7].
Therefore, the functional differential inclusion (1.1]) has solutions.
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