
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 141, pp. 1–6.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR NONCONVEX FUNCTIONAL
DIFFERENTIAL INCLUSIONS

VASILE LUPULESCU

Abstract. We prove the existence of solutions for the functional differential

inclusion x′ ∈ F (T (t)x), where F is upper semi-continuous, compact-valued
multifunction such that F (T (t)x) ⊂ ∂V (x(t)) on [0, T ], V is a proper convex
and lower semicontinuous function, and (T (t)x)(s) = x(t + s).

1. Introduction

Let Rm be the m-dimensional Euclidean space with the norm ‖ · ‖ and the scalar
product 〈·, ·〉. When I is a segment in R, we denote by C(I,Rm) the Banach space
of continuous functions from I to Rm with the norm ‖x(.)‖∞ := sup{‖x(t)‖; t ∈ I}.
When σ is a positive number, we put Cσ := C([−σ, 0],Rm) and for any t ∈ [0, T ],
T > 0, we define the operator T (t) from C([−σ, T ],Rm) to Cσ as (T (t)x)(s) :=
x(t+ s), s ∈ [−σ, 0].

Let Ω be a nonempty subset in Cσ. For a given multifunction F : Ω → 2Rm

we
consider the following functional differential inclusion:

x′ ∈ F (T (t)x). (1.1)

We recall that a continuous function x(.) : [−σ, T ] → Rm is said to be a solution
of (1.1) if x(.) is absolutely continuous on [0, T ], T (t)x ∈ Ω for all t ∈ [0, T ] and
x′(t) ∈ F (T (t)x) for almost all t ∈ [0, T ]; see [8].

The functional differential equation (1.1) with F single-valued, has been studied
by many authors; for results, references, and applications, see for example [9, 10].

The existence of solutions for the functional differential inclusion (1.1) was proved
by Haddad [8] when F is upper semicontinuous with convex compact values. The
nonconvex case in Banach space has been studied by Benchohra and Ntouyas [2].
The case when F is lower semicontinuous with compact value has been studied by
Fryszkowski [7].

In this paper we prove the existence of solutions for functional differential in-
clusion (1.1) when F is upper semicontinuous, compact valued multifunction such
that F (ψ) ⊂ ∂V (ψ(0)) for every ψ ∈ Ω and V is a proper convex and lower semi-
continuous function. Our existence result contains Peano’s existence theorem as a
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particular case. On the other hand, our result may be considered as an extension
of the previous result of Bressan, Cellina and Colombo [3].

2. Preliminaries and statement of the main result

For x ∈ Rm and r > 0 let B(x, r) := {y ∈ Rm; ‖y − x‖ < r} be the open
ball centered at x with radius r, and let B(x, r) be its closure. For ϕ ∈ Cσ let
Bσ(ϕ, r) := {ψ ∈ Cσ; ‖ψ−ϕ‖∞ < r} and Bσ(ϕ, r) := {ψ ∈ Cσ; ‖ψ−ϕ‖∞ ≤ r}. For
x ∈ Rm and for a closed subset A ⊂ Rm we denote by d(x,A) the distance from x to
A given by d(x,A) := inf{‖y − x‖; y ∈ A}. Given a function V : Rm → R ∪ {+∞}
let

D(V ) := {x ∈ Rm : V (x) < +∞}
be its effective domain. We say that V is proper function if D(V ) is nonempty.

Let V : Rm → R be a proper convex and lower semicontinuous function. The
multifunction ∂V : Rm → 2Rm

, defined by

∂V (x) := {ξ ∈ Rm;V (y)− V (x) ≥ 〈ξ, y − x〉 , ∀y ∈ Rm}, (2.1)

is called subdifferential (in the sense of convex analysis) of the function V .
We say that a multifunction F : Ω ⊂ Cσ → 2Rm

is upper semicontinuous if for
every ϕ ∈ Ω and for every ε > 0 there exists δ > 0 such that

F (ψ) ⊂ F (ϕ) +B(0, ε), ∀ψ ∈ Ω ∩Bσ(ϕ, δ).

The definition of the upper semicontinuous multifunctions is the same as [6, Defi-
nition 1.2].

For a multifunction F : Ω → 2Rm

we consider the functional differential inclusion
(1.1) under the following assumptions:

(H1) Ω ⊂ Cσ is an open set and F is upper semicontinuous with compact values;
(H2) There exists a a proper convex and lower semicontinuous function V : Rm →

R such that

F (ψ) ⊂ ∂V (ψ(0)) for every ψ ∈ Ω. (2.2)

Remark. A convex function V : Rm → R is continuous in the whole space Rm [11,
Corollary 10.1.1] and almost everywhere differentiable [11, Theorem 25.5]. There-
fore, (H2) restricts strongly the multivaluedness of F .

Our main result is the following:

Theorem 2.1. If F : Ω → 2Rm

and V : Rm → R satisfy assumptions (H1) and
(H2) then for every ϕ ∈ Ω there exists T > 0 and x(.) : [−σ, T ] → Rm a solution
of the functional differential inclusion (1.1) such that T (0)x = ϕ on [−σ, 0].

3. Proof of the main result

Let ϕ ∈ Ω be arbitrarily fixed. Since the multifunction x → ∂V (x) is locally
bounded [4, Proposition 2.9], there exists r > 0 and M > 0 such that V is Lipschitz
continuous with constant M on B(ϕ(0), r). Since Ω is an open set we can choose r
such that Bσ(ϕ, r) ⊂ Ω. Moreover, by [1, Proposition 1.1.3], F is locally bounded;
therefore, we can assume that

sup{‖y‖ : y ∈ F (ψ), ψ ∈ B(ϕ, r)} ≤M . (3.1)

Since ϕ is continuous on [−σ, 0] we can choose η > 0 such that

‖ϕ(t)− ϕ(s)‖ < r/4 for all t, s ∈ [−σ, 0] with |t− s| < η. (3.2)
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Let 0 < T ≤ min{η, r/4M}. We shall prove the existence of a solution of (1.1)
defined on the interval [−σ, T ]. For this, we define a family of approximate solutions
and we prove that a subsequence converges to a solution of (1.1).

First, for a fixed n ∈ N∗, we set

xn(t) = ϕ(t), t ∈ [−σ, 0]. (3.3)

Furthermore, we partition [0, T ] by points tjn := jT
n , j = 0, 1, . . . , n, and, for every

t ∈ [tjn, t
j+1
n ], we define

xn(t) := xj
n + (t− tjn)yj

n, (3.4)
where x0

n = xn(0) := ϕ(0) and

xj
n = xj−1

n +
T

n
yj−1

n , (3.5)

yj
n ∈ F (T (tjn)xn) (3.6)

for every j ∈ {1, 2, . . . , n}. It is easy to see that for every j ∈ {1, 2, . . . , n} we have

xj
n = ϕ(0) +

T

n
(y0

n + y1
n + · · ·+ yj−1

n ). (3.7)

By (3.1) and (3.7) we infer ‖xj
n − ϕ(0)‖ ≤ jT

n M < r/4, proving that

xn(tjn) = xj
n ∈ B(ϕ(0), r/4) (3.8)

for every j ∈ {1, 2, . . . , n}.
By (3.1) and (3.4) we have that

‖xn(t)− xn(tjn)‖ = ‖xn(t)− xj
n‖ ≤

jT

n
M <

r

4
, (3.9)

for every j ∈ {0, 1, . . . , n}. Hence, from (3.8) and (3.9) we deduce that

‖xn(t)− ϕ(0)‖ ≤ ‖xn(t)− xn(tjn)‖+ ‖xn(tjn)− ϕ(0)‖ < r

2
and so

xn(t) ∈ B(ϕ(0),
r

2
), for every t ∈ [0, T ]. (3.10)

Moreover, by (3.1), (3.4) and (3.6), we have ‖x′n(t)‖ ≤ M for every t ∈ [0, T ] and
so the sequence (x′n) is bounded in L2([0, T ],Rm).

For t, s ∈ [0, T ], we have

‖xn(t)− xn(s)‖ ≤
∣∣ ∫ t

s

‖x′n(τ)‖dτ
∣∣ ≤M |t− s|

so that the sequence (xn) is equiuniformly continuous. Hence, by Theorem 0.3.4 in
[1], there exists a subsequence, still denoted by (xn), and an absolute continuous
function x : [0, T ] → Rm such that:

(i) (xn) converges uniformly on [0, T ] to x;
(ii) (x′n) converges weakly in L2([0, T ],Rm) to x′.

Moreover, since by (3.3) all functions xn agree with ϕ on [−σ, 0], we can obviously
say that xn → x on [−σ, T ], if we extend x in such a way that x ≡ ϕ on [−σ, 0].
Also, it is clearly that T (0)x = ϕ on [−σ, 0].

Further on, if we define θn(t) = tjn for all t ∈ [tjn, t
j+1
n ] then, by (3.4) and (3.6),

we have
x′n(t) ∈ F (T (θn(t))xn), a.e. on [0, T ]. (3.11)
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and, by (3.8),

xn(θn(t)) ∈ B(ϕ(0),
r

4
), for every t ∈ [0, T ]. (3.12)

Also, since |θn(t) − t| ≤ T
n for every t ∈ [0, T ], then θn(t) → t uniformly on

[0, T ]. Moreover, by the uniformly converges of (xn) and (θn), we deduce that
xn(θn(t)) → x(t) uniformly on [0, T ].

Now, we have to estimate ‖(T (θn(t))xn)(s) − ϕ(s)‖ for each s ∈ [−σ, 0]. If
−θn(t) ≤ s ≤ 0, then θn(t) + s ≥ 0 and so there exists j ∈ {0, 1, . . . , n − 1} such
that θn(t)+s ∈ [tjn, t

j+1
n ]. Thus, by (3.2), (3.10) and by the fact that |θn(t)− t| ≤ T

and |s| ≤ T , we have

‖(T (θn(t))xn)(s)− ϕ(s)‖ = ‖xn(θn(t) + s)− ϕ(s)‖
≤ ‖xn(θn(t) + s)− ϕ(0)‖+ ‖ϕ(s)− ϕ(0)‖

<
3r
4
< r .

If −σ ≤ s ≤ −θn(t) then s+ θn(t) ≤ 0 and by (3.2) we have

‖(T (θn(t))xn)(s)− ϕ(s)‖ = ‖ϕ(θn(t) + s)− ϕ(s)‖ ≤ r

4
< r.

Therefore,
T (θn(t))xn ∈ B(ϕ, r), for every t ∈ [0, T ]. (3.13)

Let us denote the modulus continuity of a function ψ defined on interval I of R by

ω(ψ, I, ε) := sup{‖ψ(t)− ψ(s)‖; s, t ∈ I, |s− t| < ε}, ε > 0.

Then we have:

‖T (θn(t))xn − T (t)xn‖∞ = sup
−σ≤s≤0

‖xn(θn(t) + s)− xn(t+ s)‖

≤ ω(xn, [−σ, T ],
T

n
)

≤ ω(ϕ, [−σ, 0],
T

n
) + ω(xn, [0, T ],

T

n
)

≤ ω(ϕ, [−σ, 0],
T

n
) +

T

n
M ;

hence
‖T (θn(t))xn − T (t)xn‖∞ ≤ δn for every t ∈ [0, T ], (3.14)

where δn := ω(ϕ, [−σ, 0], T
n ) + T

nM . Thus, by continuity of ϕ, we have δn → 0 as
n→∞ and hence

‖T (θn(t))xn − T (t)xn‖∞ → 0 as n→∞.

Therefore, since the uniform convergence of xn to x on [−σ, T ] implies

T (t)xn → T (t)x uniformly on [−σ, 0], (3.15)

we deduce that
T (θn(t))xn → T (t)x in Cσ . (3.16)

Moreover, by (3.13) and (3.16), we have that T (t)x ∈ Bσ(ϕ, r) ⊂ Ω. Also, by (3.11)
and (3.14), we have

d((T (t)xn, x
′
n(t)), graph(F )) ≤ δn for every t ∈ [0.T ]. (3.17)
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By (H2), (ii), (3.16) and [1, Theorem 1.4.1], we obtain

x′(t) ∈ coF (T (t)x) ⊂ ∂V (x(t)) a.e. on [0, T ], (3.18)

where co stands for the closed convex hull.
Since the functions t → x(t) and t → V (x(t)) are absolutely continuous, we

obtain from [4, Lemma 3.3] and (3.18) that

d

dt
V (x(t)) = ‖x′(t)‖2 a.e. on [0, T ];

therefore,

V (x(T ))− V (x(0)) =
∫ T

0

‖x′(t)‖2dt. (3.19)

On the other hand, since

x′n(t) = yj
n ∈ F (T (tjn)xn) ⊂ ∂V (xn(tjn))

for every t ∈ [tjn, t
j+1
n ] and for every j ∈ {0, 1, . . . , n− 1}, it follows that

V (xn(tj+1
n ))− V (xn(tjn)) ≥ 〈x′n(t), xn(tj+1

n )− xn(tjn)〉

= 〈x′n(t),
∫ tj+1

n

tj
n

x′n(t)dt〉 =
∫ tj+1

n

tj
n

‖x′(t)‖2dt.

By adding the n inequalities above, we obtain

V (xn(T ))− V (x(0)) ≥
∫ T

0

‖x′n(t)‖2dt

and passing to the limit as n→∞, we obtain

V (x(T ))− V (x(0)) ≥ lim sup
n→∞

∫ T

0

‖x′n(t)‖2dt. (3.20)

Therefore, by b(3.19) and (3.20),∫ T

0

‖x′(t)‖2dt ≥ lim sup
n→∞

∫ T

0

‖x′n(t)‖2dt

and, since (x′n) converges weakly in L2([0, T ],Rm) to x′, by applying [5, Proposition
III.30], we obtain that (x′n) converges strongly in L2([0, T ],Rm). Hence there exists
a subsequence, still denote by (x′n), which converges pointwiese a.e. to x′.

Since, by (H1), the graph of F is closed [1, Proposition 1.1.2], by (3.17),

lim
n→∞

d((T (t)xn, x
′
n(t)), graph(F )) = 0,

we obtain

x′(t) ∈ F (T (t)x) a.e. on [0, T ] .

Therefore, the functional differential inclusion (1.1) has solutions.
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