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UNIQUENESS OF POSITIVE SOLUTIONS FOR A CLASS OF
ODE’S WITH DIRICHLET BOUNDARY CONDITIONS

YULIAN AN, RUYUN MA

Abstract. We study the uniqueness of positive solutions of the boundary-
value problem

u′′ + a(t)u′ + f(t, u) = 0, t ∈ (0, b)

u(0) = 0, u(b) = 0 ,

where 0 < b < ∞, a ∈ C1[0,∞) and f ∈ C1([0,∞) × [0,∞), [0,∞)) satisfy

suitable conditions. The proof of our main result is based on the shooting
method and the Sturm comparison theorem.

1. Introduction

In this paper, we consider the uniqueness of positive solutions for the problem

u′′ + a(t)u′ + f(t, u) = 0, t ∈ (0, b) (1.1)

u(0) = 0, u(b) = 0 , (1.2)

where 0 < b < ∞, a ∈ C1[0,∞) and f ∈ C1([0,∞)× [0,∞), [0,∞)) satisfy suitable
conditions.

By a positive solution of (1.1)-(1.2), we understand a function u(t) which is
positive in t ∈ (0, b) and satisfies the differential equation (1.1) and the boundary
conditions (1.2).

To study the uniqueness problem of (1.1)-(1.2), we will use the shooting method
and the Sturm comparison theorem. Some of the ideas used in this paper are
motivated by Lynn Erbe and Moxun Tang [2, 3] and Fu and Lin [4].

This paper is organized as follows. In section 2, we state the main result (see
Theorem 2.1 below) and give some examples to illustrate the applicability of our
results. In section 3, we show some preliminary results. Finally we prove the main
result in Section 4.
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2. Main Result

To investigate the uniqueness of (1.1)-(1.2), we introduce the initial-value prob-
lem

u′′ + a(t)u′ + f(t, u) = 0 (2.1)

u(0) = 0, u′(0) = α > 0. (2.2)

For a given number α > 0, we know from the assumptions a ∈ C1[0,∞) and
f ∈ C1([0,∞)× [0,∞), [0,∞)) that (2.1)-(2.2) has a unique solution u(t, α) defined
on (0, Tα), where Tα is either +∞ or a positive number such that u can not be
further continued to the right of Tα. If α > 0, then u(0, α) = 0, u′(0, α) = α > 0.
Therefore, there exists a positive number ε ∈ (0, Tα) such that

u(t, α) > 0, t ∈ (0, ε).

When u(t, α) vanishes at some t0 ∈ (0, Tα), we define b(α) to be the first zero of
u(t, α) in (0, Tα). More precisely, b(α) is a function of α which has the properties

u(t, α) > 0, t ∈ (0, b(α)); u(b(α), α) = 0.

If u(t, α) is positive in (0, Tα), then we define b(α) = Tα. Denote

N := {α : α > 0, b(α) < Tα}.
It is obviously that problem (1.1)-(1.2) has no positive solution if N is an empty
set. Hence, we suppose N 6= ∅.

Now, for any given b > 0, if we can prove there exists at most one α ∈ N such
that b = b(α), then we conclude the uniqueness of positive solutions of the problem
(1.1)-(1.2).

We denote the variation of u(t, α) by

φ(t, α) = ∂u(t, α)/∂α, t ∈ [0, Tα).

Then φ(t, α) satisfies

φ′′ + a(t)φ′ + fu(t, u)φ = 0, t ∈ [0, Tα) (2.3)

φ(0) = 0, φ′(0) = 1, (2.4)

where the notation fu(t, u) denotes ∂f(t, u)/∂u. Let L be the linear operator

L(φ) = φ′′ + a(t)φ′ + fu(t, u)φ, t ∈ [0, Tα) (2.5)

and

Gh(t) = u(t, α) +
h− 1

2
v(t)
v′(t)

u′(t, α), t ∈ [0, Tα) (2.6)

where

v(t) =
∫ t

0

exp
(
−

∫ τ

0

a(s)ds
)
dτ

and accordingly

v′(t) = exp
(
−

∫ t

0

a(s)ds
)
.

It is easy to check that

v′′(t) + a(t)v′(t) = 0, t ∈ [0, Tα).

A different function Gh(t) has been used by Erbe and Tang [2]. However, the
function Gh(t) defined by (2.6) is first introduced here.
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Differentiating Gh(t) with respect to t, we get

G′h(t) = u′(t, α) +
h− 1

2
(
v(t)
v′(t)

)′u′(t, α) +
h− 1

2
v(t)
v′(t)

u′′(t, α)

= u′(t, α) +
h− 1

2
(
v(t)
v′(t)

)′u′(t, α)

+
h− 1

2
v(t)
v′(t)

(−f(t, u(t, α))− a(t)u′(t, α))

=
(
1 +

h− 1
2

(
v(t)
v′(t)

)′ − h− 1
2

a(t)
v(t)
v′(t)

)
u′(t, α)− h− 1

2
v(t)
v′(t)

f(t, u(t, α))

and

G′′h(t) = [
h− 1

2
(
v

v′
)′′ − h− 1

2
a′(t)

v

v′
− h− 1

2
a(t)(

v

v′
)′]u′

+ (1 +
h− 1

2
(
v

v′
)′ − h− 1

2
a(t)

v

v′
)(−f(t, u)− a(t)u′)

− h− 1
2

(
v

v′
)′f(t, u)− h− 1

2
v

v′
fu(t, u)u′ − h− 1

2
v

v′
ft(t, u)

= [−a(t)− h− 1
2

a(t)(
v

v′
)′ + a2(t)

h− 1
2

v

v′
]u′

− [1 + (h− 1)(
v

v′
)′ − h− 1

2
a(t)

v

v′
]f(t, u)− h− 1

2
v

v′
fu(t, u)u′

− h− 1
2

v

v′
fu(t, u).

where ft(t, u) denotes ∂f(t, u)/∂t. So we have

L(Gh(t)) = G′′h(t) + a(t)G′h(t) + fu(t, u)Gh(t)

= G′′h(t) + a(t)(1 +
h− 1

2
(
v

v′
)′ − h− 1

2
a(t)

v

v′
)u′

− h− 1
2

v

v′
a(t)f(t, u) + fu(t, u)u +

h− 1
2

v

v′
fu(t, u)u′

= fu(t, u)u− [1 + (h− 1)(
v

v′
)′]f(t, u)− h− 1

2
v

v′
fu(t, u).

Denote Lh(t) = L(t, u, α) = L(Gh(t)), then

Lh(t) = fu(t, u)u− [1 + (h− 1)(
v

v′
)′]f(t, u)− h− 1

2
v

v′
fu(t, u).

Note that when h = 1, we simply have G1(t) = u(t, α), and L1(t) = ufu(t, u) −
f(t, u).

We will use the following assumptions:
(A1) f(t, 0) ≡ 0, and ufu(t, u) > f(t, u) > 0 for all t > 0, u > 0
(A2) a(t) ≤ 0, a(t)v(t) + v′(t) ≥ 0, for all t ≥ 0
(A3) If α > 0 and h ≥ 1, and there exists a t̃ ∈ (0, b(α)), such that Lh(t̃, α) ≥ 0,

then Lh(t, α) ≥ 0 for all t ∈ [t̃, b(α))
(A4) (v(t)/v′(t))′f(t, u) + (v(t)/2v′(t))fu(t, u) > 0, for all t > 0, u > 0.
The main result of this paper is as follows.

Theorem 2.1. Assume (A1)-(A4) hold. Then (1.1)-(1.2) has at most one positive
solution.
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Example 2.2. Let f(t, u) = up (p > 1), a(t) ≡ −1. Then

a(t)v(t) + v′(t) = 1 > 0, Lh(t) = up[p− 1− (h− 1)e−t].

Obviously, (A1), (A2) are satisfied. Since e−t is strictly decreasing for t > 0, (A3)
is satisfied. Meanwhile,

(
v

v′
)′f(t, u) +

v

2v′
fu(t, u) = e−tup > 0, t > 0, u > 0.

(A4) is also satisfied.

Example 2.3. Let f(t, u) = tlup (l > 0, p > 1) and a(t) ≡ 0. Then

a(t)v(t) + v′(t) = 1 > 0, Lh(t) = tlup[p− h− (h− 1)l/2]

and
(
v

v′
)′f(t, u) +

v

2v′
fu(t, u) = tlup(1 +

l

2t2
) > 0, t > 0, u > 0.

Obviously, (A1)-(A4) are satisfied.

3. Preliminary Results

Lemma 3.1. Suppose f(t, 0) ≡ 0 for all t ≥ 0, and

φ(b(α), α) 6= 0, α ∈ N. (3.1)

Then one of the following cases must occur
(i) N is an open interval
(ii) N = (0, j1) ∪ (j2,∞) with 0 < j1 < j2 < +∞. Moreover, b′(α) > 0 for all

(0, j1); b′(α) < 0 for all (j2,∞).

Proof. From the definition of b(α), we have that u′(b(α), α) ≤ 0 and for all α ∈ N ,

u(b(α), α) = 0. (3.2)

If u′(b(α), α) = 0, then (3.2) with the assumption f(t, 0) ≡ 0 for t ≥ 0 imply

u(t, α) ≡ 0, t > 0

However this contradicts the fact u′(0, α) = α > 0. Therefore, we must have

u′(b(α), α) < 0. (3.3)

By the Implicit Function Theorem, b(α) is well-defined as a function of α in N and
b(α) ∈ C1(N). Furthermore, it follows from (3.3) that N is an open set.

Differentiating both sides of the identity (3.2) with respect to α, we obtain

u′(b(α), α)b′(α) + φ(b(α), α) = 0. (3.4)

Combining this with (3.1), it follows that b′(α) 6= 0.
We note that if ᾱ ∈ (0,∞) \N with {αn} ⊂ N and αn → ᾱ as n →∞, then

b(αn) → +∞.

Otherwise, on the contrary , we may suppose that b(αn) → t1 as n → ∞. Let
n →∞, we have from u(b(αn), αn) = 0 that u(t1, ᾱ) = 0. However this contradicts
ᾱ /∈ N .

If N be not an open interval, and let J1 = (j0, j1) and J2 = (j2, j3) be two
distinct components of N with 0 < j1 < j2 < ∞. Then

lim
α→j−1

b(α) = lim
α→j+

2

b(α) = +∞
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Since b(α) is strictly monotonic in each component of N , we conclude that b′(α) > 0
in J1, and b′(α) < 0 in J2. Meanwhile

lim
α→j+

0

b(α) < +∞, lim
α→j−3

b(α) < +∞

It follows that j0 = 0 and j3 = +∞. Therefore N = (0, j1)∪ (j2,∞) with b′(α) > 0
in (0, j1), and b′(α) < 0 in (j2,∞). The proof is completed. �

Lemma 3.2. Let α ∈ N , and let f(t, u) satisfy (A1). Then φ(t, α) has at least one
zero in (0, b(α)).

Proof. Note that L(φ) = 0, i.e.,

φ′′ + a(t)φ′ + fu(t, u)φ = 0 (3.5)

Meanwhile,

G′′h(t) + a(t)G′h(t) + fu(t, u)Gh(t) = Lh(t) (3.6)

Multiply both sides of (3.6) by exp
( ∫ t

0
a(s)ds

)
φ(t, α), and multiply both sides of

(3.5) by exp
( ∫ t

0
a(s)ds

)
Gh(t), then subtract the resulting identities, we have

[
exp

( ∫ t

0

a(s)ds
)
(G′hφ−Ghφ′)

]′ = exp
( ∫ t

0

a(s)ds
)
φ(t, α)Lh(t). (3.7)

Set h = 1 in (3.7), we get

[
exp

( ∫ t

0

a(s)ds
)
(u′φ− uφ′)

]′ = exp
( ∫ t

0

a(s)ds
)
φ(t, α)(fu(t, u)u− f(t, u)) (3.8)

Suppose on the contrary that φ(t, α) does not vanish in (0, b(α)). Then we know
from (2.4) that

φ(t, α) > 0, t ∈ (0, b(α)).

This implies that the right hand side of (3.8) is positive in (0, b(α)), and accordingly

[
exp

( ∫ t

0

a(s)ds
)
(u′φ− uφ′)

]′
> 0, t ∈ (0, b(α)). (3.9)

Since

exp
( ∫ t

0

a(s)ds
)
(u′φ− uφ′)

∣∣∣
t=0

= 0

we have form (3.9) that

exp
( ∫ t

0

a(s)ds
)
(u′φ− uφ′)

∣∣∣
t=b(α)

> 0. (3.10)

On the other hand

exp
( ∫ t

0

a(s)ds
)
(u′φ− uφ′)

∣∣
t=b(α) = exp

( ∫ b(α)

0

a(s)ds
)
u′(b(α), α)φ(b(α), α) ≤ 0

which contradicts (3.10). Therefore, φ(t, α) has at least one zero in (0, b(α)). �
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4. Proof of Theorem 2.1

We note that for any α ∈ N , (3.4) holds. If we can show that

φ(b(α), α) < 0, α ∈ N (4.1)

then from (4.1), (3.3) and (3.4), it follows that b′(α) < 0. Combining this with
Lemma 3.1, we conclude that N is an open interval and b′(α) < 0 for all α ∈ N .
So b(α) is a strictly decreasing function in N . Thus, for any given b > 0, there is
at most one α ∈ N such that b(α) = b. If such α exists exactly, then u(t, α), which
is the unique solution of the initial value problem (2.1)-(2.2), must be the positive
solution of boundary value problem (1.1)-(1.2). Combining this with the uniqueness
of solution of the initial value problem, we know that the positive solution of (1.1)-
(1.2) is unique.

Proof of Theorem 2.1. We need only to prove (4.1). To this end, we divide the
proof into six steps.
Step 1. We show that there exists unique c(α) ∈ (0, b(α)) such that

u′(c(α), α) = 0 (4.2)

and
u′(t, α) > 0 on [0, c(α)); u′(t, α) < 0 on (c(α), b(α)] (4.3)

In fact, if τ ∈ (0, b(α)) such that u′(τ, α) = 0. Then from (2.1) and (A1), we have
that

u′′(τ) = f(τ, u(τ, α)) < 0
which means that τ is a local maximum of u(t, α). Combining this with the fact
u(0, α) = u(b(α), α) = 0, it concludes that there exists unique c(α) ∈ (0, b(α)) such
that (4.2) and (4.3) hold.
Step 2. We show that

φ(t, α) > 0, t ∈ (0, c(α)]. (4.4)
From the facts that u(t, α) > 0 and u′(t, α) > 0 on (0, c(α)), we have that

Gh(t) > 0, t ∈ (0, c(α)]

whenever h ≥ 1. Since

Lh(c(α)) =
[
fu(t, u)u−

(
1 + (h− 1)(

v

v′
)′

)
f(t, u)− h− 1

2
v

v′
fu(t, u)

]
t=c(α)

=
[
fu(t, u)u−

(
1− (

v

v′
)′

)
f(t, u) +

v

2v′
fu(t, u)

− h
(
(
v

v′
)′f(t, u) +

v

2v′
fu(t, u)

)]
t=c(α)

Combing it with (A4), we can choose h̄ ∈ (1,∞) so large such that

Lh̄(c(α)) < 0

which together with (A3) implies that

Lh̄(t) < 0, t ∈ (0, c(α)]. (4.5)

Suppose on the contrary that (4.4) is not true, and let t2 be the first zero of φ(t, α)
in (0, c(α)]. Then

φ(t, α) > 0 on t ∈ (0, t2), φ(t2, α) = 0. (4.6)
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Note that φ(t, α) and Gh̄(t) satisfy[
exp

( ∫ t

0

a(s)ds
)
(G′h̄φ−Gh̄φ′)

]′ = exp
( ∫ t

0

a(s)ds
)
φ(t, α)Lh̄(t)

which together with (4.5), (4.6) imply[
exp

( ∫ t

0

a(s)ds
)
(G′h̄φ−Gh̄φ′)

]′
< 0, t ∈ (0, t2) (4.7)

Since Gh̄(0) = u(0, α) = 0, it follows that[
exp

( ∫ t

0

a(s)ds
)
(G′h̄φ−Gh̄φ′)

]
t=0

= 0

which and (4.7) yield[
exp

( ∫ t

0

a(s)ds
)
(G′h̄φ−Gh̄φ′)

]
t=t2

< 0. (4.8)

On the other hand, since φ′(t2) ≤ 0 and Gh̄(t2) > 0, we have[
exp

( ∫ t

0

a(s)ds
)
(G′h̄φ−Gh̄φ′)

]
t=t2

= exp
( ∫ t2

0

a(s)ds
)
(−Gh̄(t2)φ′(t2)) ≥ 0

This contradicts (4.8). Therefore (4.4) holds.
Step 3. We show that if h > 1 then Gh(t) has exactly one zero τh in (c(α), b(α)).
If h > 1, we have from the definition of Gh(t) that

Gh(c(α)) = u(c(α)) > 0, Gh(b(α)) < 0

which implies that Gh(t) with h > 1 must have zeros in (c(α), b(α)).
Next we show that Gh(t) with h > 1 has at most one zero in (c(α), b(α)). For

any given h > 1, let Gh(t) = 0 for some t ∈ (c(α), b(α)). Then

u(t, α) +
h− 1

2
v(t)
v′(t)

u′(t, α) = 0

and consequently
u′(t)
u(t)

=
2

1− h

v′(t)
v(t)

.

Set

w1(s) =
u′(s)
u(s)

, s ∈ (c(α), b(α))

and

w2(s) =
2

1− h

v′(s)
v(s)

, s ∈ (c(α), b(α))

By (A2), we have

w′1(s) =
−a(s)u′u− f(s, u)u− u′2

u2
< 0, s ∈ (c(α), b(α))

w′2(s) =
2

1− h

−v′(a(s)v + v′)
v2

≥ 0, s ∈ (c(α), b(α)).

Hence, w1(s) and w2(s) intersect at most once in (c(α), b(α)), and accordingly Gh(t)
(h > 1) has at most one zero in (c(α), b(α)).
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Step 4. Let θ(α) be the first zero of φ(t, α) in (c(α), b(α)). We show that there
exists an unique p ∈ (1,∞) such that the unique zero, τp, of Gp(t) in (c(α), b(α)]
satisfying

τp = θ(α) (4.9)

Gp(t) > 0 on (0, θ(α)), Gp(θ(α)) = 0, Gp(t) < 0 on (θ(α), b(α)], (4.10)

φ(t, α) > 0 on (0, θ(α)), φ(θ(α), α) = 0. (4.11)

Note that for t ∈ (c(α), b(α)), u′(t, α) < 0. From the definition of Gh(t), we have
that for any fixed τ ∈ (c(α), b(α)), Gh(τ) is continuous and strictly decreasing with
respect to h. Since G1(τ) = u(τ, α) > 0 and limh→+∞Gh(τ) = −∞, there must be
a unique h > 1 such that

Gh(τ) = 0.

In particular, for θ(α) ∈ (c(α), b(α)), there exists a unique number p ∈ (1,∞) such
that

Gp(θ(α)) = 0

i.e. τp = θ(α).
Equations (4.10) and (4.11) can be deduced from the fact that both Gp has

unique zero in (c(α), b(α)) and θ(α) is the first zero of φ(t, α) in (c(α), b(α)).
Step 5. We show that there exists t3 ∈ (0, θ(α)] such that

Lp(t3) ≥ 0. (4.12)

Suppose on the contrary that Lp(t) < 0 on (0, θ(α)]. Note that φ(t, α) and Gp(t)
satisfy[

exp
( ∫ t

0

a(s)ds
)
(G′pφ−Gpφ

′)
]′ = φ(t, α)Lp(t) exp

( ∫ t

0

a(s)ds
)
. (4.13)

Since the right-hand side of (4.13) is negative on (0, θ(α)),[
exp

( ∫ t

0

a(s)ds
)
(G′pφ−Gpφ

′)
]′

< 0, t ∈ (0, θ(α))

This and

exp
( ∫ t

0

a(s)ds
)
(G′pφ−Gpφ

′)
∣∣∣
t=0

= 0

imply that

exp
( ∫ t

0

a(s)ds
)
(G′pφ−Gpφ

′)
∣∣∣
t=θ(α)

< 0 (4.14)

On the other hand, we have from (4.9) and the definitions of p and θ(α) that

exp
( ∫ t

0

a(s)ds
)
(G′pφ−Gpφ

′)
∣∣∣
t=θ(α)

= 0

This contradicts (4.14). Therefore, (4.12) holds for some t3 ∈ (0, θ(α)].
Step 6. We show that θ(α) is the unique zero of φ(t, α) in (c(α), b(α)]. Suppose on
the contrary that there exists τ1 ∈ (θ(α), b(α)] such that

φ(τ1, α) = 0, φ(t, α) < 0 on (θ(α), τ1)

and
φ′(τ1, α) > 0. (4.15)
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(Note that if φ′(τ1, α) = 0, then φ ≡ 0. This contradicts (2.4)) We have from (A3)
and (4.12) that

Lp(t) ≥ 0, t ∈ [θ(α), b(α)).
Integrating both sides of (4.13) from θ(α) to τ1, we get

− exp
( ∫ τ1

0

a(s)ds
)
Gp(τ1)φ′(τ1, α) =

∫ τ1

θ(α)

exp
( ∫ t

0

a(s)ds
)
φ(t, α)Lp(t)dt. (4.16)

This together with the fact φ(t, α) < 0 on (θ(α), τ1) implies that

− exp
( ∫ τ1

0

a(s)ds
)
Gp(τ1(α))φ′(τ1, α) ≤ 0. (4.17)

On the other hand, we have from the fact Gp(τ1) < 0 and (4.15) that

− exp
( ∫ τ1

0

a(s)ds
)
Gp(τ1)φ′(τ1, α) > 0.

This contradicts (4.17). Therefore, φ(t, α) has not zero point in (θ(α), b(α)], and
consequently φ(b(α), α) < 0. �
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