Electronic Journal of Differential Equations, Vol. 2004(2004), No. 143, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

TWIN POSITIVE SOLUTIONS FOR FOURTH-ORDER TWO-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITIES

YU TIAN, WEIGAO GE

$$
\begin{aligned}
& \text { Abstract. A new fixed point theorem on double cones is applied to obtain } \\
& \text { the existence of at least two positive solutions to } \\
& \qquad\left(\Phi_{p}\left(y^{\prime \prime}(t)\right)^{\prime \prime}-a(t) f\left(t, y(t), y^{\prime \prime}(t)\right)=0, \quad 0<t<1,\right. \\
& y(0)=y(1)=0=y^{\prime \prime}(0)=y^{\prime \prime}(1),
\end{aligned}
$$

where $f:[0,1] \times[0, \infty) \times(-\infty, 0] \rightarrow R, a \in L^{1}([0,1],(0, \infty))$. We also give some examples to illustrate our results.

1. Introduction

We study the existence of multiple positive solutions for the fourth-order twopoint boundary-value problem

$$
\begin{gather*}
\left(\Phi_{p}\left(y^{\prime \prime}(t)\right)^{\prime \prime}-a(t) f\left(t, y(t), y^{\prime \prime}(t)\right)=0, \quad 0<t<1\right. \tag{1.1}\\
y(0)=y(1)=0=y^{\prime \prime}(0)=y^{\prime \prime}(1) \tag{1.2}
\end{gather*}
$$

where the nonlinear term f is allowed to change sign, $a \in L^{1}([0,1],(0, \infty)), \Phi_{p} x=$ $|x|^{p-2} x, 1 / p+1 / q=1, p>1$. When $p=2$ Problem (1.1)- 1.2 describes the deformations of an elastic beam. The boundary conditions are given according to the control at the ends of the beam.

A great deal of research has been devoted to the existence of solutions for the fourth-order two point boundary value problem. We refer the reader to [1, 3, 4, 5, 6, 2] and their references. Aftabizadeh [1], [2], del Pino and Manasevich [3, Gupta [4, 5], Ma and Wang [6], Liu [9] have studied the existence problem of positive solutions of the following fourth-order two-point boundary-value problem

$$
\begin{gathered}
y^{(4)}(t)-f\left(t, y(t), y^{\prime \prime}(t)\right)=0, \quad 0<t<1 \\
y(0)=y(1)=0=y^{\prime \prime}(0)=y^{\prime \prime}(1)
\end{gathered}
$$

All the above works were done under assumption that the nonlinear term f is nonnegative.

[^0]In this paper, we will impose growth conditions on f which ensure the existence of at least two positive solutions for (1.1)-(1.2). The key tool in our approach is the following fixed point theorem on double cones.

For a cone K in a Banach space X with norm $\|\cdot\|$ and a constant $r>0$, let

$$
K_{r}=\{x \in K:\|x\|<r\}, \quad \partial K_{r}=\{x \in K:\|x\|=r\} .
$$

Suppose $\alpha: K \rightarrow R^{+}$is a continuously increasing functional, i.e., α is continuous and $\alpha(\lambda x) \leq \alpha(x)$ for $\lambda \in(0,1)$. Let

$$
K(b)=\{x \in K: \alpha(x)<b\}, \quad \partial K(b)=\{x \in K: \alpha(x)=b\}
$$

and $K_{a}(b)=\{x \in K: a<\|x\|, \alpha(x)<b\}$. The origin in X is denoted by θ.
Theorem 1.1 (10). Let X be a real Banach space with norm $\|\cdot\|$ and $K, K^{\prime} \subset X$ two solid cones with $K^{\prime} \subset K$. Suppose $T: K \rightarrow K$ and $T^{\prime}: K^{\prime} \rightarrow K^{\prime}$ are two completely continuous operators and $\alpha: K^{\prime} \rightarrow R^{+}$a continuously increasing functional satisfying $\alpha(x) \leq\|x\| \leq M \alpha(x)$ for all x in K^{\prime}, where $M \geq 1$ is a constants $b>a>0$ such that
(C1) $\|T x\|<a$, for $x \in \partial K_{a}$
(C2) $\left\|T^{\prime} x\right\|<a$, for $x \in \partial K_{a}^{\prime}$ and $\alpha\left(T^{\prime} x\right)>b$ for $x \in \partial K^{\prime}(b)$
(C3) $T x=T^{\prime} x$, for $x \in K_{a}^{\prime}(b) \cap\left\{u: T^{\prime} u=u\right\}$
then T has at least two fixed points y_{1} and y_{2} in K such that

$$
0 \leq\left\|y_{1}\right\|<a<\left\|y_{2}\right\|, \quad \alpha\left(y_{2}\right)<b .
$$

2. Existence of positive solutions

Lemma 2.1. Suppose $g(\cdot) \in C[0,1]$, then

$$
\begin{gather*}
\left(\Phi_{p}\left(y^{\prime \prime}(t)\right)\right)^{\prime \prime}-g(t)=0, \quad 0<t<1 \tag{2.1}\\
y(0)=y(1)=0=y^{\prime \prime}(0)=y^{\prime \prime}(1) \tag{2.2}
\end{gather*}
$$

has a unique solution

$$
\begin{equation*}
y(t)=\int_{0}^{1} G(t, s) \Phi_{q}\left(\int_{0}^{1} G(s, \tau) g(\tau) d \tau\right) d s \tag{2.3}
\end{equation*}
$$

where

$$
G(t, s)= \begin{cases}t(1-s), & 0 \leq t \leq s \leq 1 \\ s(1-t), & 0 \leq s \leq t \leq 1\end{cases}
$$

Proof. Let $\Phi_{p} y^{\prime \prime}(t)=u(t)$, then $2.1-2.2$ becomes

$$
\begin{aligned}
u^{\prime \prime}-g(t) & =0, \quad 0<t<1 ; \\
u(0) & =u(1)=0
\end{aligned}
$$

It is clear that the above boundary-value problem has a unique solution,

$$
u(t)=\int_{0}^{1} G(t, s) g(s) d s
$$

where $G(t, s)=\left\{\begin{array}{ll}t(1-s), & 0 \leq t \leq s \leq 1 ; \\ s(1-t), & 0 \leq s \leq t \leq 1 .\end{array}\right.$ Then $\Phi_{p} y^{\prime \prime}(t)=u(t)$, i.e., $y^{\prime \prime}(t)=$ $\left(\Phi_{q} u\right)(t)$. By the boundary condition we know that

$$
y(t)=\int_{0}^{1} G(t, s)\left(\Phi_{q} u\right)(s) d s=\int_{0}^{1} G(t, s) \Phi_{q}\left(\int_{0}^{1} G(s, r) g(r) d r\right) d s
$$

The proof is completed.
In this paper, we assume the following conditions:
(H1) $f:[0,1] \times[0, \infty) \times(-\infty, 0] \rightarrow R$ is continuous, $a \in L^{1}([0,1],(0, \infty))$
(H2) $a(t) f(t, 0,0) \not \equiv 0, f(t, 0,0) \geq 0$ for $t \in[0,1]$.
Let $X=\left\{x \in C^{2}[0,1]: x(0)=x(1)=0=x^{\prime \prime}(0)=x^{\prime \prime}(1)\right\}$. Then X is a Banach space with the norm $\|x\|=\sup _{t \in[0,1]}\left|x^{\prime \prime}(t)\right|$. Define

$$
K=\{x \in X: x \text { is nonnegative and concave on }[0,1]\}
$$

and $K^{\prime}=\left\{x \in X: x\right.$ is nonnegative and concave on $[0,1], \alpha(x) \geq \delta^{q-1}\|x\|$, $\delta \in(0,1 / 2)\}$, where $\alpha(x)=\min _{t \in[\delta, 1-\delta]}\left\{-x^{\prime \prime}(t)\right\}$. Obviously $K, K^{\prime} \subset X$ are two cones with $K^{\prime} \subset K$. From the definition K^{\prime}, we know that $\alpha(x) \leq\|x\| \leq \frac{1}{\delta^{q-1}} \alpha(x)$, $\delta \in(0,1 / 2)$. Denote

$$
(T x)(t)=\left[\int_{0}^{1} G(t, s) \Phi_{q}\left(\int_{0}^{1} G(s, \tau) a(\tau) f\left(\tau, x(\tau), x^{\prime \prime}(\tau)\right) d \tau\right) d s\right]^{+}
$$

where $B^{+}=\max \{B, 0\}$.

$$
(A x)(t)=\int_{0}^{1} G(t, s) \Phi_{q}\left(\int_{0}^{1} G(s, \tau) a(\tau) f\left(\tau, x(\tau), x^{\prime \prime}(\tau)\right) d \tau\right) d s
$$

For $x \in X$, define $\theta: X \rightarrow K$ by $(\theta x)(t)=\max \{x(t), 0\}$, then $T=\theta \circ A$. For $x \in K^{\prime}$, let

$$
\left(T^{\prime} x\right)(t)=\int_{0}^{1} G(t, s) \Phi_{q}\left(\int_{0}^{1} G(s, \tau) a(\tau) f^{+}\left(\tau, x(\tau), x^{\prime \prime}(\tau)\right) d \tau\right) d s
$$

where $f^{+}\left(t, x(t), x^{\prime \prime}(t)\right)=\max \left\{f\left(t, x(t), x^{\prime \prime}(t)\right), 0\right\}$.
Lemma 2.2. For $x \in X$, we have $\|x\|_{\infty} \leq\left\|x^{\prime \prime}\right\|_{\infty}$ and $\left\|x^{\prime}\right\|_{\infty} \leq\left\|x^{\prime \prime}\right\|_{\infty}$ where $\|x\|_{\infty}=\sup _{t \in[0,1]}|x(t)|$.

Proof. From

$$
x(t)=\int_{0}^{1} G(t, s) \Phi_{q}\left(\int_{0}^{1} G(s, r) g(r) d r\right) d s
$$

and

$$
x^{\prime \prime}(t)=-\Phi_{q}\left(\int_{0}^{1} G(t, r) g(r) d r\right)
$$

we have

$$
\begin{aligned}
|x(t)| & =\left|\int_{0}^{1} G(t, s) \Phi_{q}\left(\int_{0}^{1} G(s, r) g(r) d r\right) d s\right| \\
& =\left|\int_{0}^{1} G(t, s)\right| x^{\prime \prime}(s)|d s| \\
& \leq\left\|x^{\prime \prime}\right\|_{\infty} \int_{0}^{1} G(t, s) d s \\
& =\left\|x^{\prime \prime}\right\|_{\infty}\left[\int_{0}^{t} s(1-t) d s+\int_{t}^{1} t(1-s) d s\right] \\
& =\left\|x^{\prime \prime}\right\|_{\infty}\left(\frac{t^{2}(1-t)}{2}+\frac{t(1-t)^{2}}{2}\right)
\end{aligned}
$$

So $\|x\|_{\infty}=\sup _{t \in[0,1]}|x(t)| \leq \frac{1}{8}\left\|x^{\prime \prime}\right\|_{\infty}<\left\|x^{\prime \prime}\right\|_{\infty}$. At the same time, from $x^{\prime}(t)=$ $\int_{0}^{t} x^{\prime \prime}(s) d s$, we have $\left\|x^{\prime}\right\|_{\infty}=\sup _{t \in[0,1]}\left|x^{\prime}(t)\right| \leq\left\|x^{\prime \prime}\right\|_{\infty}$. The proof is complete.

Note that X is a Banach space with the norm $\|x\|=\sup _{t \in[0,1]}\left|x^{\prime \prime}(t)\right|$.
Lemma 2.3. $T^{\prime}\left(K^{\prime}\right) \subset K^{\prime}$ 。
Proof. For any $x \in K^{\prime}$, it is clear that $\left(T^{\prime} x\right)(t)$ is nonnegative from the definition of T^{\prime}. From $\left(T^{\prime} x\right)^{\prime \prime}(t)=-\Phi_{q}\left(\int_{0}^{1} G(t, s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right)$, we know $\left(T^{\prime} x\right)^{\prime \prime}(t) \leq 0$. So $T^{\prime} x$ is concave on $[0,1]$. Then

$$
\begin{aligned}
-\left(T^{\prime} x\right)^{\prime \prime}(t) & =\Phi_{q}\left(\int_{0}^{1} G(t, s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right) \\
& \leq \Phi_{q}\left(\int_{0}^{1} G(s, s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right)
\end{aligned}
$$

which implies

$$
\left\|-\left(T^{\prime} x\right)^{\prime \prime}\right\|_{\infty} \leq \Phi_{q}\left(\int_{0}^{1} G(s, s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right)
$$

and

$$
\begin{aligned}
\alpha\left(T^{\prime} x\right)= & \min _{t \in[\delta, 1-\delta]}\left[-\left(T^{\prime} x\right)^{\prime \prime}(t)\right] \\
= & \min _{t \in[\delta, 1-\delta]} \Phi_{q}\left(\int_{0}^{1} G(t, s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right) \\
= & \min _{t \in[\delta, 1-\delta]} \Phi_{q}\left(\int_{t}^{1} t(1-s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right. \\
& \left.+\int_{0}^{t} s(1-t) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right) \\
\geq & \min _{t \in[\delta, 1-\delta]} \Phi_{q}\left(\int_{t}^{1} \delta s(1-s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right. \\
& \left.+\int_{0}^{t} \delta s(1-s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right) \\
= & \Phi_{q}\left(\delta \int_{0}^{1} G(s, s) f^{+}\left(s, x(s), x^{\prime \prime}(s)\right) d s\right) \\
\geq & \delta^{q-1}\left\|T^{\prime} x\right\| .
\end{aligned}
$$

The proof is complete.
For convenience, we denote

$$
\begin{gathered}
Q=\max _{t \in[0,1]}\left\{\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) d s\right)\right\}, \\
m=\min _{t \in[\delta, 1-\delta]}\left\{\Phi_{q}\left(\int_{\delta}^{1-\delta} G(t, s) a(s) d s\right)\right\}, \\
m_{i}=\min _{t \in\left[\delta_{i}, 1-\delta_{i}\right]}\left\{\Phi_{q}\left(\int_{\delta_{i}}^{1-\delta_{i}} G(t, s) a(s) d s\right)\right\} .
\end{gathered}
$$

It is clear that $0<m<Q<\infty$.

From the continuity of $f, a \in L^{1}([0,1],(0, \infty))$. It is easy to see $A: K \rightarrow X$ and $T^{\prime}: K^{\prime} \rightarrow K^{\prime}$ are completely continuous. So $T: K \rightarrow K$ is completely continuous.

Theorem 2.4. Suppose (H1) and (H2) are satisfied and there exist a, b, d such that $0<d<\delta^{q-1} a<a<\delta^{q-1} b<b$. Assume that f satisfies the following conditions:
(H3) For $(t, u, v) \in[0,1] \times[0, b] \times[-b,-d], f(t, u, v) \geq 0$
(H4) $\operatorname{For}(t, u, v) \in[0,1] \times[0, a] \times[-a, 0], f(t, u, v)<\Phi_{p}\left(\frac{a}{Q}\right)$.
(H5) For $(t, u, v) \in[0,1] \times[0, b] \times\left[-b,-\delta^{q-1} b\right], f(t, u, v) \geq \Phi_{p}\left(\frac{b}{m}\right)$.
Then 1.1- 1.2 has at least two positive solutions y_{1}, y_{2} such that

$$
\begin{equation*}
0<\left\|y_{1}\right\|<a<\left\|y_{2}\right\|, \quad \alpha\left(y_{1}\right)<\delta^{q-1} b, \quad\left\|y_{1}\right\|_{\infty}<a, \quad\left\|y_{2}\right\|_{\infty}<b \tag{2.4}
\end{equation*}
$$

Proof. First we show that T has a fixed point $y_{1} \in K$ with $\left\|y_{1}\right\| \leq a$. In fact, for any $y \in \partial K_{a}$, we have $\|y\|=a$. So $0 \leq y(t) \leq a,-a \leq y^{\prime \prime}(t)<0, t \in[0,1]$. Let $I=\left\{t \in[0,1]: f\left(t, y(t), y^{\prime \prime}(t)\right) \geq 0\right\}$.

$$
\begin{aligned}
\|T y\| & =\max _{t \in[0,1]}\left|(T y)^{\prime \prime}(t)\right| \\
& =\max _{t \in[0,1]} \max \left\{\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) f\left(s, y(s), y^{\prime \prime}(s)\right) d s\right), 0\right\} \\
& \leq \max _{t \in[0,1]} \Phi_{q}\left(\int_{I} G(t, s) a(s) f\left(s, y(s), y^{\prime \prime}(s)\right) d s\right) \\
& \leq \Phi_{q}\left(\max _{t \in[0,1], 0 \leq u \leq a,-a \leq v \leq 0} f(t, u, v) \max _{t \in[0,1]}\left\{\int_{I} G(t, s) a(s) d s\right\}\right) \\
& <\frac{a}{Q} \max _{t \in[0,1]}\left\{\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) d s\right)\right\} \\
& =a
\end{aligned}
$$

The existence of y_{1} is proved by using condition (C1) of Theorem 1.1 and $0 \leq y_{1} \leq a$, $-a \leq y_{1}^{\prime \prime} \leq 0$. Obviously, y_{1} is a solution of $(1.1)-(1.2)$. Suppose this is not true, then there is $t_{0} \in(0,1)$ such that $y_{1}\left(t_{0}\right) \neq\left(A y_{1}\right)\left(t_{0}\right)$. It must be $\left(A y_{1}\right)\left(t_{0}\right)<0=$ $y_{1}\left(t_{0}\right)$. Let $\left(t_{1}, t_{2}\right)$ be the maximum interval such that $\left(A y_{1}\right)\left(t_{0}\right)<0$ for $t \in\left(t_{1}, t_{2}\right)$. We claim $\left[t_{1}, t_{2}\right] \neq[0,1]$ because of $a(t) f(t, 0,0) \not \equiv 0$ for $t \in[0,1]$.

If $t_{2}<1$. $y_{1}(t)=0, t \in\left[t_{1}, t_{2}\right] .\left(A y_{1}\right)\left(t_{2}\right)=0,\left(A y_{1}\right)(t)<0$, for $t \in\left(t_{1}, t_{2}\right)$. Then $\left(A y_{1}\right)^{\prime}\left(t_{2}\right) \geq 0$. For $t \in\left(t_{1}, t_{2}\right)$, we have

$$
\begin{aligned}
\left(A y_{1}\right)^{\prime \prime}(t) & =-\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) f\left(s, y(s), y^{\prime \prime}(s)\right) d s\right) \\
& =-\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) f(s, 0,0) d s\right)<0
\end{aligned}
$$

So $\left(A y_{1}\right)^{\prime}(t)$ is decreasing for $t \in\left(t_{1}, t_{2}\right)$. Noticing $\left(A y_{1}\right)^{\prime}\left(t_{2}\right) \geq 0$, so $t_{1}=0$ and $\left(A y_{1}\right)^{\prime}(t)>0, t \in\left[0, t_{2}\right),\left(A y_{1}\right)(0)<0$, which contradicts (1.2). If $t_{1}>0$. So $y_{1}(t)=0,\left(A y_{1}\right)\left(t_{1}\right)=0,\left(A y_{1}\right)(t)<0$ for $t \in\left(t_{1}, t_{2}\right) .\left(A y_{1}\right)^{\prime}\left(t_{1}\right) \leq 0$.

$$
\begin{aligned}
\left(A y_{1}\right)^{\prime \prime}(t) & =-\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) f\left(s, y(s), y^{\prime \prime}(s)\right) d s\right) \\
& =-\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) f(s, 0,0) d s\right) \leq 0
\end{aligned}
$$

So $\left(A y_{1}\right)^{\prime}(t)$ is decreasing for $t \in\left(t_{1}, t_{2}\right)$. So $t_{2}=1,\left(A y_{1}\right)(1)<0$, which contradicts boundary condition (1.2). So y_{1} is a solution of (1.1)-1.2). We now show that (C2) of Theorem 1.1 is satisfied. For $x \in \partial K_{a}^{\prime}$, i.e., $\|x\|=a$, then $0<x(t)<a$, $-a<x^{\prime \prime}(t)<0$ for $t \in[0,1]$.

$$
\begin{aligned}
\left\|T^{\prime} y\right\|= & \max _{t \in[0,1]}\left|\left(T^{\prime} y\right)^{\prime \prime}(t)\right| \\
= & \max _{t \in[0,1]}\left\{\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) f^{+}\left(s, y(s), y^{\prime \prime}(s)\right) d s\right)\right\} \\
\leq & \Phi_{q}\left[\max \left\{f^{+}(t, u, v): t \in[0,1], 0 \leq u \leq a,-a \leq v \leq 0\right\}\right. \\
& \left.\times \max _{t \in[0,1]}\left\{\Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) d s\right)\right\}\right] \\
< & \frac{a}{Q} \int_{0}^{1} G(t, s) a(s) d s \\
= & a
\end{aligned}
$$

For $y \in \partial K^{\prime}\left(\delta^{q-1} b\right)$, we have $\alpha(y)=\delta^{q-1} b$. So $\delta^{q-1} b \leq\|y\| \leq b$, i.e., $-b \leq y^{\prime \prime}(t) \leq$ $-\delta^{q-1} b$ for $t \in[\delta, 1-\delta]$, at the same time $\|y\|_{\infty} \leq b$. Then

$$
\begin{aligned}
\alpha\left(T^{\prime} y\right)= & -\min _{t \in[\delta, 1-\delta]}\left(T^{\prime} y\right)^{\prime \prime}(t) \\
= & \min _{t \in[\delta, 1-\delta]} \Phi_{q}\left(\int_{0}^{1} G(t, s) a(s) f^{+}\left(s, y(s), y^{\prime \prime}(s)\right) d s\right) \\
\geq & \Phi_{q}\left(\min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} G(t, s) a(s) f^{+}\left(s, y(s), y^{\prime \prime}(s)\right) d s\right) \\
> & \Phi_{q}\left(\min \left\{f(t, u, v): t \in[0,1], u \in[0, b], v \in\left[-b,-\delta^{q-1} b\right]\right\}\right. \\
& \left.\times \min _{t \in[\delta, 1-\delta]} \int_{\delta}^{1-\delta} G(t, s) a(s) d s\right) \\
= & b>\delta^{q-1} b .
\end{aligned}
$$

Finally we show that $\left(C_{3}\right)$ of Theorem 1.1 is also satisfied. Let $x \in K_{a}^{\prime}\left(\delta^{q-1} b\right) \cap\{u$: $\left.T^{\prime} u=u\right\}$, then $\|x\|<\frac{1}{\delta^{q-1}} \alpha(x)$. From $\alpha(x) \leq\|x\| \leq \frac{1}{\delta^{q-1}} \alpha(x)$, we have

$$
\min _{t \in[\delta, 1-\delta]}\left\{-x^{\prime \prime}(t)\right\}=\alpha(x) \geq \delta^{q-1}\|x\|>\delta^{q-1} a>d
$$

So $-x^{\prime \prime} \in[d, b]$. From (H3), we have $f(t, u, v)=f^{+}(t, u, v)$, which implies $T y=T^{\prime} y$. Therefore, there exist two positive solutions y_{1}, y_{2} satisfying 2.2 .

Remark. When $p=2, a(t) \equiv 1, f(t, u, v)>0, \delta=1 / 4$, Theorem 2.4 reduces to 9 , Theorem 3.1]. But our result shows at least two positive solutions, whereas there is at least one positive solution in B. Liu [9, Theorem 3.1].

Theorem 2.5. Suppose (H1),(H2) hold. Also assume that
(H6) $\delta_{i} \in(0,1 / 2), i=1,2, \ldots, n, 0<\int_{\delta_{i}}^{1-\delta_{i}} a(s) d s<\infty$
(H7) There exists constants $a_{i}, b_{i}, d_{i}>0, i=1,2, \ldots, n$, where $0<d_{i}<$ $\delta^{q-1} a_{i}<a_{i}<\delta_{i}^{q-1} b_{i}<b_{i}<d_{i+1}$ such that for $i=1,2, \ldots, n$, we have

$$
\begin{gathered}
f(t, u, v) \geq 0 \quad \text { for }(t, u, v) \in[0,1] \times\left[0, b_{i}\right] \times\left[-b_{i},-d_{i}\right], \\
f(t, u, v)<\Phi_{q}\left(\frac{a_{i}}{Q}\right) \quad \text { for }(t, u, v) \in[0,1] \times\left[0, a_{i}\right] \times\left[-a_{i}, 0\right], \\
f(t, u, v) \geq \Phi_{q}\left(\frac{b_{i}}{m_{i}}\right) \quad \text { for }(t, u, v) \in[0,1] \times\left[0, b_{i}\right] \times\left[-b_{i},-\delta_{i}^{q-1} b_{i}\right] .
\end{gathered}
$$

Then (1.1)-1.2 has at least $n+1$ positive solutions $y_{1}, y_{2}, \ldots, y_{n+1}$ satisfying

$$
\begin{gathered}
0 \leq\left\|y_{1}\right\|<a_{1}<\left\|y_{2}\right\| \leq b_{1}, \quad \alpha\left(y_{2}\right)<\delta_{1}^{q-1} b_{1}, \quad 0<\left\|y_{1}\right\|_{\infty}<a_{1}, \\
0<\left\|y_{2}\right\|_{\infty}<b_{1}, \quad a_{2}<\left\|y_{3}\right\|, \quad \alpha\left(y_{3}\right)<\delta_{2}^{q-1} b_{2}, \quad 0<\left\|y_{3}\right\|_{\infty}<b_{2}, \\
\ldots \\
a_{n}<\left\|y_{n+1}\right\|, \quad \alpha\left(y_{n+1}\right)<\delta_{n}^{q-1} b_{n}, \quad 0<\left\|y_{n+1}\right\|_{\infty}<b_{n} .
\end{gathered}
$$

Theorem 2.6. Suppose (H1), (H2), (H6) hold. Also assume
(H8) There exists constants $a_{i}, b_{i}>0, d, i=1,2, \ldots, n$, where $0<d<\delta^{q-1} a_{i}<$ $a_{i}<\delta_{i}^{q-1} b_{i}<b_{i}$, such that for $i=1,2, \ldots, n$, we have:

$$
\begin{gathered}
f(t, u, v) \geq 0 \quad \text { for }(t, u, v) \in[0,1] \times\left[0, b_{n}\right] \times\left[-b_{n},-d\right], \\
f(t, u, v)<\frac{a_{i}}{Q} \quad \text { for }(t, u, v) \in[0,1] \times\left[0, a_{i}\right] \times\left[-a_{i}, 0\right], \\
f(t, u, v) \geq \frac{b_{i}}{m_{i}} \quad \text { for }(t, u, v) \in[0,1] \times\left[0, b_{i}\right] \times\left[-b_{i},-\delta_{i}^{q-1} b_{i}\right],
\end{gathered}
$$

Then (1.1)-(1.2) has at least $2 n$ positive solutions $y_{1}, y_{2}, \ldots, y_{2 n}$ satisfying

$$
\begin{gathered}
0 \leq\left\|y_{1}\right\|<a_{1}<\left\|y_{2}\right\|, \quad \alpha\left(y_{2}\right)<\delta_{1}^{q-1} b_{1}<\alpha\left(y_{3}\right), \\
0<\left\|y_{1}\right\|_{\infty}<a_{1}, \quad 0<\left\|y_{2}\right\|_{\infty}<b_{1} \\
\left\|y_{3}\right\|<a_{2}<\left\|y_{4}\right\|, \quad \alpha\left(y_{4}\right)<\delta_{2}^{q-1} b_{2}<\alpha\left(y_{5}\right), \quad\left\|y_{3}\right\|_{\infty}<a_{2}, \quad\left\|y_{4}\right\|_{\infty}<b_{2}, \ldots \\
\left\|y_{2 n-1}\right\|<a_{n}<\left\|y_{2 n}\right\|, \quad \alpha\left(y_{2 n}\right)<\delta_{n}^{q-1} b_{n}, \quad\left\|y_{2 n-1}\right\|_{\infty}<a_{n}, \quad\left\|y_{2 n}\right\|_{\infty}<b_{n} .
\end{gathered}
$$

Example. Consider the boundary-value problem

$$
\begin{gather*}
\left(\Phi_{3} y^{\prime \prime}(t)\right)^{\prime \prime}-\left[\frac{y+\pi / 6}{6}\left(\sqrt{3} \cos \left(y^{\prime \prime}+\frac{5}{12} \pi\right)\right)^{19}+\frac{t}{10}\right]=0, \quad 0<t<1 \tag{2.5}\\
y(0)=y(1)=0=y^{\prime \prime}(0)=y^{\prime \prime}(1)
\end{gather*}
$$

where $a(t)=t, f(t, u, v)=\frac{u+\pi / 6}{6}\left(\sqrt{3} \cos \left(v+\frac{5}{12} \pi\right)\right)^{19}+\frac{t}{10}, p=3, q=3 / 2$. Clearly f is allowed to change sign on $[0,1] \times[0, \infty) \times(-\infty, 0)$.

$$
Q=\max _{t \in[0,1]} \Phi_{3 / 2}\left(\int_{0}^{1} G(t, s) a(s) d s\right)=\max _{t \in[0,1]}\left(\frac{t}{6}\left(-t^{2}+1\right)\right)^{1 / 2}=\left(\frac{\sqrt{3}}{27}\right)^{1 / 2}=3^{-\frac{5}{4}}
$$

Note that

$$
\begin{aligned}
\int_{\delta}^{1-\delta} G(t, s) a(s) d s & =(1-t) \int_{\delta}^{t} s^{2} d s+t \int_{t}^{1-\delta}(1-s) s d s \\
& =\frac{1}{6}\left[-t^{3}+t\left(4 \delta^{3}-3 \delta^{2}+1\right)-2 \delta^{3}\right]
\end{aligned}
$$

Let $\delta=1 / 4, d=\pi / 36, a=\pi / 12, b=\pi / 2$. It is clear that $d<\delta^{1 / 2} a<a<\delta^{1 / 2} b$. Then

$$
m=\min _{t \in[\delta, 1-\delta]} \Phi_{3 / 2}\left(\int_{\delta}^{1-\delta} G(t, s) a(s) d s\right)>\sqrt{\frac{1}{24}}
$$

For $(t, u, v) \in[0,1] \times[0, \pi / 2] \times[-\pi / 2,-\pi / 36]$, we have $f(t, u, v)=\frac{u+\pi / 6}{6}(\sqrt{3} \cos (v+$ $\left.\left.\frac{5}{12} \pi\right)\right)^{19}+\frac{t}{10}>0$. So (H3) holds. For $(t, u, v) \in[0,1] \times[0, \pi / 12] \times[-\pi / 12,0]$, $f(t, u, v)=\frac{u+\pi / 6}{6}\left(\sqrt{3} \cos \left(v+\frac{5}{12} \pi\right)\right)^{19}+\frac{t}{10}<\frac{\pi}{24} \times\left(\frac{\sqrt{3}}{2}\right)^{19}+\frac{1}{10}<0.6<\left(\frac{\pi}{12} \times 3^{5 / 4}\right)^{2}=$ $\Phi_{3}(a / Q)$. So (H4) holds. For $(t, u, v) \in[0,1] \times[0, \pi / 2] \times[-\pi / 2,-\pi / 4], f(t, u, v)=$ $\frac{u+\pi / 6}{6}\left(\sqrt{3} \cos \left(v+\frac{5}{12} \pi\right)\right)^{19}+\frac{t}{10}>(\pi \sqrt{6})^{2}>\Phi_{3}(b / m)$. So (H5) holds. Thus by Theorem 2.4. this boundary-value problem has at least two positive solutions y_{1}, y_{2} such that

$$
0<\left\|y_{1}\right\|<\frac{\pi}{12}<\left\|y_{2}\right\|, \quad \alpha\left(y_{1}\right)<\frac{\pi}{16}, \quad\left\|y_{1}\right\|_{\infty}<\frac{\pi}{12}, \quad\left\|y_{2}\right\|_{\infty}<\frac{\pi}{2}
$$

[1] A. R. Aftabizadeh; Existence and uniqueness theorems for fourth-order boundary problems, J. Math. Anal. Appl. 116(1986), 415-426.
[2] Yisong Yang; Fourth-order two-point boundary value problem, Proc. Amer. Math. Soc. 104(1988), 175-180.
[3] M. A. Del Pino, R. F. Manasevich; Existence for fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. Amer. Math. Soc.112(1991), 81-86.
[4] C. P. Gupta; Existence and uniqueness theorem for a bending of an elastic beam equation, Appl. Anal. 26(1988), 289-304.
[5] C. P. Gupta; Existence and uniqueness results for some fourth order fully qualilinear boundary value problem, Appl. Anal. 36(1990), 169-175.
[6] Ruyun Ma, Haiyan Wang; On the existence of positive solutions of fourth order ordinary differential equations, Appl. Anal. 59(1995), 225-231.
[7] Ruyun Ma; Positive solutions of fourth order two point boundary value problems, Ann. Differen. Equations 15(1999), 305-313.
[8] Ruyun Ma; Existence of positive solutions for a nonlinear fourth-order boundary value problem, Ann. Polonici Mathematici 81.1(2003).
[9] B. Liu; Positive solutions of fourth-order two point boundary value problems, Appl. Math. Comput. 148(2004), 407-420.
[10] Guo Yanping, Ge Weigao, Gao Ying; Twin positive solutions for higher order m-point boundary value problems with sign changing nonlinearities, Appl. Anal. Comput. 146(2003), 299311.
[11] B. G. Zhang and L.J.Kong; Positive solutions of fourth-order singular boundary value problems, Nonlinear Stud. 7(2000), 70-77.

Yu Tian
Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, China

E-mail address: tianyu2992@163.com
Weigao Ge
Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, China

E-mail address: gew@bit.edu.cn

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B15.
 Key words and phrases. Fourth-order two-point boundary-value problem; fixed point theorem; double cones; positive solution.
 (c)2004 Texas State University - San Marcos.

 Submitted August 28, 2004. Published December 3, 2004.
 Supported by grant 10371006 from the National Natural Sciences Foundation of China.

