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RESOLVENT ESTIMATES FOR SCALAR FIELDS WITH
ELECTROMAGNETIC PERTURBATION

MIRKO TARULLI

Abstract. In this note we prove some estimates for the resolvent of the op-

erator −∆ perturbed by the differential operator

V (x, D) = ia(x) · ∇+ V (x) in R3 .

This differential operator is of short range type and a compact perturbation
of the Laplacian on R3. Also we find estimates in the space-time norm for the
solution of the wave equation with such perturbation.

1. Introduction

In this work, we study perturbations for the classical wave equation, the classical
Schrödinger equation, and the classical Dirac equation. More precisely we consider
the following three Cauchy problems:

�u + ia(x) · ∇u + V (x)u = F,

u(0) = 0, ∂tu(0) = 0,
(1.1)

i∂tu−∆u + ia(x) · ∇u + V (x)u = F, t ∈ R, x ∈ R3,

u(0, x) = 0,
(1.2)

and
iγµ∂µu + ia(x) · ∇u + V (x)u = F, t ∈ R, x ∈ R3,

u(0, x) = 0 .
(1.3)

The solution of problem (1.3) is usually called spinor. Here the Dirac matrices γµ

are

γ0 =
(

1 0
0 −1

)
, γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3.

and the Pauli matrices σk are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

For the 1-form a =
∑3

j=1 ajdxj for the magnetic potential, by the Poincaré lemma,
we know that if a′, a are two magnetic potentials with da = da′, then a = a′ + dφ,
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where φ ∈ C∞. The operators (−∆+ ia′ ·∇+V ) and (−∆+ ia ·∇+ Ṽ ) are related
by

(−∆ + ia′ · ∇+ V ) = e−iφ(−∆ + ia · ∇+ Ṽ )eiφ, (1.4)

where V = V1 − i · ∇a′ + (a′)2 and Ṽ = Ṽ1 − i · ∇a − ∆φ + a2 + φ2. So we will
assume that a = (a1, a2, a3) are measurable functions, such that ∇aj exists (in
distributional sense) and it is measurable, defined as aj = a′j + ∂jφ for j = 1, 2, 3,
where the functions a′j and ∂jφ satisfy the inequalities

|a′j(x)|+ ||x|∇a′j(x)| ≤ C0δ

|x|Wε0(x)
, a.e. x ∈ R3, δ > 0,

|∂jφ(x)|+ ||x|∇∂jφ(x)| ≤ C0

|x|Wε0(x)
, a.e. x ∈ R3.

(1.5)

The potential V (resp. V1, Ṽ1) is a non-negative measurable function satisfying the
inequality

|V (x)| ≤ C1

|x|2 Wε0(x)
, a.e. x ∈ R3, (1.6)

where ε0, C0 > 0, C1 > 0 are constants, and

Wε(|x|) := |x|ε + |x|−ε, ∀x ∈ R3. (1.7)

We see that the potential aj(x) is bounded from above by Cδ|x|−1−ε0 if |x| ≥ 1,
while aj(x) ≤ Cδ|x|−1+ε0 if |x| ≤ 1, and the potential V (x) is bounded from above
by Cδ|x|−2−ε0 if |x| ≥ 1, while V (x) ≤ C

|x|−2+ε0 if |x| ≤ 1. The last estimate shows
that we admit singularities of aj and V , such that aj is in L2

loc(R3), while V is not
in L2

loc(R3). In the papers [1], [2] Agmon showed how scattering theory could be
developed for general elliptic operator with perturbations O(|x|−1−ε) at infinity and
Agmon-Hörmander generalized the techniques required to study the perturbation
of simply characteristic operators (see [21]). In [14] one can find a perturbation
theory for potentials decaying as |x|−2−ε at infinity.

In [35] the free wave equation and Schrödinger equation (i.e. a = 0, V = 0)
are studied and for both the following estimate are obtained (in [35] some sharper
estimates are proved):

‖|x|− 1
2 W−1

δ ∇u(x, t)‖L2
t L2

x
≤ C‖|x| 12 WδF (x, t)‖L2

t L2
x
. (1.8)

Similar estimate leads for other dispersive equations of mathematical physics. The
equation (1.8) is known as smoothing estimate for the Schrödinger equation.

In this work we shall establish the same estimate (1.8) for potential perturbation
of the wave and the Schrödinger equations.

Theorem 1.1. If u(x, t) is the solution of (1.1) with (−∆ + ia · ∇+ V ) satisfying
(1.5) and (1.6) then, for any δ, δ′ > 0:

‖|x|− 1
2 W−1

δ ∇u(x, t)‖L2
t L2

x
≤ C‖|x| 12 WδF (x, t)‖L2

t L2
x
, (1.9)

‖|x|− 1
2 W−1

δ u(x, t)‖L2
t L2

x
≤ C‖F (x, t)‖L2

t L1
x
, (1.10)

‖|x| 12 WδV (x, D)u(x, t)‖L2
t L2

x
≤ C‖|x| 12 WδF (x, t)‖L2

t L2
x
. (1.11)

For (1.2) we have the following statement
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Theorem 1.2. If u(x, t) is the solution of (1.2) and (1.3) with (−∆ + ia · ∇+ V )
satisfying (1.5) and (1.6) then, for any δ, δ′ > 0:

‖|x|− 1
2 W−1

δ ∇u(x, t)‖L2
t L2

x
≤ C‖|x| 12 WδF (x, t)‖L2

t L2
x
, (1.12)

‖|x|− 1
2 W−1

δ u(x, t)‖L2
t L2

x
≤ C‖F (x, t)‖L2

t L1
x
, (1.13)

‖|x| 12 WδV (x, D)u(x, t)‖L2
t L2

x
≤ C‖|x| 12 WδF (x, t)‖L2

t L2
x
. (1.14)

For the corresponding homogeneous problem

i∂tu−∆u + ia(x) · ∇u + V (x)u = 0, t ∈ R, x ∈ R3, u(0, x) = f, (1.15)

we have the following result.

Theorem 1.3. If u(x, t) is the solution of (1.15) then, for any δ, δ′ > 0:

‖|x|− 1
2 W−1

δ ∇u(x, t)‖L2
t L2

x
≤ C‖f‖

Ḣ
1/2
V

, (1.16)

where Ḣs
V (R3) is the perturbed homogeneous Sobolev space.

Recall that Ḣs
V (R3) is defined, for any p, q ≥ 1 and for any s ∈ R, as the

completion of C∞
0 (R3) with respect to the norm:

‖f‖2
Ḣs

V

:=
∑
j∈Z

22js‖ϕj(
√
−∆V )f‖2L2 ,∀f ∈ C∞

0 (R3), (1.17)

where −∆V is the operator

−∆V := −∆ + V (x, D), (1.18)

with

V (x,D) = ia(x) · ∇+ V (x) = i
3∑

j=1

aj(x)∂ju + V (x) (1.19)

and
∑

j∈Z ϕj(λ) = 1, with ϕj(λ) = ϕ( λ
2j ), ϕ ∈ C∞

0 (R), supp ϕ ⊂ [ 12 , 2].

Remark 1.4. We can use the perturbed homogeneous Sobolev space in (1.17)
because, the assumptions (1.5) and (1.6) imply that σsing(−∆ + V (x,D)) = ∅ so
the wave operators exist and are complete [24, 25, 31].

The key point in this work is the use of appropriate estimates of the resolvent
RV (λ2 ± i0) defined as follows:

RV (λ2 ± i0)f = lim
ε→0+

RV (λ2 ± iε)f, (1.20)

where
RV (λ2 ± iε) = [(λ2 ± iε) + ∆V )]−1, (1.21)

with the notation D = i−1∇. The operator in (1.18) has to be understood in the
sense of the classical Friedrich’s extension defined by the quadratic form

(−∆V f, f) =
∫

R3
|∇f(x)|2 dx +

∫
R3

V (x) |f(x)|2 dx

+
3∑

j=1

∫
R3

iaj(x)f(x)∂jf(x) dx, f ∈ C∞
0 (R3),

and the limit in (1.20) is taken in a suitable L2 weighted sense.
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More precisely, given any real a and δ > 0, we define the spaces L2
a,δ as the

completion of C∞
0 (R3) respect to the following norms:

‖f‖2L2
a,δ

:=
∫

R3
|f |2|x|2aW 2

δ (|x|)dx, if a > 0

and

‖f‖2L2
a,δ

:=
∫

R3
|f |2|x|2aW−2

δ (|x|)dx, if a < 0,

where the weights Wδ(|x|) are defined in (1.7).
The existence of the limit in (1.20) (known as limiting absorption principle [1,

4, 21, 25] can be established in the uniform operator norm

B(L2
1/2,δ, L

2
−1/2,δ) ∀δ > 0.

To verify the limiting absorption principle we use the following resolvent identities:

RV (λ2 ± iε) = R0(λ2 ± iε) + iR0(λ2 ± iε)a · ∇RV (λ2 ± iε)

+ R0(λ2 ± iε)V RV (λ2 ± iε),

RV (λ2 ± iε) = R0(λ2 ± iε) + iRV (λ2 ± iε)a · ∇R0(λ2 ± iε)

+ RV (λ2 ± iε)V R0(λ2 ± iε).

The previous identities combined with the classical limiting absorption principle for
the free resolvent imply

RV (λ2 ± i0) = R0(λ2 ± i0) + iR0(λ2 ± i0)a · ∇RV (λ2 ± i0)

+ R0(λ2 ± i0)V RV (λ2 ± i0),
(1.22)

and
RV (λ2 ± i0) = R0(λ2 ± i0) + iRV (λ2 ± i0)a · ∇R0(λ2 ± i0)

+ RV (λ2 ± i0)V R0(λ2 ± i0).
(1.23)

Several works have treated the potential type perturbation of the free wave
equations. The case of purely potential perturbation V (x) is considered in [6]
under the following decay assumption:

|V (x)| ≤ C

|x|4+δ0
, |x| ≥ 1,

for some C, δ0 > 0. In [10] the previous assumption is weaken and the decay
required at infinity is the following one: |V (x)| ≤ C

|x|3+δ0
. The family of radial

potentials V (x) = c
|x|2 , where c ∈ R+, are treated in the papers [27] and [9]. More

precisely, the first paper treats the case of radial initial data, while in the second
work general initial data are considered. In these papers dispersive estimates for
the corresponding perturbed wave equations are established. In [14] the assumption
(1.6) means that at infinity the potential is bounded from above by C|x|−2−ε0 ,
while its behavior near x = 0 is dominated by constant times |x|−2+ε0 . In this
paper Strichartz type estimates for the corresponding perturbed wave equation are
established. In this work we introduce a ”short range” perturbation with symbol of
order one and (1.5) means that at infinity our potential is bounded from above by
C|x|−1−ε0 , while its behavior near x = 0 is dominated by constant times |x|−1+ε0 .
It is clear that the assumption (1.5), (1.6) are quite general and allow one to consider
non radially symmetric potentials.
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The work is organized as follows. In the section 2 we prove some estimates for
the operators R0(λ2 ± i0). In section 3 we give some estimates for the perturbed
resolvent RV (λ2 ± i0). In section 4 we prove theorems 1.1, 1.2, and 1.3.

2. Free Resolvent Eestimates

This section is devoted to prove of some estimates satisfied by the free resolvent
operator R0(λ2 ± i0).

Lemma 2.1. The family of operators R0(λ2± i0) satisfies the following estimates:

(i) For any δ, δ′ > 0 there exists a real constant C = C(δ, δ′) > 0 such that for
any λ > 0:

‖|x|− 1
2 W−1

δ R0(λ2 ± i0)f‖L2 ≤ C

λ
‖|x| 12 Wδ′f‖L2 (2.1)

(ii) For any δ, δ′, ε > 0 that satisfy 0 < ε < 2δ′, there exists C = C(δ, δ′, ε) > 0
such that for any λ > 0:

‖|x|− 1
2 W−1

δ R0(λ2 ± i0)f‖L2 ≤ C‖|x|
3+ε
2 Wδ′f‖L2 (2.2)

(iii) For any δ, δ′ > 0 there exists a real constant C = C(δ, δ′) > 0 such that for
any λ > 0:

‖|x|− 1
2 W−1

δ R0(λ2 ± i0)f‖L2 ≤ C

λ
δ′

2+δ′
‖|x| 32 Wδ′f‖L2 (2.3)

(iv) For any δ, δ′ > 0 and for s ∈ [1/2, 3/2], there exists a real constant C =
C(δ, δ′) > 0 such that for any λ ∈ R:

‖|x|−sW−1
δ R0(λ2 ± i0)f‖L2 ≤ C‖|x|2−sWδ′f‖L2 (2.4)

(v) For any δ, δ′ > 0 there exists a real constant C = C(δ, δ′) > 0 such that for
any λ > 0:

‖|x|− 3
2 W−1

δ R0(λ2 ± i0)f‖L2 ≤ C

λ
δ′

2+δ′
‖|x| 12 Wδ′f‖L2 (2.5)

(vi) For any δ > 0 there exists a real constant C = C(δ) > 0 such that for any
λ ≥ 0:

‖|x|− 1
2 W−1

δ R0(λ2 ± i0)f‖L2 ≤ C‖f‖L1 (2.6)

(vii) For any δ, δ′ > 0 and for s ∈ [1/2, 3/2], there exists a real constant C =
C(δ, δ′) > 0 such that for any λ > 0:

‖|x|−sW−1
δ ∇R0(λ2 ± i0)f‖L2 ≤ C ||x|sWδf‖L2 . (2.7)

Proof. In the sequel we will use the following representation formula for the operator
R0(λ2 ± i0):

R0(λ2 ± i0)f(x) =
1
4π

∫
e±iλ|x−y|

|x− y|
f(y)dy. (2.8)

The proof of (2.1) can be found in [1] and [5]. The proof of (2.2), (2.3), (2.4), (2.5),
and (2.6) can be found in [14]. The proof of (2.7) can be found in [31, 37, 21],
where slightly different spaces have been used. �
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Lemma 2.2. Assume that the perturbation V (x,D) satisfies Assumption (1.5),
(1.6). Then the following estimates are satisfied: For any δ, δ′ > 0 there exists a
real constant C := C(δ, δ′) > 0 such that for any λ ≥ 0,

‖|x|− 1
2 W−1

δ R0(λ2 ± i0)V (x, D)f‖L2 ≤ C‖|x|− 1
2 W−1

δ′ f‖L2 , (2.9)

‖|x| 12 WδV (x, D)R0(λ2 ± i0)f‖L2 ≤ C‖|x| 12 Wδ′f‖L2 . (2.10)

Proof. We split the proof of (2.9) into two step.
Step 1. Estimate of

iR0(λ2 ± i0)a · ∇f. (2.11)
We have the formula

iR0(λ2 ± i0)a · ∇f = iR0(λ2 ± i0)∇(a · f)− iR0(λ2 ± i0)(∇a) · f (2.12)

From the functional calculus we have [∇, R0(λ2 ± i0)] = 0, so we rewrite (2.12) as

iR0(λ2 ± i0)a · ∇f := i∇R0(λ2 ± i0)(a · f)− iR0(λ2 ± i0)(∇a) · f. (2.13)

We have

‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)a · ∇f‖L2

≤ C‖|x|− 1
2 W−1

δ i∇R0(λ2 ± i0)af‖L2 + C‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)(∇a)f‖L2 .

(2.14)
We can estimate now the first term in the right-hand side of (2.14). Using (2.7),
we obtain

‖|x|− 1
2 W−1

δ i∇R0(λ2 ± i0)af‖L2 ≤ C‖||x|− 1
2 W−1

δ′′ af‖L2 . (2.15)

By assumption (1.5) and choosing 0 < δ′′ < ε0, δa ≤ ε0 − δ′′ we have

‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)a · ∇f‖L2 ≤ C‖|x| 12 W−1
δ′′ af‖L2

≤ C‖|x|− 1
2 W−1

ε0−δ′′f‖L2

≤ C‖|x|− 1
2 W−1

δa
f‖L2 .

(2.16)

For the second term in the right-hand side of (2.14), we use the estimates (2.4) and
obtain

‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)(∇a)f‖L2 ≤ C‖|x| 32 Wδ′′∇af‖L2 . (2.17)
By (1.5), choosing 0 < δ′′ < ε0, δb ≤ ε0 − δ′′, we have

‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)a · ∇f‖L2 ≤ C‖|x| 32 Wδ′′(∇a)f‖L2

≤ C‖|x|− 1
2 Wε0−δ′′f‖L2

≤ C‖|x|− 1
2 W−1

δb
f‖L2 .

(2.18)

From the fact that δb < δa we put δ′ ≤ δb. Then (2.14) becomes

‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)a · ∇f‖L2 ≤ C‖|x|− 1
2 W−1

δ′ f‖L2 . (2.19)

Step 2. Estimate of
R0(λ2 ± i0)V f. (2.20)

From assumption (1.5), we see that |∇aj(x)| ≤ C0δ
|x|2 Wε0 (x) . Then we proceed as in

Step 1 to obtain

‖|x|− 1
2 W−1

δ R0(λ2 ± i0)V f‖L2 ≤ C‖|x|− 1
2 W−1

δ′ f‖L2 . (2.21)



EJDE-2004/146 RESOLVENT ESTIMATES 7

Taking into account estimates (2.19) and (2.21), we arrive at

‖|x|− 1
2 W−1

δ R0(λ2 ± i0)V (x, D)f‖L2

≤ ‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)a · ∇f‖L2 + ‖|x|− 1
2 W−1

δ R0(λ2 ± i0)V f‖L2

≤ C‖|x|− 1
2 W−1

δ′ f‖L2 .

Thus (2.9) is established.
The Proof of (2.10) is the dual to the estimate (2.9) and it is omitted. �

3. Perturbed Resolvent Estimates

In this section we prove some estimates for the perturbed resolvent RV (λ2± i0).

Theorem 3.1. Assume that the perturbation V (x, D) satisfies the assumptions
(1.5) and (1.6). Then for any 0 < δ < ε0/2 there exists a family of operators
A±

λ ∈ B(L2
− 1

2 ,δ
, L2

− 1
2 ,δ

) such that,

A±
λ ◦ [I −R0(λ2 ± i0)V (x, D)] = I = [I −R0(λ2 ± i0)V (x, D)] ◦A±

λ .

Moreover, there exists a constant C = C(δ) > 0 such that,

‖A±
λ f‖L2

− 1
2 ,δ

≤ C‖f‖L2
− 1

2 ,δ

, ∀λ ∈ R.

Theorem 3.2. Assume that the perturbation V (x, D) satisfies the assumptions
(1.5) and (1.6). Then for any 0 < δ < ε0/2 there exists a family of operators
B±

λ ∈ B(L2
1
2 ,δ

, L2
1
2 ,δ

) such that,

B±
λ ◦ [I − V (x,D)R0(λ2 ± i0)] = I = [I − V (x,D)R0(λ2 ± i0)] ◦B±

λ .

Moreover, there exists a constant C = C(δ) > 0 such that

‖B±
λ f‖L2

1
2 ,δ

≤ C‖f‖L2
1
2 ,δ

, ∀λ ∈ R.

We have

R0(λ2 ± i0)V (x,D) = iR0(λ2 ± i0)a · ∇+ R0(λ2 ± i0)V. (3.1)

Now we need the following lemmas.

Lemma 3.3. Assume that the potential V satisfies assumptions (1.6). Then

(1) The operators R0(λ2 ± i0)V are compact in the space B(L2
− 1

2 ,δ
, L2

− 1
2 ,δ′

),
provided that δ, δ′ are small. Moreover the following estimate is satisfied:

‖R0(λ2 ± i0)V ‖B(L2
− 1

2 ,δ
,L2

− 1
2 ,δ′

) → 0,

as λ →∞.
(2) The operators V R0(λ2 ± i0) are compact in the space B(L2

1
2 ,δ

, L2
1
2 ,δ′

), pro-
vided that δ, δ′ are small. Moreover the following estimate is satisfied:

‖V R0(λ2 ± i0)‖B(L2
1
2 ,δ

,L2
1
2 ,δ

) → 0,

as λ →∞.
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Proof. The proof of (1) can be found in [14, Theorem III.1 and Lemma III.1]. The
proof of (2) is the dual of (1) where

V R0(λ2 ± i0) = (R0(λ2 ∓ i0)V )∗

and is omitted. �

Lemma 3.4. Assume that the potential ia · ∇ satisfies assumptions (1.5). Then
(1) The operators iR0(λ2± i0)a ·∇ are compact in the space B(L2

− 1
2 ,δ

, L2
− 1

2 ,δ′
),

provided that δ, δ′ are small.
(2) The operators ia · ∇R0(λ2 ± i0) are compact in the space B(L2

1
2 ,δ

, L2
1
2 ,δ′

),
provided that δ, δ′ are small.

Proof. For part (1), we follow the proof in [14]. Let {fn} be a sequence bounded
in L2

− 1
2 ,δ

and let gn := iR0(λ2 ± i0)a · ∇ fn. We split the proof in two cases:
Case 1. Compactness in B2r \B 1

2r
, for 0 < r < ∞. The estimate (2.9) implies that

if δ, δ′ are small, then

iR0(λ2 ± i0)a · ∇ ∈ B(L2
− 1

2 ,δ, L
2
− 1

2 ,δ′). (3.2)

In the proceeding of the proof, we use the representation (2.13) for the operator
(2.11) acting on L2

− 1
2 ,δ

. The estimate (3.2) implies that ‖gn‖L2(B2r\B 1
2r

) ≤ C(r).
Let now

‖∇gn‖L2(B2r\B 1
2r

)

≤ C‖i(∆ + λ2)R0(λ2 ± i0)af‖L2(B2r\B 1
2r

)

+ Cλ2‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)af‖L2(B2r\B 1
2r

)

+ C‖|x|− 1
2 W−1

δ i∇R0(λ2 ± i0)(∇a)f‖L2(B2r\B 1
2r

)

≤ C‖af‖L2(B2r\B 1
2r

) + Cλ2‖|x|− 1
2 W−1

δ iR0(λ2 ± i0)af‖L2(B2r\B 1
2r

)

+ C‖|x|− 3
2 W−1

δ i∇R0(λ2 ± i0)(∇a)f‖L2(B2r\B 1
2r

)

(3.3)

With estimates (2.1), (2.7) and the assumption (1.5), we obtain

‖∇gn‖L2(B2r\B 1
2r

) ≤ C(r, λ)‖|x|− 1
2 W−1

δ fn‖L2(B2r\B 1
2r

)

and from the boundness of {fn}, ‖∇gn‖L2(B2r\B 1
2r

) ≤ C(r, λ). So we have

‖∇gn‖H1(B2r\B 1
2r

) ≤ C(r, λ).

The compactness of the Sobolev embedding due to Rellich-Kondrachov theorem
implies that {gn} is compact L2(Br \B 1

r
) for any 1 < r < ∞.

Case 2. Compactness in (R3 \ Br) ∪ B 1
r
. To study compactness in this space, we

use the inequality∫
(R3\Br)∪B 1

r

g2
n(|x|)W−2

δ (|x|)|x|−1dx

≤
(

sup
{(R3\Br)∪B 1

r
}
W−1

δ (|x|)
) ∫

R3
g2

n(|x|)W−1
δ (|x|)|x|−1dx.

(3.4)
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The definition of the weights Wδ(|x|) guarantees that for δ > 0 there exist real
constants c1(δ), c2(δ) such that c1(δ)Wδ ≤ W 2

δ
2
≤ c2(δ)Wδ. This property combined

with (3.4), where we chose δ′ = δ
2 , implies∫

(R3\Br)∪B 1
r

g2
n(|x|)W−2

δ (|x|)|x|−1dx

≤ C( sup
{(R3\Br)∪B 1

r
}
W−1

δ (|x|))
∫

R3
g2

n(|x|)W−2
δ
2

(|x|)|x|−1dx

≤ C ′( sup
{(R3\Br)∪B 1

r
}
W−1

δ (|x|))‖f |L2
− 1

2 ,δ

.

Moreover (sup{(R3\Br)∪B 1
r
} W−1

δ (|x|)) → 0 if r →∞ and it implies with an easy

diagonal argument the compactness of the sequence {gn} in the space L2
− 1

2 ,δ
.

Proof of (2) This is the dual to part (1) of this theorem. We can also proceed
independently following [1], [21, Chapter XIV, Scattering Theory. lemma 14.5.1]
or [40]. �

Proof of Theorem 3.1. Lemmas 3.3, 3.4 and the choice of δ (small perturbation) in
the coefficients of the perturbing term (1.5) imply that the operators [Id−R0(λ2±
i0)V (x,D)] are injective in B(L2

− 1
2 ,δ

) and are compact perturbation of the invert-
ible operator Id. We can apply the Fredholm Alternative Theorem to obtain the
existence of the operators A±

λ . To prove the uniform bound ‖A±
λ ‖B(L2

− 1
2 ,δ

) ≤ C we

consider two cases.
Case 1: λ large. As a consequence of lemma 3.3, 3.4 there exists λ̄ > 0 such
that if λ > λ̄ then ‖R0(λ2 ± i0)V (x,D)‖B(L2

− 1
2 ,δ

) ≤ 1
2 and this implies that

‖[Id−R0(λ2 ± i0)V (x,D)]‖B(L2
− 1

2 ,δ
) ≥ 1

2 provided that λ > λ̄. This uniform bound

from below for the operators implies an uniform bound from above for their corre-
sponding inverse operators A±

λ .

Case 2: λ small. The boundedness of ‖A±
λ ‖B(L2

− 1
2 ,δ

) for λ < λ̄ is a consequence of

the continuity of the family of operators A±
λ in the space B(L2

− 1
2 ,δ

) with respect to

the parameter λ ∈ [0,∞) and of the compactness of the interval [0, λ̄p]. �

The proof of Theorem 3.2 is analogous to the proof of theorem 3.1; therefore, we
omit it.

Remark 3.5. The notion of resonances of an operator was introduced in quan-
tum mechanics for Schrödinger operator. The resonances of an operator can be
connected with poles of the associated resolvent function taken in some general-
ized sense. The problem of resonances arise in mathematical physics and in other
field such as geometry. In our case this problem arises when we have perturba-
tion of operator acting in some Banach spaces. Several works have treated the
theory of resonances, we refer the reader to [2, 20, 28, 33, 38]. The remark sug-
gest that resonances may exist in the case of electromagnetic perturbation of type
V (x,D) = ia(x) · ∇ + V (x). To assure that resonances cannot exist we impose a
smallness assumption (1.5) on a.
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Theorem 3.6. Assume that the perturbation V (x, D) satisfies (1.5) and (1.6). For
each 0 < δ < ε0/2 we have

(i) There exists a real constant C = C(δ) > 0 such that for any λ ∈ R:

‖|x|− 1
2 W−1

δ RV (λ2 ± i0)f‖L2 ≤ C

λ
‖|x| 12 Wδf‖L2 (3.5)

(ii) For any ε > 0 that satisfy 0 < ε < 2δ, there exists C = C(δ, ε) > 0 such
that for any λ ∈ R:

‖|x|− 1
2 W−1

δ RV (λ2 ± i0)f‖L2 ≤ C‖|x|
3+ε
2 Wδ′f‖L2 (3.6)

(iii) There exists a real constant C = C(δ) > 0 such that for any λ ∈ R:

‖|x|− 1
2 W−1

δ RV (λ2 ± i0)f‖L2 ≤ C

λ
δ′

2+δ′
‖|x| 32 Wδ′‖L2 (3.7)

(iv) For any δ, δ′ > 0 and for s ∈ [1/2, 3/2], there exists a real constant C =
C(δ, δ′) > 0 such that for any λ ∈ R:

‖|x|−sW−1
δ RV (λ2 ± i0)f‖L2 ≤ C‖|x|2−sWδ′f‖L2 (3.8)

(v) There exists a real constant C = C(δ) > 0 such that for any λ ∈ R:

‖|x|− 3
2 W−1

δ′ RV (λ2 ± i0)f‖L2 ≤ C

λ
δ′

2+δ′
‖|x| 12 Wδf‖L2 (3.9)

(vi) For any δ > 0 there exists a real constant C = C(δ) > 0 such that for any
λ ∈ R:

‖|x|− 1
2 W−1

δ RV (λ2 ± i0)f‖L2 ≤ C‖f‖L1 . (3.10)
(vi) For any δ, δ′ > 0 and for s ∈ [1/2, 3/2], there exists a real constant C =

C(δ, δ′) > 0 such that for any λ > 0:

‖|x|−sW−1
δ ∇RV (λ2 ± i0)f‖L2 ≤ C ||x|sWδf‖L2 . (3.11)

Theorem 3.1 implies that the identity (1.22) can be written as:

[I −R0(λ2 ± i0)V (x,D)]RV (λ2 ± i0) = R0(λ2 ± i0),

and the following identity,

RV (λ2 ± i0) = A±
λ R0(λ2 ± i0). (3.12)

Theorem 3.2 implies that the identity (1.23) can be written now as:

RV (λ2 ± i0)[I − V (x,D)R0(λ2 ± i0)] = R0(λ2 ± i0),

and the following identity,

RV (λ2 ± i0) = R0(λ2 ± i0)B±
λ . (3.13)

Proof Theorem 3.6. Estimate (3.5) can be proved combining the identity (3.12)
with the theorem 3.1 and estimate (2.1) in the following way:

‖|x|− 1
2 W−1

δ RV (λ2 ± i0)f‖L2 ≤ ‖|x|− 1
2 W−1

δ A±
λ R0(λ2 ± i0)f‖L2

≤ C‖|x|− 1
2 W−1

δ R0(λ2 ± i0)f‖L2

≤ C‖|x| 12 Wδf‖L2 .

Estimate (3.6) can be proved combining the identity (3.12) with the theorem 3.1 and
estimate (2.2) as before. Estimate (3.7) can be proved combining the identity (3.12)
with the theorem 3.1 and estimate (2.3) as before. Estimate (3.8) can be proved
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combining the identity (3.12) with the theorem 3.1 and estimate (2.4) as before.
Estimate (3.9) can be proved combining the identity (3.12) with the theorem 3.1
and estimate (2.5) as before. Estimate (3.10) can be proved combining the identity
(3.12) with the theorem 3.1 and estimate (2.6) as before. Estimate (3.11) can be
proved combining the identity (3.13) with the theorem 3.2 and estimate (3.11) . �

Theorem 3.7. Assume that the perturbation V (x, D) satisfies (1.5), (1.6). For
each 0 < δ < ε0/2 we have for any λ ∈ R

‖|x| 12 WδV (x,D)RV (λ2 ± i0)f‖L2 ≤ C‖|x| 12 Wδ′f‖L2 . (3.14)

Proof. The resolvent identity implies

V (x,D)RV (λ2±i0) = V (x, D)R0(λ2±i0)+V (x,D)R0(λ2±i0)V (x, D)RV (λ2±i0).

From this we have

[I − V (x,D)R0(λ2 ± i0)]RV (λ2 ± i0) = V (x,D)R0(λ2 ± i0). (3.15)

Following theorem 3.2 part (2), we have

V (x,D)RV (λ2 ± i0) = B±
λ V (x, D)R0(λ2 ± i0) .

Combining this with estimate (2.10) obtain

‖V (x, D)RV (λ2 ± i0)f‖L2
1
2 ,δ

≤ C‖B±
λ V (x, D)R0(λ2 ± i0)f‖L2

1
2 ,δ

≤ C‖V (x,D)R0(λ2 ± i0)f‖L2
1
2 ,δ

≤ C‖f‖L2
1
2 ,δ

.

�

4. Proof of Main Estimates

In this section we prove the main theorems 1.1, 1.2, 1.3. We use the techniques
of [23] and [35].

Proof of Theorem 1.1. Case 1. Wave equation. To prove (1.9), we take Fourier
Transform in time variable in (1.1) to get

(λ2 + ∆V )û(λ, x) = −F̂ (λ, x). (4.1)

Using (1.20) and the limit absorption principle, we get

û(λ, x) = −RV (λ2 ± i0)F̂ (λ, x). (4.2)

and consequently
∇û(λ, x) = −∇RV (λ2 ± i0)F̂ (λ, x). (4.3)

Now we can use (3.5) and obtain

‖|x|− 1
2 W−1

δ ∇û(λ, x)‖2
L2 ≤ C‖|x| 12 WδF̂ (λ, x)‖2L2 . (4.4)

Integrating over λ and using the Plancherel identity in time variable, we have

‖|x|− 1
2 W−1

δ ∇u(x, t)‖L2
t L2

x
≤ C‖|x| 12 WδF (x, t)‖L2

t L2
x
. (4.5)

To prove (1.10), we use, after the Fourier transform, the identity (4.2), the
Theorem 3.1 and the perturbed resolvent estimate (3.10).

To prove (1.11), we apply the Fourier Transform to obtain

V (x,D)û(λ, x) = V (x, D)RV (λ2 ± i0)F̂ (λ, x) . (4.6)
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Then using the estimate (3.14) we have

‖|x| 12 WδV (x,D)û(λ, x)‖L2 ≤ C‖|x| 12 WδF̂ (λ, x)‖L2 . (4.7)

Consequently,

‖|x| 12 WδV (x, D)u(x, t)‖L2
t L2

x
≤ C‖|x| 12 WδF (x, t)‖L2

t L2
x
. (4.8)

Remark 4.1. The constants in (1.9), (1.10), (1.11) are all independent of λ.

Case 2. Dirac equation. The Dirac equation can be treated as the wave equation.
In fact we write the solution of (1.3) as the following integral equation:

u =
∫ t

0

U(t− s)F (u(s), V (x,D))ds, (4.9)

where F (u(s), V (x,D)) = a · ∇u + F (t, x) and U(t) denote the propagator of the
free Dirac equation given by

U(t) = cos(t
√
−∆)− γ0(γj∂j)

sin(t
√
−∆)√

−∆
. (4.10)

A reduction to the wave equation can be done by applying the operator � to the
solution (4.9) and using the relation

∂µ∂µu = 0. (4.11)

So the estimates (1.9), (1.10) and (1.11) remain valid. �

Proof of Theorem 1.2. The proof of non-homogeneous case (1.2) is the analogous
of the perturbed wave equation (1.1). However we have to replace λ2 by λ > 0
in the definitions (1.20), (1.21), (2.8) and in the estimates for free and perturbed
resolvent in the section 2 and 3. �

Proof of Theorem 1.3. For the homogeneous case, the TT ∗ argument [17, 22] com-
bined with the estimates (1.9) imply (1.16). �

Remark 4.2. By the definition of the perturbed Besov space we have Ḣs
V := Ḃs

V,2,2,

for any s ∈ R, so we can replace Ḣ
1/2
V by Ḃ

1/2
V,2,2 in the (1.16).

Remark 4.3. One can also consider the following Cauchy problems for the per-
turbed wave equation and the Dirac equation:

�u + ia(x) · ∇u + V (x)u = 0,

u(0) = f, ∂tu(0) = g .
(4.12)

and
iγµ∂µu + ia(x) · ∇u + V (x)u = 0, t ∈ R, x ∈ R3,

u(0, x) = f,
(4.13)

As in the case of Schödinger equation, the TT ∗ argument combined with the esti-
mates (1.9) applied to the problem (4.12), for any δ, δ′ > 0, yields

‖|x|− 1
2 W−1

δ ∇u(x, t)‖L2
t L2

x
≤ C(‖f‖Ḣ1

V
+ ‖g‖L2).

For problem (4.13), with any δ, δ′ > 0, the following holds:

‖|x|− 1
2 W−1

δ ∇u(x, t)‖L2
t L2

x
≤ C‖f‖Ḣ1

V
,

where, in the previous estimates, we used the L2 − L2 boundness of the operator
∇√
−∆V

given by the following lemma.
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Lemma 4.4. The operator ∇√
−∆V

, where ∇ is the gradient on R3 and −∆V is
defined by the (1.18) satisfies the estimate∥∥ ∇√

−∆V

f
∥∥

L2 ≤ C‖f‖L2 , f ∈ L2. (4.14)

Proof. One can rewrite the left-hand side of (4.14) as( ∇√
−∆V

f,
∇√
−∆V

f
)
. (4.15)

Setting in the (4.15) g = 1√
−∆V

f , we obtain

(∇g,∇g) ≤ C(−∆V f, f)

≤ C1(−∆f, f) + i(a · ∇f, f) +
∫

V |f |2,
(4.16)

where as in the previous estimate we used the smallness assumption (1.5). So (4.14)
is established. �
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Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy

E-mail address: tarulli@mail.dm.unipi.it


	1. Introduction
	2. Free Resolvent Eestimates
	3. Perturbed Resolvent Estimates
	4. Proof of Main Estimates
	References

