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GENERALIZED SCALAR CURVATURE TYPE EQUATION ON
COMPLETE RIEMANNIAN MANIFOLDS

MOHAMMED BENALILI, YOUSSEF MALIKI

Abstract. In this work, we investigate positive solutions for a quasilinear
elliptic equation on complete manifold M . This equation extends to the p-

Laplacian the equation of the prescribed scalar curvature. A minimizing se-

quence is constructed which converges to a non trivial solution belonging to
C1,α(K) for any compact set K ⊂M and some α ∈ (0, 1).

1. Introduction

Let (M, g) be a complete Riemannian manifold of dimension n ≥ 3, with bounded
geometry, R(x) its scalar curvature and p ∈ (1, n). Let Hp

1 (M) be the standard
Sobolev space endowed with the norm

‖u‖Hp
1 (M) = ‖∇u‖Lp(M) + ‖u‖Lp(M).

In this paper, we seek for a positive solution u ∈ Hp
1,loc(M) to the equation

∆pu + a(x)up−1 = f(x)up∗−1. (1.1)

where ∆pu = −div(|∇u|p−2∇u) is the p-Laplacian of u on M and p∗ = pn
n−p .

Our results extend those of Druet [2] obtained in the case of compact manifolds.
On complete Riemannian manifold conditions at infinity on f must be added.

In the case p = 2 and the function a(x) = n−2
n(n−1)R(x), where R(x) is the scalar

curvature of the manifold M , the problem of the existence of a positive solution of
the equation (1.1) is originated from the study of pointwise conformal deformation
of Riemannian metric with prescribed scalar curvature. If in case p = 2, u is
a positive solution of (1.1) on (M, g), then the scalar curvature of the pointwise
conformal metric g′ = u

4
n−2 g is 4(n−1)

n−2 f (cf. [2]). The equation (1.1) is referred as
the generalized scalar curvature type equation.

Our main result in this paper is as follows.

Theorem 1.1. Let (M, g) be a complete non-compact Riemannian n-manifold with
n ≥ 3 , 1 < p < n such that p2 < n. Let a, f ∈ C∞(M) be real valued function on
M . Suppose that operator Lpu = ∆pu + a(x)up−1 is coercive. Under the following
assumptions:

(1) At a point xo where f is maximal, we are in one of the following cases
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(i) p < 2, n > 3p− 2 and a(xo) < 0
(ii) p = 2 and 8(n−1)

(n−2)(n−4)a(xo) < −∆f(xo)
f(xo) + 2R(xo)

n−4

(iii) p > 2 and (n−3p+2
p )∆f(xo)

f(xo) < R(xo).
(2) (M, g) is of bounded geometry, that is: Ricci > −c, where c ≥ 0 is a

constant, and the injectivity radius is strictly positive.
(3) There exists a constant C > 0 such that

|∇f | ≤ Cf, |∇2f | ≤ Cf,

∫
M

|a|
n
p dvg ≤ C

∫
M

fdvg < ∞ and
∫

M

fp/p∗dvg < ∞.

(4) The functions a and f are bounded and f is strictly positive.

Then, there exists a positive solution u ∈ Hp
1,loc(M) of (1.1) such that u ∈ C

1,α

(K)
on any compact set K of M for some α ∈ (0, 1).

This article is organized as follows: in the second section we construct a sequence
of minimizing weak solutions, in the third section we give sufficient geometric con-
ditions to guarantee the strong convergence of the minimizing sequence. Using the
Aubin’s test functions, we show in the last section that these geometric conditions
are satisfied.

2. Convergence of the minimizing sequence

In this section, we construct a sequence of weak solutions for (1.1). The following
theorem has been proved in [2].

Theorem 2.1. Let (M, g) be a Riemannian compact manifold 1 < p < n such
that p2 < n, and let a, f ∈ C∞(M) be real functions on M . We assume that the
operator Lpu = ∆pu + a(x)up−1 is coercive. If at a point xo where f is maximal,
we have one of the following cases

(i) p < 2, n > 3p− 2 and a(xo) < 0
(ii) p = 2 and 8(n−1)

(n−2)(n−4)a(xo) < −∆f(p)
f(p) + 2R(xo)

n−4

(iii) p > 2 and (n−3p+2
p )∆f(xo)

f(xo) < R(xo).

Then, there exists a positive solution u ∈ Hp
1 (M) of (1.1) such that u ∈ C

1,α

(M)
for some α ∈ (0, 1).

Let Ωj be an exhaustion of the complete manifold M by compact manifolds

with smooth boundary such that Ωj ⊂
o

Ωj+1. Let uj be the minimizer given by
Theorem 2.1 for

∆puj + a(x)up−1
j = µ(Ωj)fup∗−1

j in Ωj

uj > 0 in Ωj

uj = 0 on ∂Ωj .

(2.1)

By the monotone decreasness of µ(Ωj) and the coercivity of the operator Lpu =
∆pu + a(x)up−1, we have

‖u‖Hp
1 (Ωj) ≤

1
c
µ(Ω1) (2.2)

where c > 0 is a constant. Since (2.2) implies the boundedness of {ui} in Hp
1 (M),

we can choose a subsequence of {ui} still denoted {ui} such that ui → u weakly in
Hp

1 (M)
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Proposition 2.2. The sequence {ui} converges weakly on every compact set K of
M to a solution u ∈ C1,α(K) of

∆pu + a(x)up−1 = fup∗−1 in K

u > 0 in K

u = 0 on ∂K

(2.3)

for some α ∈ (0, 1).

To prove the boundedness of {ui}in C1,α(K), we use propositions from the paper
of Druet [2] which have their origin in Tolksdorf [7] Guedda and Veron [3] and
Vazquez [8].

Proposition 2.3. Let (M, g) be a compact Riemannian n-manifold. Assume that
u ∈ Hp

1 (M) is a solution of ∆pu + a(x)up−1 = f , where n ≥ 2, 1 < p < n, a(x) ∈
L

n
p (M) and f ∈ L

n
p (M), then u ∈ Lt(M) for t ∈ [1,∞).

Proposition 2.4. Let (M, g) be a compact Riemannian n-manifold. Assume n ≥ 2,
1 < p < n, f ∈ Ls(M) for some s > n

p and u ∈ Hp
1 (M) is a solution of ∆pu = f

on M . Then u ∈ L∞(M).

Proposition 2.5. Let (M, g) be a compact Riemannian n-manifold and h(x, r) ∈
Co(M × R). Assume n ≥ 2, 1 < p < n and ∀(x, r) ∈ M × R, |h(x, r)| ≤
C|r|p∗−1 +D. If u ∈ Hp

1 (M) is a solution of ∆pu+h(x, u) = 0, then u ∈ C
1,α

(M).
Moreover ‖u‖C

1,α
(M) ≤ c̃, where c̃ is a constant depending only on ‖u‖L∞(M) and

‖h(x, r)‖
L∞(M) .

Proof of Proposition 2.2. First we show that the sequence {uj} is bounded in Lt(K)
for any t ∈ [1,+∞). Involving Proposition 2.3, we have only to check that the
sequence {a(x)− fup∗−p

j } is bounded in L
n
p (K). We have∫

K

|a(x)− fup∗−p
j |

n
p dvg ≤ 2

n
p−1

∫
K

(|a(x)|
n
p + |f |

n
p up∗

j )dvg

= 2
n
p−1

[
(‖a‖K

n
p
)

n
p + (‖f‖K

∞)
n
p (‖uj‖K

p∗)
p∗]

where ‖u‖K
p =

( ∫
K
|u|pdvg

)1/p. Since by the relation(3) the sequence{uj} is
bounded in Lp(K), so is in Lp∗(K), we have the desired conclusion.

Next, we show that {uj} is bounded in L∞(K). According to Proposition
2.4, we have to show that the sequence {gj} given by gj(x) = −a(x)uj(x)p−1 +
f(x)uj(x)p∗−1, is bounded in Ls(K) for some s > n

p . But this fact is a consequence
of proposition 2.3.

Finally, we take h(x, uj) = a(x)up−1
j − f(x)up∗−1

j , and since by assumption the
functions a and f are bounded on the manifold M , one has the boundness of the
sequence {h(x, uj(x)} in the compact set K.

By proposition 2.5, uj ∈ C1,α(K) and ‖uj‖1,α
K ≤ c(p, n,K, ‖gj‖L∞(K)). The

boundedness of {uj} in L∞(K) implies that {gj} and C(p, n,K, ‖gj‖L∞(K)) are
bounded. Consequently, {uj} is bounded in C1,α(K). So by Arzela-Ascoli theorem
{uj} converges uniformly towards a weak solution u of (2.3) on each compact
set. �
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3. Strong convergence

In this section, we have to show that the solution u is not trivial. To achieve
this task, we give sufficient conditions that guarantee the strong convergence of
minimizers constructed in the previous section. Let K be any compact set of the
complete manifold M , 2K a compact set containing K and η ∈ C∞(M) be the
function

η(x) =

{
0 on K

1 on M − 2K .

Let k > 1 and {uq} be the sequence of minimizers given by Proposition 2.2 and

‖.‖p be the Lp(M)-norm. we are going to estimate the ratio ‖∇(ηf
1

p∗u
k+p−1

p
q )‖p.

Letting {Ωk} be the exhaustion, of the complete manifold M , considered in the
previous section. Denote by Λk = {u ∈ Hp

1 (Ωk) :
∫
Ωk

f |u|p∗dvg = 1} and Ik(u) the
functional Ik(u) =

∫
Ωk

(|∇u|p + |u|p)dvg.

Proposition 3.1. Under the conditions (2), (3), (4), of Theorem 1.1 and

( sup
M−K

f(x))p/p∗ inf
u∈Λk

Ik(u) < K(n, p)−p,

the ratio ‖∇(ηf
1

p∗u
k+p−1

p
q )‖p is bounded.

Proof. For p ≥ 2, using Simon’s inequality [5], that is to say: for any vector fields
X and Y on the manifold M ,

|X + Y |p ≤ Cp

〈
|X|p−2X + |Y |p−2Y,X + Y

〉
where Cp is a constant depending on p and 〈., .〉 denoting the metric. We get

‖∇(ηf
1

p∗u
k+p−1

p
q )‖p

p

=
∫

M

|∇(ηf
1

p∗u
k+p−1

p
q )|pdvg

=
∫

M

|(u
k+p−1

p
q ∇(ηf

1
p∗ ) +

k + p− 1
p

(ηf
1

p∗ )u
k−1

P
q ∇uq)|pdvg

≤ Cp

∫
M

[
u

( k+p−1
p )(p−1)

q |∇(ηf
1

p∗ )|p−2∇(ηf
1

p∗ )

+ (k+p−1
p )p−1(ηf

1
p∗ )p−1u

( k−1
p )(p−1)

q |∇uq|p−2∇uq

]
×

[
u

k+p−1
p

q ∇(ηf
1

p∗ ) + k+p−1
p (ηf

1
p∗ )p−1u

k−1
p

q ∇uq

]
dvg

= Cp

[ ∫
M

uk+p−1
q |∇(ηf

1
p∗ )|pdvg + (k+p−1

p )p

∫
M

(ηf
1

p∗ )puk−1
q |∇uq|pdvg

× k+p−1
p

∫
M

ηf
1

p∗uk+p−2
q |∇(ηf

1
p∗ )|p−2〈∇(ηf

1
p∗ ),∇uq〉dvg

+ (k+p−1
p )p−1

∫
M

(ηf
1

p∗ )p−1uk
q |∇uq|p−2〈∇(ηf

1
p∗ ),∇uq〉dvg].

On the other hand,∫
M

ηpfp/p∗uk
q∆puqdvg = k

∫
M

ηpfp/p∗uk−1
q |∇uq|pdvg
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+ p

∫
M

(ηf
1

p∗ )p−1uk
q |∇uq|p−2〈∇uq,∇(ηf

1
p∗ )〉dvg

and ∫
M

ηf
1

p∗uk+p−1
q ∆p(ηf

1
p∗ )dvg

=
∫

M

uk+p−1
q |∇(ηf

1
p∗ )|pdvg

+ (k + p− 1)
∫

M

(ηf
1

p∗ )uk+p−2
q |∇(ηf

1
p∗ )|p−2〈∇uq,∇ηf

1
p∗ 〉dvg

so

‖∇(ηf
1

p∗u
k+p−1

p
q )‖p

p

≤ Cp

[ ∫
M

ηf
1

p∗uk+p−1
q ∆p(ηf

1
p∗ )dvg +

1
k

(
k + p− 1

p
)p

∫
M

ηpfp/p∗uk
q∆puqdvg

− p−1
p (k + p− 1)

∫
M

ηf
1

p∗uk+p−2
q |∇(ηf

1
p∗ )|p−2〈∇uq,∇(ηf

1
p∗ )〉dvg

− (k+p−1
p )p−1 p−1

k

∫
M

(ηf
1

p∗ )p−1uk
q |∇uq|p−2〈∇uq,∇(ηf

1
p∗ )〉dvg

]
.

Multiplying (1.1) by (ηf
1

p∗ )puk
q and integrating over M , we get∫

M

(ηf
1

p∗ )puk
q∆puqdvg

= −
∫

M

a(x)(ηf
1

p∗ )puk+p−1
q dvg + µ(Ωq )

∫
M

(ηf
1

p∗ )pfuk+p∗−1
q dvg.

(3.1)

Using Hölder inequality, we obtain∫
M

(ηf
1

p∗ )pfuk+p∗−1
q dvg

≤ ( sup
M−K

f)p/p∗
( ∫

M−K

fup∗
q dvg

)1− p
p∗ ( ∫

M

(ηf
1

p∗u
k+p−1

p
q )p∗dvg

)p/p∗
.

(3.2)

The first term of the right-hand side of (3.1) is estimated as∫
M

a(x)(ηf
1

p∗ )puk+p−1
q dvg

≤
( ∫

M−K

|a(x)|
n
p dvg

) p
n
( ∫

M−K

(ηf
1

p∗u
k+p−1

p
q )p∗dvg

)p/p∗
.

Since by assumption ( ∫
M

|a(x)|
n
p dvg

)p/n
< C

∫
M

fdvg < ∞,

we choose the compact set K so that∫
M−K

fdvg <
ε

C
.
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Then∫
M

(ηf
1

p∗ )puk
q∆puqdvg

≤
((

( sup
M−K

f)p/p∗
∫

M

fup∗
q )1−

p
p∗ + ε

)( ∫
M

(
ηf

1
p∗u

k+p−1
p

q

)p∗
dvg

)p/p∗
.

(3.3)

On the other hand we have

∇(ηf
1

p∗ ) = f
1

p∗∇η +
1
p∗

ηf
1

p∗−1∇f

and since by assumption |∇f | ≤ C, we obtain

|∇ηf
1

p∗ | ≤ f
1

p∗ |∇η|+ ηc

p∗
f

1
p∗ ≤ Cf

1
p∗

where C is a universal constant. So∫
M

ηf
1

p∗uk+p−2
q |∇(ηf

1
p∗ )|p−2〈∇(ηf

1
p∗ ),∇uq〉dvg

≤ C

∫
M−K

f
p

p∗uk+p−2
q |∇uq|dvg.

(3.4)

Using Hölder inequality we obtain that the right-hand side of this inequality is
bounded above by∫

M−K

fp/p∗uk+p−2
q |∇uq|dvg

≤
( ∫

M−K

|∇uq|pdvg

) 1
p
( ∫

M−K

(fp/p∗uk+p−2
q

) p
p−1

dvg)1−
1
p .

(3.5)

Applying Hölder’s inequality again, we get∫
M−K

(fp/p∗uk+p−2
q )

p
p−1 dvg

≤
( ∫

M−K

up∗
q dvg

) p(k+p−2)
p∗(p−1)

( ∫
M−K

f
p(p−1)

p∗(p−1)−p(k+p−2) dvg

)1− p(k+p−2)
p∗(p−1)

≤ ( sup
M−K

f)
p(k+p−2)
p∗(p−1)

( ∫
M−K

up∗
q dvg

) p(k+p−2)
p∗(p−1)

( ∫
M−K

fp/p∗dvg

)1− p(k+p−2)
p∗(p−1)

.

(3.6)

As above, we get∫
M

(ηf
1

p∗ )p−1uk
q |∇uq|p−2〈∇uq,∇(ηf

1
p∗ )〉dvg

≤ C

∫
M−K

fp/p∗uk
q |∇uq|p−1dvg

≤ C
( ∫

M−K

fp/p∗up∗
q

) k
p∗

( ∫
M−K

fp/p∗|∇uq|
p∗(p−1)

p∗−k

)1− k
p∗

.
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Since α = (p− 1) p∗
p∗−k , we have p− α = p(p∗−k)−p∗(p−1)

p∗−k = p∗−pk
p∗−k > 0 and∫

M−K

fp/p∗|∇uq|αdvg

≤
( ∫

M−K

|∇uq|pdvg

)α
p
( ∫

M−K

f
p2

p∗(p−α) dvg

)1−α
p

≤ ( sup
M−K

f)
p(p−1)
p∗−pk

( ∫
M−K

|∇uq|pdvg

)α
p
( ∫

M−K

fp/p∗dvg

)1−α
p

.

(3.7)

On the other hand,

∆p(ηf
1

p∗ ) = −div(|∇(ηf
1

p∗ )|p−2∇(ηf
1

p∗ ))

= |∇ηf
1

p∗ |p−2∆(ηf
1

p∗ )− trace
(
∇|∇(ηf

1
p∗ )|p−2 ⊗∇(ηf

1
p∗ )

)
and

∆(ηf
1

p∗ ) = f
1

p∗∆η + η∆f
1

p∗ − trace(∇η ⊗∇f
1

p∗ )

≤ f
1

p∗∆η +
1
p∗

(1− 1
p∗

)ηf
1

p∗−2|∇f |2 +
1
p∗

ηf
1

p∗−1∆f +
1
p∗

f
1

p∗−1|∇f |

then
|∆(ηf

1
p∗ )| ≤ Cf

1
p∗

and
|∇(ηf

1
p∗ )|p−2|∆(ηf

1
p∗ )| ≤ Cf

p−1
p∗ .

From
|∇|∇(ηf

1
p∗ )|p−2| = (p− 2)|∇(ηf

1
p∗ )|p−3|∇|∇(ηf

1
p∗ )||

and Kato’s inequality, we deduce that∣∣∇|∇(ηf
1

p∗ )|p−2
∣∣ ≤ (p− 2)|∇(ηf

1
p∗ )|p−3|∇2(ηf

1
p∗ )|.

Now, since

∇2(ηf
1

p∗ )

= f
1

p∗∇2η +
2
p∗

f
1

p∗−1∇η ⊗∇f +
1
p∗

(1− 1
p∗

)ηf
1

p∗−2∇f ⊗∇f +
1
p∗
∇2f ,

we obtain ∣∣∇|∇(ηf
1

p∗ )|p−2
∣∣ ≤ Cf

p−1
p∗ .

Finally, we get
|∆p(ηf

1
p∗ )| ≤ Cf

p−1
p∗

and ∫
M

ηf
1

p∗uk+p−1
q ∆p(ηf

1
p∗ )dvg

≤ C

∫
M−K

fp/p∗uk+p−1
q

≤ C
( ∫

M−K

up∗
q dvg

) k+p−1
p∗

( ∫
M−K

f
p∗

p∗k−p+1 dvg

)1− k+p−1
p∗

.

(3.8)

Sobolev’s inequality leads to( ∫
M−K

up∗
q dvg

)p/p∗
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≤ (K(n, p)p + ε)
∫

M−K

|∇uq|pdvg + A

∫
M−K

up
qdvg

≤ (K(n, p)p + ε)
( ∫

M−K

|∇uq|pdvg +
A

K(n, p)p + ε

∫
M−K

up
qdvg

)
.

From the coercivity of the operator Lpu = −∆pu− a(x)|u|p−2u, we get( ∫
M−K

up∗
q dvg

)p/p∗

≤ 1
c
(K(n, p)p + ε) max

(
1,

A

K(n, p)p + ε

) ∫
M−K

(|∇uq|p + up
q)dvg

≤ C̃

∫
M

(|∇uq|p + up
q)dvg,

where C̃ = 1
c (K(n, p)p + ε) max

(
1, A

K(n,p)p+ε

)
and by construction of the sequence

{uq}, which has a compact support in Ωq, we have∫
M

(|∇uq|p + a(x)up
q)dvg = λq

hence ( ∫
M−K

up∗
q dvg

)p/p∗
≤ C̃λq.

Since by assumption the Lagrange multipliers satisfy

λq <
1

K(n, p)p(supM−K f)p/p∗ ,

we have ( ∫
M−K

up∗
q dvg

)p/p∗
≤ C. (3.9)

Combining inequalities (5) to (13) we obtain

‖∇(ηf
1

p∗u
k+p−1

p
q )‖p

p ≤ λq

((
sup

M−K
f
)p/p∗( ∫

M−K

fup∗
q dvg

)1− p
p∗ + ε

)
×

( ∫
M−K

(
ηf

1
p∗u

k+p−1
p

q

)p∗
dvg

)p/p∗
+ C .

Using Sobolev’s inequality, this expression is bounded by

λq

((
sup

M−K
f
)p/p∗( ∫

M−K

fup∗
q dvg

)1− p
p∗ + ε

)
×

(
(K(n, p)p + ε)‖∇(ηf

1
p∗u

k+p−1
p

q )‖p
p + A‖ηf

1
p∗u

k+p−1
p

q ‖p
p

)
+ C ,

(3.10)

where K(n, p) is the best constant in the Sobolev’s inequality. For the last term in
(3.10), we write∫

M−K

fp/p∗uk+p−1
q dvg

≤
( ∫

M−K

up∗
q dvg

)κ+p−1
p∗

( ∫
M−K

f
p

p∗−k−p+1 dvg

)1−κ+p−1
p∗

≤
(

sup
M−K

f
) p(1−p−k)

p∗2
( ∫

up∗
q dvg

)κ+p−1
p∗

( ∫
fp/p∗dvg

)1−κ+p−1
p∗

< ∞.
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From the assumption on the Lagrange multipliers, ‖∇(ηf
1

p∗u
k+p−1

p
q )‖p

p is bounded.
In the case 1 < p < 2 , the Simon’s inequality writes

|X + Y |p ≤ Cp

〈
|X|p−2X + |Y |p−2Y, X + Y

〉 p
2 (|X|p + |Y |p)1−

p
2

where X, Y are any vector fields on the manifold M.
Putting

X = u
k+p−1

p
q ∇(ηf

1
p∗ ),

Y =
k + p− 1

p
(ηf

1
p∗ )u

k−1
P

q
k + p− 1

p
(ηf

1
p∗ )u

k−1
P

q ∇uq

we get ∣∣∣u k+p−1
p

q ∇(ηf
1

p∗ ) +
k + p− 1

p
(ηf

1
p∗ )u

k−1
P

q ∇uq

∣∣∣pdvg

≤ Cp

[(
u

( k+p−1
p )(p−1)

q |∇(ηf
1

p∗ )|p−2∇(ηf
1

p∗ )

+ (k+p−1
p )p−1(ηf

1
p∗ )p−1u

( k−1
p )(p−1)

q |∇uq|p−2∇uq

)
×

(
u

k+p−1
p

q ∇(ηf
1

p∗ ) +
k + p− 1

p
(ηf

1
p∗ )u

k−1
P

q ∇uq

)]p/2

×
[
uk+p−1

q |∇(ηf
1

p∗ )|p + (
k + p− 1

p
)p(ηf

1
p∗ )puk−1

q |∇uq|p
]1− p

2
.

Then ∥∥∇(
ηf

1
p∗u

k+p−1
p

q

)∥∥p

p

≤ Cp

∫
M

[
uk+p−1

q |∇(ηf
1

p∗ )|p + (
k + p− 1

p
)p(ηf

1
p∗ )puk−1

q |∇uq|p

+
k + p− 1

p
(ηf

1
p∗ )uk+p−2

q |∇(ηf
1

p∗ )|p−2〈∇uq,∇(ηf
1

p∗ )〉

+ (
k + p− 1

p
)p−1(ηf

1
p∗ )p−1uk

q |∇uq|p−2〈∇uq,∇(ηf
1

p∗ )〉
]p/2

×
[
uk+p−1

q |∇(ηf
1

p∗ )|p + (
k + p− 1

p
)p(ηf

1
p∗ )puk−1

q |∇uq|p
]1− p

2
dvg.

And by Hölder’s inequality, the above expression is less than or equal to

Cp

( ∫
M

[
uk+p−1

q |∇(ηf
1

p∗ )|p + (
k + p− 1

p
)p(ηf

1
p∗ )puk−1

q |∇uq|p

+
k + p− 1

p
(ηf

1
p∗ )uk+p−2

q |∇(ηf
1

p∗ )|p−2〈∇uq,∇(ηf
1

p∗ )〉

+ (
k + p− 1

p
)p−1(ηf

1
p∗ )p−1uk

q |∇uq|p−2〈∇uq,∇(ηf
1

p∗ )〉
]
dvg

)2/p

×
( ∫

M

(uk+p−1
q |∇(ηf

1
p∗ )|p + (

k + p− 1
p

)p(ηf
1

p∗ )puk−1
q |∇uq|p)dvg

)1− p
2
.

Arguing as in the case p ≥ 2, we obtain that ‖∇(ηf
1

p∗u
k+p−1

p
q )‖p

p is bounded. �
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4. Generic Theorem

Letting K be any compact set of the complete manifold M , we formulate in this
section a generic theorem. First, we establish

Lemma 4.1. Assume that every subsequence of {uq} which converges in Lp(M)
with p > 1, converges to 0. Also assume there exists a constant C > 0, independent

of q such that ‖∇(ηf
1

p∗u
k+p−1

p
q )‖p

p ≤ C, k > 1. Then

lim
q→∞

sup
∫

M

(ηf
1

p∗uq)p∗dvg = 0.

Proof. Suppose that limq→∞ sup
∫

M
(ηf

1
p∗uq)p∗ > 0. Using Hölder’s inequality we

obtain ∫
M

(ηf
1

p∗uq)p∗dvg

≤ sup
M−K

f
( ∫

M

(
ηf

1
p∗u

k+p−1
p

q

)p∗
) n(p−1)+p

n(k+p−1)
( ∫

M

u
n(k+p−1)

nk−p
q dvg

) nk−p
n(k+p−1)

then
lim

q→∞
sup

∫
M

u
n(k+p−1)

nk−p
q dvg > 0.

A contradiction with the fact that every subsequence of uq converging in Lp(M),
p > 1, converges to 0. �

As a consequence of the above lemma, we obtain the following generic theorem.
Denote by Λ = {u ∈ Hp

1 (M) :
∫

M
f |u|p∗dvg = 1} and I(u) is the functional given

by I(u) =
∫

M
(|∇u|p + |u|p)dvg where M is a complete Riemannian manifold.

Theorem 4.2. Let (M, g) be a complete Riemannian manifold of bounded geom-
etry, 1 < p < n, and let a, f ∈ C∞(M) be real functions on M with f > 0. We
assume that:

(i) The operator Lpu = ∆pu + a(x)up−1 is coercive
(ii) Conditions (3) and (4) of Theorem 1.1 at infinity on f are satisfied
(iii) (supM f)

p
p∗ infu∈Λ I(u) < K(n, p)−p.

Then (1.1) possesses a positive solution u ∈ C1,α(K) for any compact set K ⊂ M
and some α ∈ (0, 1).

Proof. Suppose that

µf(x))p/p∗K(n, p)p lim
q→∞

sup
∫

B(xo,δ)

fup∗
q dvg < 1

then by Lemma8, we get that

lim
q→∞

sup
∫

B(xo,δ)

fup∗
q dvtg = 0

which contradicts the fact that ∫
M

fup∗
q dvg = 1. (4.1)

In fact ∫
M

fup∗
q dvg =

∫
∪∞i=1B(xi,δ)

fup∗
q dvg ≤

∞∑
i=1

∫
B(xi,δ)

fup∗
q dvg (4.2)
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where M = ∪∞i=1B(xi, δ).
So for sufficient large q the last term in (4.2) is strictly smaller that 1. Conse-

quently

µf(x))p/p∗K(n, p)p lim
q→∞

sup
∫

B(xo,δ)

fup∗
q dvg ≥ 1

and since by assumption µf(x))p/p∗K(n, p)p < 1, we obtain

lim
q→∞

sup
∫

B(xo,δ)

fup∗
q dvg > 1.

which is a contradiction with (4.1).
Then the condition that every subsequence of the sequence of minimizers {uq}

which converges has 0 as a limit is false and the theorem is proved. �

Examples of functions satisfying the conditions of Theorem 4.2. The con-
ditions at infinity in Theorem 4.2 are satisfied, for example by functions decreasing
like power functions: f ∼ r−q, ∇f ∼ ρ−q−1 and ∇2f ∼ r−q−2 with q > np∗

p . Since∫
M

fp/p∗dvg < +∞ implies that 1

r(1− 1
n

)q+1−n
is integrable.

If the function a decays at infinity as r−q , then the condition that
∫

M
f

n
p dvg ≤

C
∫

M
fdvg < +∞ implies that the decay rate q satisfies q > p.

5. Test functions

In this section we give the proof of our main result (Theorem 1.1). For this
task we check that the condition (iii) of the generic theorem proved in section 4 is
satisfied.

Let K be any compact set of the manifold M and xo ∈ M −K be the maximum
on of the function f as given in Theorem 1.1. Let r = d(xo, x) the distance function
from xo to any point x in the manifold M −K.

Let δ > 0 be smaller than the injectivity radius; for ε > 0, we consider the test
function

uε(x) =

{
(ε + r

p
p−1 )1−

n
p − (ε + δ

p
p−1 )1−

n
p if r < δ

0 if r ≥ δ .

Note that the function uε was introduced by Aubin in [1]. We have

|∇uε(x)|p =

{
(n−p

p−1 )p(ε + r
p

p−1 )−
n
p r( p

p−1 ) if r < δ

0 if r ≥ δ

so ∫
B(xo,δ)

|∇uε(x)|pdvg = (
n− p

p− 1
)p

∫ δ

0

(ε + r
p

p−1 )−nrn+ 1
p−1 dr

∫
Sn−1(r)

dΩ. (5.1)

where dΩ denotes the element volume on the sphere Sn−1(r).
Let S(r) =

∫
Sn−1(r)

dΩ. Taking into account the expansion of the determinant
in a system of geodesic coordinates at a point xo, we get

√
g = 1−Rijx

ixj + o(r2) .

A computation in [1] gives us

S(r) = ωn−1(1−
R

6n
r2 + o(r2))
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where wn−1 is the volume of the standard unit sphere Sn−1 in Rn. The integral
(5.1) becomes∫

B(xo,δ)

|∇uε(x)|pdvg

= (
n− p

p− 1
)pωn−1

∫ δ

0

(ε + r
p

1−p )−nrn+ 1
p−1

(
1− R

6n
r2 + o(r2)

)
dr.

Letting s = rε
1−p

p , we get∫
B(xo,δ)

|∇uε(x)|pdvg = (
n− p

p− 1
)pωn−1ε

1−n
p

∫ δε
1−p

p

0

(
1 + s

p
1−p

)−n
sn+ 1

p−1

×
(
1− R

6n
s2ε

2(p−1)
p + o(s2ε

2(p−1)
p )

)
ds,

(5.2)

set

Iq
p =

∫ ∞

0

tq−1(1 + t)−pdt with p− q − 1 > 0,

B(p, q) =
∫ 1

0

tp−1(1− t)q−1dt with p > 0, q > 0 .

Put t = s
p

p−1 , then the integral (5.2) becomes∫
B(xo,δ)

|∇uε(x)|pdvg

=
p− 1

p
(
n− p

p− 1
)pωn−1ε

1−n
p

[ ∫ δ
p

p−1 ε−1

0

(1 + t)−ntn(1− 1
p )dt

− ε2(1− 1
p ) R(xo)

6n

∫ δ
p

p−1 ε−1

0

(1 + t)−nt(n+2)(1− 1
p )dt + o(ε

2(p−1)
p )

]
=

p− 1
p

(
n− p

p− 1
)pωn−1ε

1−n
p

[ ∫ ∞

0

(1 + t)−ntn(1− 1
p )dt

− ε2(1− 1
p ) R(xo)

6n

∫ ∞

0

(1 + t)−nt(n+2)(1− 1
p )dt−

∫ ∞

δ
p

p−1 ε−1
(1 + t)−ntn(1− 1

p )dt

+ ε2(1− 1
p ) R(xo)

6n

∫ ∞

δ
p

p−1 ε−1
(1 + t)−nt(n+2)(1− 1

p )dt + o(ε
2(p−1)

p )
]
.

We have

lim
ε→0

∫ ∞

δ
p

p−1 ε−1
(1 + t)−ntn(1− 1

p )dt = 0

and if n + 2 > 3p, then

lim
ε→0

∫ ∞

δ
p

p−1 ε−1
(1 + t)−nt(n+2)(1− 1

p )dt = 0 .

So∫
B(xo,δ)

|∇uε(x)|pdvg

=
p− 1

p
(
n− p

p− 1
)pωn−1ε

1−n
p

[
I

n(1− 1
p )

n − ε2(1− 1
p ) R(xo)

6n
I
(n+2)(1− 1

p )
n + o(ε2(1− 1

p ))
]
.
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On the other hand, a simple computation, for (p > q + 1), gives the following
formula

Iq
p = B(q + 1, p− q − 1) =

Γ(q + 1)Γ(p− q − 1)
Γ(p)

,

where Γ denotes the Euler function from which we obtain the following relation

I
(n+2)(1− 1

p )
n =

Γ((n + 2)(1− 1
p ) + 1)Γ(n+2

p − 3)

Γ(n(1− 1
p ) + 1)Γ(n

p − 1)
I

n(1− 1
p )

n = a(n, p)I
n(1− 1

p )
n .

Finally the equality (5.2) becomes∫
B(xo,δ)

|∇uε(x)|pdvg

=
p− 1

p
(
n− p

p− 1
)pωn−1ε

1−n
p I

n(1− 1
p )

n [1− ε2(1− 1
p )a(n, p)

R(xo)
6n

+ o(ε2(1− 1
p ))].

(5.3)

The expansion of
∫

B(xo,δ)
aup

εdvg is computed in the same way as above,∫
B(xo,δ)

aup
εdvg

=
∫ δ

0

up
εr

n−1dr

∫
Sn−1(r)

a
√

gdΩ

=
∫ δ

0

(
(ε + r

p
p−1 )1−

n
p − ν

)p
rn−1dr

×
∫

Sn−1(r)

(
a(xo) +

1
2
∇ija(xo)xixj + o(r2)

)(
1− 1

6
Rij(xo)xixj + o(r2)

)
dΩ

= ωn−1a(xo)
∫ δ

0

rn−1(ε + r
p

p−1 )p−n
[
1− pν(ε + r

p
p−1 )

n
p−1 + o

(
(ε + r

p
p−1 )

n
p−1

)]
×

[
1−

(R(xo)
6n

+
∆a(xo)
2nR(xo)

)
r2 + o(r2)

]
dr .

Putting s = r
1−p

p , we get∫
B(xo,δ)

aup
εdvg

= ωn−1a(xo)εp−n
p

∫ δε
1−p

p

0

sn−1(1 + s
p

p−1 )p−n
[
1− pνε

n
p−1(1 + s

p
p−1 )

+ o(1 + s
p

p−1 )
n
p−1ε

n
p−1

][
1−

(R(xo)
6n

+
∆a(xo)
2na(xo)

)
s2ε2(1− 1

p ) + ε2(1− 1
p )o(s2)

]
ds.

Letting t = s
p

p−1 , we get∫
B(xo,δ)

aup
εdvg

=
p− 1

p
ωn−1a(xo)εp−n

p

∫ δ
p

p−1 ε−1

0

tn(1− 1
p )−1(1 + t)p−n

×
[
1− pνε

n
p−1(1 + t) + o(1 + t)ε

n
p−1

]



14 M. BENALILI, Y. MALIKI EJDE-2004/147

× [1−
(R(xo)

6n
+

∆a(xo)
2na(xo)

)
t2(1−

1
p )ε2(1− 1

p ) + ε2(1− 1
p )o(t2(1−

1
p ))

]
dt

=
p− 1

p
ωn−1a(xo)εp−n

p

∫ δ
p

p−1 ε−1

0

tn(1− 1
p )−1(1 + t)p−ndt + o(εp−n

p ) .

Since p < n2, we have

lim
ε→0

∫ ∞

δ
p

p−1 ε−1
tn(1− 1

p )−1(1 + t)p−ndt = 0 ;

therefore, ∫
aup

εdvg =
p− 1

p
ωn−1a(xo)εp−n

p I
n(1− 1

p )−1

n−p + o(εp−n
p ).

From the formulae

I
n(1− 1

p )−1

n−p =
Γ
(
n(1− 1

p )
)
Γ(n

p − p)

Γ(n− p)
,

I
n(1− 1

p )
n =

Γ
(
n(1− 1

p ) + 1
)
Γ(n

p − 1)

Γ(n)
=

n(1− 1
p )Γ

(
n(1− 1

p )
)
Γ(n

p − 1)

Γ(n)

we deduce that

I
n(1− 1

p )−1

n−p =
Γ(n)Γ(n

p − p)

n(1− 1
p )Γ(n− p)Γ(n

p − 1)
I

n(1− 1
p )

n = b(p, n)I
n(1− 1

p )
n .

Finally, we get∫
B(xo,δ)

aup
εdvg = εp−n

p
p− 1

p
ωn−1a(xo)b(p, n)I

n(1− 1
p )

n + o(εp−n
p ). (5.4)

Now, we compute the term∫
B(xo,δ)

fup∗
ε dvg

=
∫ δ

0

rn−1
(
(ε + r

p
p−1 )1−

n
p − ν

)p∗
dr

∫
Sn−1(r)

f
√

gdΩ

=
∫ δ

0

rn−1
(
(ε + r

p
p−1 )1−

n
p − ν

)p∗
dr

×
∫

Sn−1(r)

(
f(xo) +

1
2
∇ijf(xo)xixj + o(r2)

)(
1− 1

6
Rij(xo)xixj + o(r2)

)
dΩ

=
∫ δ

0

rn−1
(
(ε + r

p
p−1 )1−

n
p − ν

)p∗
dr

×
∫

Sn−1(r)

[
f(xo) +

(1
2
∇ijf(xo)− f(xo)

Rij(xo)
6

)
xixj + o(r2)

]
dΩ

= ωn−1f(xo)
∫ δ

0

rn−1
(
(ε + r

p
p−1 )1−

n
p − ν

)p∗(1− (R(xo)
6n

+
∆f(xo)
2nf(xo)

)
r2 + o(r2)

)
dr

= ωn−1f(xo)
∫ δ

0

rn−1(ε + r
p

p−1 )−n
(
1−

(R(xo)
6n

+
∆f(xo)
2nf(xo)

)
r2 + o(r2)

)
dr .
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Letting s = rε
1−p

p , we get∫
B(xo,δ)

fup∗
ε dvg =

p− 1
p

ωn−1f(xo)ε
−n
p

∫ δε
1−p

p

0

sn−1(1 + s
p

p−1 )−n

×
[
1−

(R(xo)
6n

+
∆f(xo)

2nf(xop)
)
s2ε2(1− 1

p ) + o(s2)ε2(1− 1
p )

]
ds .

Setting t = s
p

p−1 , we obtain∫
B(xo,δ)

fup∗
ε dvg

=
p− 1

p
ωn−1f(xo)ε

−n
p

∫ δ
p

p−1 ε−1

0

tn(1− 1
p )−1(1 + t)−n

×
(
1−

(R(xo)
6n

+
∆f(xo)
2nf(xo)

)
t2(1−

1
p )ε2(1− 1

p ) + o(t2(1−
1
p ))ε2(1− 1

p )
)
dt.

Since

lim
ε→0

∫ ∞

δ
p

p−1 ε−1
tn(1− 1

p )−1(1 + t)−ndt = 0

and

lim
ε→0

∫ ∞

δ
p

p−1 ε−1
t(n+2)(1− 1

p )−1(1 + t)−ndt = 0

provided that p < 1 + n
2 , which is the case if p2 < n, we deduce that∫

B(xo,δ)

fup∗
ε dvg =

p− 1
p

ωn−1f(xo)ε
−n
p

[
I

n(1− 1
p )−1

n

−
(R(xo)

6n
+

∆f(xo)
2nf(xo)

)
I
(n+2)(1− 1

p )−1
n ε2(1− 1

p ) + o(ε2(1− 1
p ))

]
.

Hence, by putting

c(n, p) =
Γ
(
(n + 2)(1− 1

p )
)
Γ
(

n−2p+1
p

)
Γ
(
n(1− 1

p )
)
Γ(n

p )

one has∫
B(xo,δ)

fup∗
ε dvg

= ε
−n
p

p− 1
p

ωn−1f(xo)I
n(1− 1

p )−1
n

[
1−

(R(xo)
6n

+
∆f(xo)
2nf(xo)

)
c(p, n)I

n(1− 1
p )

n

+ ε2(1− 1
p ) + o

(
ε2(1− 1

p )
)]

and since

I
n(1− 1

p )−1
n =

Γ(n
p )

n(n− 1
p )Γ(n

p − 1)
I

n(1− 1
p )

n = d(n, p)I
n(1− 1

p )
n

it follows that∫
B(xo,δ)

fup∗
ε dvg

= ε
−n
p

p− 1
p

ωn−1f(xo)d(n, p)I
n(1− 1

p )
n
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×
[
1−

(R(xo)
6n

+
∆f(xo)
2nf(xo)

)
c(n, p)ε2(1− 1

p ) + o
(
ε2(1− 1

p )
)]

.

From equalities (5.3) and (5.4), we get∫
B(xo,δ)

(|∇up
ε |+ aup

ε)dvg

=
p− 1

p
ωn−1(

n− p

p− 1
)pε1−n

p I
n(1− 1

p )
n

[
1− a(n, p)

6n
R(xo)ε2(1− 1

p )

+ b(n, p)(
n− p

p− 1
)pa(xo)εp−1 + o

(
ε2(1− 1

p )
)

+ o
(
εp−1

)]
.

(5.5)

Since ( ∫
B(xo,δ)

fup∗
ε dvg

) p
p∗

= ε1−n
p
(p− 1

p
ωn−1f(xo)d(n, p)I

n(1− 1
p )

n

)p/p∗

×
[
1−

(R(xo)
6n

+
∆f(xo)
2nf(xo)

)
c(n, p)ε2(1− 1

p ) + o
(
ε2(1− 1

p )
)
]p/p∗

we get∫
B(xo,δ)

(|∇up
ε |+ aup

ε)dvg( ∫
B(xo,δ)

fup∗
ε dvg

)p/p∗

=
(p− 1

p
ωn−1f(xo)I

n(1− 1
p )

n

) p
n (

n− p

p− 1
)p

(
d(n, p)f(xo)

)− p
p∗

×
[
1−

(a(n, p)
6n

a(xo)ε2(1− 1
p ) − b(n, p)a(xo)εp−1

)
+ o

(
ε2(1− 1

p )
)

+ o
(
εp−1

)]
×

[
1 +

p

p∗
(R(xo)

6n
+

∆f(xo)
2nf(p)

)
c(n, p)ε2(1− 1

p ) + o
(
ε2(1− 1

p )
)]

.

(5.6)
Now, since the function

φ =
(
1 + r

p
p−1

)1−n
p

realizes the best constant in the Sobolev’s imbedding Hp
1 (Rn) ⊂ Lp∗(Rn), that is( ∫

Rn

φp∗dx
)p/p∗

= K(n, p)p

∫
Rn

|φ|pdx ,

we get

(
n− p

p− 1
)pωn−1

∫ ∞

0

(1 + r
p

p−1 )−nrn+ 1
p−1 dr

= K(n, p)−p
(
ωn−1

∫ ∞

0

(1 + r
p

p−1 )−nrn−1dr
)p/p∗

.

By letting t = r
p

p−1 , we have

p− 1
p

(
n− p

p− 1
)pωn−1

∫ ∞

0

(1 + t)−ntn(1− 1
p )dt

= K(n, p)−p
(
ωn−1

p− 1
p

∫ ∞

0

(1 + t)−ntn(1− 1
p )−1dr

)p/p∗
.
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Therefore,
p− 1

p
(
n− p

p− 1
)pωn−1I

n(1− 1
p )

n = K(n, p)−p
(p− 1

p
ωn−1d(n, p)I

n(1− 1
p )

n

)p/p∗

which implies

K(n, p)−p = (
n− p

p− 1
)p

(p− 1
p

ωn−1I
n(1− 1

p )
n

) p
n d(n, p)−

p
p∗ .

Then the equality (5.6) becomes∫
B(xo,δ)

(|∇up
ε |+ aup

ε)dvg( ∫
B(xo,δ)

fup∗
ε dvg

) p
p∗

= K(n, p)−pf(xo)−
p

p∗

[
1−

(a(n, p)
6n

R(xo)ε2(1− 1
p )

− (
p− 1
n− p

)pb(n, p)R(xo)εp−1
)

+ o
(
ε2(1− 1

p )
)

+ o(εp−1)
]

×
[
1 +

p

p∗
(R(xo)

6n
+

∆f(xo)
2nf(xo)

)
c(n, p)ε2(1− 1

p ) + o(ε2(1− 1
p ))

]
= K(n, p)−pf(xo)−

p
p∗

[
1−

{(a(n, p)
6n

− p

p∗
c(n, p)

6n
ε2(1− 1

p )
)
R(xo)

− (
p− 1
n− p

)pb(n, p)a(xo)εp−1 − p

p∗
∆f(xo)
2nf(xo)

c(n, p)ε2(1− 1
p )

}
+ o

(
εp−1

)
+ o

(
ε2(1− 1

p )
)]

.

(5.7)

If 1 < p < 2 and n + 2 > 3p, the bracket in the equality (5.7) is equivalent to

1 + (
p− 1
n− p

)pb(n, p)a(xo)εp−1 .

Then, if a(xo) < 0, we get

1 + (
p− 1
n− p

)pb(n, p)a(xo)εp−1 < 1. (5.8)

If p = 2, the bracket reads(a(n, 2)
6n

− n− 2
n

c(n, 2)
6n

)
R(xo)− (

1
n− 2

)2b(n, 2)a(xo)−
n− 2

n

∆f(xo)
2nf(xo)

c(n, 2)

where the quantities a(n, 2), b(n, 2) and c(n, 2) are replaced by their respective
expressions. The condition( a(n, 2)

6nc(n, 2)
− n− 2

6n2

)
R(xo)− (

1
n− 2

)2
b(n, 2)
c(n, 2)

a(xo)−
n− 2

n

∆f(xo)
2nf(xo)

> 0

implies ( (n + 2)(n− 2)
6n2(n− 4)

− n− 2
6n2

)
R(xo)

− (
1

n− 2
)2

4(n− 1)(n− 2)2

n2(n− 4)
a(xo)−

n− 2
n

∆f(xo)
2nf(xo)

> 0;

that is,
∆f(xo)
f(xo)

− 2
n− 4

a(xo) +
8(n− 1)

(n− 2)(n− 4)
R(xo) < 0. (5.9)
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Now for, p > 2, the bracket in question is equivalent to( a(n, p)
6nc(n, p)

− n− p

6n2

)
R(xo)−

n− p

n

∆f(xo)
2nf(xo)

.

The condition ( (n + 2)(n− p)
6n2(n− 3p + 2)

− n− p

6n2

)
R(xo)−

n− p

2n2

∆f(xo)
f(xo)

> 0

becomes
∆f(xo)
f(xo)

<
p

n− 3p + 2
R(xo). (5.10)

Each of the conditions (5.8), (5.9) and (5.10) assures that∫
B(xo,δ)

(|∇up
ε |+ aup

ε)dvg( ∫
B(xo,δ)

fup∗
ε dvg

)p/p∗ < K(n, p)−pf(xo)−p/p∗

and a fortiori the condition (iii) of the generic theorem is satisfied. Therefore, our
main theorem (Theorem 1.1) is proved.
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