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EXISTENCE OF SOLUTIONS TO NONLOCAL AND SINGULAR
ELLIPTIC PROBLEMS VIA GALERKIN METHOD

FRANCISCO JULIO S. A. CORRÊA & SILVANO D. B. MENEZES

Abstract. We study the existence of solutions to the nonlocal elliptic equa-

tion

−M(‖u‖2)∆u = f(x, u)

with zero Dirichlet boundary conditions on a bounded and smooth domain of
Rn. We consider the M -linear case with f ∈ H−1(Ω), and the sub-linear case

f(u) = uα, 0 < α < 1. Our main tool is the Galerkin method for both cases

when M continuous and when M is discontinuous.

1. Introduction

In this paper we study some questions related to the existence of solutions for
the nonlocal elliptic problem

−M(‖u‖2)∆u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain, f ∈ H−1(Ω) and M : R → R is a
function whose behavior will be stated later, and the norm in H1

0 (Ω) is ‖u‖2 =∫
Ω
|∇u|2.
The main purpose of this work is establishing properties on M under which

problem (1.1), and its nonlinear counterpart, possesses a solution. This equation
has called our attention because the operator

Lu := M(‖u‖2)∆u

contains the nonlocal term M(‖u‖2) which poses some interesting mathematical
questions. Also the operator L appears in the Kirchhoff equation, which arises in
nonlinear vibrations, namely

utt −M
( ∫

Ω

|∇u|2dx
)
∆u = f(x, u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x).

For more details on physical motivation of this problem the interested reader is
invited to consult Eisley, Limaco-Medeiros [6, 7] and the references therein. In a
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previous paper Alves-Corrêa [1] focused their attention on problem (1.1) in case
M(t) ≥ m0 > 0, for all t ≥ 0, where m0 is a constant. Among other things they
studied the above M -linear problem (1.1) where M , besides the strict positivity
mentioned before, satisfies the following assumption:

The function H : R→ R with

H(t) = M(t2)t

is monotone and H(R) = R.

The above authors also studied the sublinear problem

−M(‖u‖2)∆u = uα in Ω,

u = 0 on ∂Ω,

u > 0 in Ω ,

(1.2)

where 0 < α < 1, M is a non-increasing continuous function, H is increasing,
H(R) = R and

G(t) = t[M(t2)]2/(1−α)

is injective. Under these assumptions it is proved that (1.2) possesses a unique
solution. A straightforward computation shows that the function M(t) = exp(−t)+
C, with C a positive constant, satisfies the above assumptions.

In the present paper we prove similar results by allowing M to attain negative
values and M(t) ≥ m0 > 0 only for t large enough.

This is possible thanks to a device explored by Alves-de Figueiredo [2], who
use Galerkin method to attack a non-variational elliptic system. The technique
can be conveniently adapted to problems such as (1.1) and (1.2). In this way we
improve substantially the existence result on the above problems mainly because
our assumptions on M are weakened. Indeed, we may also consider the case in
which M possesses a singularity. The method we use rests heavily on the following
result whose proof may be found in Lions [8, p.53], and it is a well known variant
of Brouwer’s Fixed Point Theorem.

Proposition 1.1. Suppose that F : Rm → Rm is a continuous function such that
〈F (ξ), ξ〉 ≥ 0 on |ξ| = r, where 〈·, ·〉 is the usual inner product in Rm and | · | its
related norm. Then, there exists z0 ∈ Br(0) such that F (z0) = 0.

We recall that by a solution of (1.1) we mean a weak solution, that is, a function
u ∈ H1

0 (Ω) such that

M(‖u‖2)
∫

Ω

∇u · ∇ϕ =
∫

Ω

f(x, u)ϕ, for all ϕ ∈ H1
0 (Ω).

We point out that, depending on the regularity of f(·, u), a bootstrap argument
may be used to show that a weak solution is a classical solution, i.e., a function in
C2

0 (Ω). This happens, for instance, with the solution obtained in Theorem 4.1.
This paper is organized as follows: Section 2 is devoted to the study of the M -

linear problem in the continuous case. In Section 3 the M -linear is studied in case
M possesses a discontinuity. In Section 4 we focus our attention on the sublinear
problem. In Section 5 we analyze another type of nonlocal problem.
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2. The M-linear Problem: Continuous Case

In this section we are concerned with the M -linear problem (1.1) where f ∈
H−1(Ω) and M : R→ R is a continuous function satisfying

(M1) There are positive numbers t∞ and m0 such that M(t) ≥ m0, for all t ≥ t∞.

Theorem 2.1. Under assumption (M1), for each 0 6= f ∈ H−1(Ω) problem (1.1)
possesses a weak solution.

Proof. Inspired by Alves-de Figueiredo [2] we use the Galerkin Method. First let
us take M+ = max{M(t), 0}, the positive part of M , and consider the auxiliary
problem

−M+(‖u‖2)∆u = f in Ω,

u = 0 on ∂Ω.
(2.1)

We will prove that problem (2.1) possesses solution and such a solution also solves
problem (1.1). We point out that M+ also satisfies assumption (M1). We are ready
to apply the Galerkin Method by using Proposition 1.1. Let

∑
= {e1, . . . , em, . . .}

be an orthonormal basis of the Hilbert space H1
0 (Ω). For each m ∈ N consider the

finite dimensional Hilbert space

Vm = span{e1, . . . , em}.

Since (Vm, ‖ · ‖) and (Rm, | · |) are isometric and isomorphic, where ‖ · ‖ is the usual
norm in H1

0 (Ω) and | · | is the Euclidian norm in Rm, 〈·, ·〉 its corresponding inner
product, we make, with no additional comment, the identification

u =
m∑

j=1

ξjej ←→ ξ = (ξ1, . . . , ξm), ‖u‖ = |ξ|.

We will show that for each m there is um ∈ Vm, an approximate solution of (2.1),
satisfying

M+(‖um‖2)
∫

Ω

∇um · ∇ei = 〈〈f, ei〉〉, i = 1, . . . ,m.

where 〈〈 , 〉〉 is the duality pairing between H−1(Ω) and H1
0 (Ω). First we consider

the function F : Rm → Rm given by

F (ξ) = (F1(ξ), . . . , Fm(ξ)),

Fi(ξ) = M+(‖u‖)
∫

Ω

∇u · ∇ei − 〈〈f, ei〉〉,

where i = 1, . . . ,m and u =
∑m

j=1 ξjej . So that

Fi(ξ) = M+(‖u‖2)ξi − 〈〈f, ei〉〉.

With the above identifications one has

〈F (ξ), ξ〉 = M+(‖u‖2)‖u‖2 − 〈〈f, u〉〉.

Using (M1), Hölder and Poincaré inequalities we get

〈F (ξ), ξ〉 ≥ m0‖u‖2 − C‖f‖H−1‖u‖ ≥ 0,
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if ‖u‖ = r, for r large enough, where ‖f‖H−1 is the norm of the linear form f .
Thus, because of Proposition 1.1, there is um ∈ Vm, ‖um‖ ≤ r, r does not depend
on m, such that

M+(‖um‖2)
∫

Ω

∇um · ∇ei = 〈〈f, ei〉〉, i = 1, . . . ,m,

which implies that

M+(‖um‖2)
∫

Ω

∇um · ∇ω = 〈〈f, ω〉〉, for all ω ∈ Vm. (2.2)

Because (‖um‖2) is a bounded real sequence and M+ is continuous one has

‖um‖2 → t̃0,

for some t̃0 ≥ 0, and

um ⇀ u in H1
0 (Ω), um → u in L2(Ω), M+(‖um‖2)→M+(t̃0),

perhaps for a subsequence.
Take k ≤ m, Vk ⊂ Vm. Fix k and let m→∞ in equation (2.2) to obtain

M+(t̃0)
∫

Ω

∇u · ∇ω = 〈〈f, ω〉〉, for all ω ∈ Vk.

Since k is arbitrary we will have that the last equality remains true for all ω ∈
H1

0 (Ω). If M+(t̃0) = 0 we would have 〈〈f, ω〉〉 = 0 for all ω ∈ H1
0 and so f = 0

in H−1(Ω) which is a contradiction. Consequently M+(t̃0) > 0 and so M(t̃0) =
M+(t̃0).

We now take ω = um in (2.2) to obtain

M(‖um‖2)‖um‖2 = 〈〈f, um〉〉

and so M(t̃0)t̃0 = 〈〈f, u〉〉. From this equality and

M(t̃0)‖u‖2 = 〈〈f, u〉〉

we have ‖u‖2 = t̃0 which shows that the function u is a weak solution of problem
(1.1) and the proof of Theorem 2.1 is complete. �

Remark 2.2. It follows from the proof of Theorem 2.1 that the solution u obtained
there satisfies M(‖u‖2) > 0 (of course, if we had used another device in order to
obtain a solution of (1.1) such a property might not be true).

We claim that there is only one solution to (1.1) satisfying this property. This
may be proved as follows. Let u and v be solutions of (1.1) obtained as before.
Since u and v are weak solutions of (1.1) one has

M(‖u‖2)
∫

Ω

∇u · ∇ω = M(‖v‖2)
∫

Ω

∇v · ∇ω, for all ω ∈ H1
0 (Ω) .

Hence M(‖u‖2)u and M(‖v‖2)v are both solutions of the problem

−∆U = f in Ω,

U = 0 on ∂Ω.



EJDE-2004/19 EXISTENCE OF SOLUTIONS 5

By the uniqueness one has M(‖u‖2)u = M(‖v‖2)v in Ω and so M(‖u‖2)‖u‖ =
M(‖v‖2)‖v‖. Supposing that the function t → M(t2)t is increasing for t > 0 one
obtains that ‖u‖ = ‖v‖. Consequently

−∆u = −∆v in Ω,

u = v on ∂Ω.

and then u = v in Ω. Hence, we have proved that problem (1.1) possesses only one
solution u if t→M(t2)t is increasing for t > 0.

Remark 2.3. If M(t0) = 0 for some t0 > 0 and f = 0 in H−1(Ω) then we lose
uniqueness. In fact, let u 6= 0 be a function in C2

0 (Ω) and set v =
√

t0 u/‖u‖. In
this case ‖v‖2 = t0 and so

−M(‖v‖2)∆v = 0 in Ω,

v = 0 on ∂Ω,
(2.3)

that is, for each nonzero function u ∈ C2
0 (Ω) the function v defined above is a

nontrivial solution of (2.3).

Remark 2.4 (A Dual Problem). Suppose that M : R→ R is a continuous function
satisfying

(M̃1) There are positive numbers t̃∞ and m̃0 such that M(t) ≤ −m̃0 for all
t ≥ t̃∞.

In this case (1.1) possesses a solution. Indeed, suppose f 6= 0 in H−1(Ω) and
consider the problem

−M̃(‖u‖2)∆u = f in Ω,

u = 0 on ∂Ω,
(2.4)

where M̃(t) = −M(t). Clearly M̃ satisfies (M1) and so problem (2.4) possesses a
solution v ∈ H1

0 (Ω) with M̃(‖v‖2) > 0. Hence u = −v is a solution of (1.1) with
M(‖u‖2) < 0.

3. The M-linear Problem: A Discontinuous Case

In this section we concentrate our interest on problem (1.1) when M possesses
a discontinuity. More precisely, we study problem (1.1) with M : R/{θ} → R
continuous such that

(M2) limt→θ+ M(t) = limt→θ− M(t) = +∞
(M3) lim supt→+∞M(t2)t = +∞ and (M1) is satisfied for some t∞ > θ.

Theorem 3.1. If M satisfies (M1)–(M3) problem (1.1) possesses a solution u ∈
H1

0 (Ω), for each 0 6= f ∈ H−1(Ω).

Proof. We first consider the sequence of functions Mn : R→ R given by

Mn(t) =

{
n, θ − ε′n ≤ t ≤ θ + ε′′n,

M(t), t ≤ θ − ε′n or t ≥ θ + ε′′n,

for n > m0, where θ− ε′n and θ + ε′′n, ε′n, ε′′n > 0, are, respectively, the points closest
to θ, at left and at right, so that

M(θ − ε′n) = M(θ + ε′′n) = n.

We point out that, in this case, ε′n, ε′′n → 0 as n→∞.
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Take n > m0 and observe that the horizontal lines y = n cross the graph of M .
Hence Mn is continuous and satisfies (M1), for each n > m0. In view of this, for
each n like above, there is un ∈ H1

0 (Ω) satisfying

Mn(‖un‖2)
∫
∇un · ∇ω = 〈〈f, ω〉〉, for all ω ∈ H1

0 (Ω).

Taking ω = un in the above equation one has

Mn(‖un‖2)‖un‖2 = 〈〈f, un〉〉,

and so
Mn(‖un‖2)‖un‖ ≤ ‖f‖H−1

Because of (M3) the sequence (‖un‖) must be bounded. Hence

un ⇀ u in H1
0 (Ω),

un → u in L2(Ω),

‖un‖2 → θ0, for some θ0,

perhaps for subsequences.
If Mn(‖un‖2) → 0, then 〈〈f, ω〉〉 = 0, for all ω ∈ H1

0 (Ω), which is impossible
because 0 6= f ∈ H−1(Ω). Thus if (Mn(‖un‖2) converges its limit is different of
zero. Suppose that ‖un‖2 → θ.

If ‖un‖2 > θ + ε′′n or ‖un‖2 < θ − ε′n, for infinitely many n, we would get
Mn(‖un‖2) = M(‖un‖2), for such n, and so

M(‖un‖2)‖un‖2 = 〈〈f, un〉〉 ⇒ +∞ = 〈〈f, u〉〉

which is a contradiction. On the other hand, if there are infinitely many n so that
θ − ε′n ≤ ‖un‖2 ≤ θ + ε′′n ⇒ Mn(‖un‖2) = n and so n‖un‖2 = 〈〈f, un〉〉 ⇒ ∞ =
〈〈f, u〉〉 and we arrive again in a contradiction.

Consequently ‖un‖2 → θ0 6= θ which implies that for n large enough

‖un‖2 < θ − ε′n or ‖un‖2 > θ + ε′′n

and so Mn(‖un‖2) = M(‖un‖2) which yields

M(‖un‖2)
∫

Ω

∇un · ∇ω = 〈〈f, ω〉〉, ∀ω ∈ H1
0 (Ω).

Consequently M(θ0)
∫
Ω
∇u · ∇ω = 〈〈f, ω〉〉, for all ω ∈ H1

0 (Ω) which implies
M(‖un‖2)‖un‖2 = 〈〈f, un〉〉 and taking limits

M(θ0)θ0 = 〈〈f, u〉〉

Hence M(θ0)‖u‖2 = M(θ0)θ0. Reasoning as before we conclude that M(θ0) 6= 0
and so ‖u‖2 = θ0 and the proof of the theorem is complete. �

4. A Sublinear Problem

In this section we focus our attention on problem (1.2). More precisely, we have
the following result:

Theorem 4.1. If M satisfies assumption (M1), M(t) ≤ m∞, for some positive
constant m∞ and all t ≥ 0, and limt→∞M(t2)t1−α = +∞, then problem (1.2)
possesses a solution.
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Since the proof of this theorem is quite similar to the one in Alves-de Figueiredo
[2] we omit it and make only some remarks giving some directions on how to proceed.
First of all we have to consider the problem

−M(‖u‖2)∆u = (u+)α + λφ(x) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(4.1)

where λ > 0 is a parameter, φ > 0 is a function in H1
0 (Ω), and u+ = max{u, 0} is

the positive part of u. Proceeding as in the proof of Theorem 2.1 we found, for each
λ ∈ (0, λ̃), a solution uλ of equation (4.1) and, in view of M(‖uλ‖2) > 0- we can
prove that uλ ≥ 0-, using the maximum principle to conclude that uλ > 0. Hence

−M(‖uλ‖2)∆uλ = (uλ)α + λφ(x) ≥ uα
λ in Ω,

uλ = 0 on ∂Ω,

uλ > 0 in Ω,

(4.2)

which implies

−∆uλ ≥ m−1
∞ uα

λ in Ω,

uλ = 0 on ∂Ω.

Thanks to a result by Ambrosetti-Brézis-Cerami [3], one has

uλ ≥ m−1
∞ ω1,

where ω1 > 0 in Ω is the only positive solution of

−∆ω1 = ωα
1 in Ω,

ω1 = 0 on ∂Ω.

As in the proof of Theorem 2.1 one has that ‖uλ‖ ≤ rλ where rλ is a positive
constant that depends on λ.

Let us consider λ ∈ (0, λ) and make λ → 0+. For we have to guarantee that
(‖uλ‖) is bounded for all λ ∈ (0, λ). First observe that

M(‖uλ‖2)‖uλ‖2 =
∫

Ω

uα+1
λ + λ

∫
Ω

φuλ

Because 0 < α < 1 and using some standard arguments we have

M(‖uλ)‖2‖uλ‖1−α ≤ C +
C

‖uλ‖

Since M(t2)t1−α → +∞ as t→∞ we have that (‖uλ‖) is bounded for all λ ∈ (0, λ).
Finally, we may take λ→ 0 to obtain a solution u of problem (1.2).

5. Another Nonlocal Problem

Next, we make some remarks on a nonlocal problem which is a slight generaliza-
tion of one studied by Chipot-Lovat [4] and Chipot-Rodrigues [5]. More precisely,
the above authors studied the problem

−a
( ∫

Ω

u
)
∆u = f in Ω,

u = 0 on ∂Ω,
(5.1)
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where Ω ⊂ RN is a bounded domain, N ≥ 1, and a : R → (0,+∞) is a given
function. Equation (5.1) is the stationary version of the parabolic problem

ut − a
( ∫

Ω

u(x, t)dx
)
∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x).

Here T is some arbitrary time and u represents, for instance, the density of a
population subject to spreading. See [4, 5] for more details. In particular, [4]
studies problem (5.1), with f ∈ H−1(Ω), and proves the following result.

Proposition 5.1. Let a : R→ (0,+∞) be a positive function, f ∈ H−1(Ω). Then
problem (5.1) has as many solutions µ as the equation

a(µ)µ = 〈〈f, ϕ〉〉,
where ϕ is the function(unique) satisfying

−∆ϕ = 1 in Ω,

ϕ = 0 on ∂Ω,

Now, we study the nonlocal problem

−a
( ∫

Ω

|u|q
)
∆u = f in Ω,

u = 0 on ∂Ω,
(5.2)

where Ω and f are as before and 1 < q < 2N/(N − 2), N ≥ 3. When q = 2 we have
the well known Carrier equation.

Theorem 5.2. If t 7→ a(t) is a decreasing and continuous function, for t ≥ 0,
limt→+∞ a(tq)t = +∞ and t 7→ a(tq)t is injective, for t ≥ 0, then, for each 0 6= f ∈
H−1(Ω), problem (5.2) possesses a unique weak solution.

Proof. As in the proof of Theorem 2.1, let F : Rm → Rm be the function F (ξ) =
(F1(ξ), . . . , Fm(ξ)), where

Fi(ξ) = a(‖u‖qq)
∫

Ω

∇u · ∇ei − 〈〈f, ei〉〉, i = 1, . . . ,m

with u =
∑m

j=1 ξjej and the identifications of Rm and Vm mentioned before. So

Fi(ξ) = a(‖u‖qq)ξi − 〈〈f, ei〉〉, i = 1, . . . ,m

and then
< F (ξ), ξ >= a(‖u‖qq)‖u‖2 − 〈〈f, u〉〉

We have to show that there is r > 0 so that 〈F (ξ), ξ〉 ≥ 0, for all |ξ| = r in Vm.
Suppose, on the contrary, that for each r > 0 there is ur ∈ Vm such that ‖ur‖ = r
and

〈F (ξr), ξr〉 < 0, ξr ↔ ur.

Taking r = n ∈ N we obtain a sequence (un), ‖un‖ = n, un ∈ Vm and

〈F (un), un〉 = a(‖un‖qq)‖un‖2 − 〈〈f, un〉〉 < 0

and so
a(‖un‖qq)‖un‖ < C‖f‖, ∀n = 1, 2, . . . .
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Because of the continuous immersion H1
0 (Ω) ⊂ Lq(Ω) one gets ‖u‖q ≤ C‖u‖ and

the monotonicity of a yields a(‖u‖qq) ≥ a(C‖u‖q) and so

a(C‖un‖q)‖un‖ < C‖f‖.

In view of limt→+∞ a(tq)t = +∞ one has that ‖un‖ ≤ C,∀n ∈ N, which contradicts
‖un‖ = n. So, there is rm > 0 such that 〈F (ξ), ξ〉 ≥ 0, for all |ξ| = rm. In view of
Proposition 1.1 there is um ∈ Vm, ‖um‖ ≤ rm such that Fi(um) = 0, i = 1, . . . ,m,
that is,

a
(
‖um‖qq

) ∫
Ω

∇um · ∇ω = 〈〈f, ω〉〉, ∀ω ∈ Vm. (5.3)

Reasoning as before, by using the facts that t → a(t) is decreasing for t ≥ 0
and limt→+∞ a(tq)t = +∞, we conclude that ‖um‖ ≤ C,∀m = 1, 2 . . . for some
constant C that does not depend on m. Hence, um ⇀ u in H1

0 (Ω), um → u in
Lq(Ω), 1 < q < 2N

N−2 , and so ‖um‖q → ‖u‖q. Taking limits on both sides of
equation (5.3) we conclude that the function u is a weak solution of problem (5.2).
Since a(tq)t is injective on t ≥ 0 such a solution is unique. �

Remark 5.3. The function

a(t) =
1

t2β + 1
,

where β and q are related by 2βq < 1, satisfies the assumptions of Theorem 5.2.

Remark 5.4. Following the same steps of the proof of Theorem 4.1 we can prove
that the problem

−a
( ∫

Ω

|u|q
)
∆u = uα in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(5.4)

where 0 < α < 1, and a satisfies the assumptions in Theorem 5.2 possesses a
solution.
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