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NOTE ON A NON-OSCILLATION THEOREM OF ATKINSON

SAMUEL G. DUBÉ & ANGELO B. MINGARELLI

Abstract. We present a general non-oscillation criterion for a second order

two-term scalar nonlinear differential equation in the spirit of a classic re-
sult by Atkinson [1]. The presentation is simpler than most and can serve to

unify many such criteria under one common theme that eliminates the need
for specfic techniques in each of the classical cases (sublinear, linear, and su-

perlinear). As is to be expected in a result of this kind, the applications are

widespread and include, but are not limited to, linear, sublinear, superlinear
differential equations as well as some transcendental cases and some possibly

mixed cases.

1. Introduction

The study of oscillation and non-oscillation theory of second order ordinary dif-
ferential equations has a very long history. The first theoretical results in this area
were actually obtained by Sturm himself in his abstract [9] of his now classic 1836
memoir as a consequence of his memorable comparison theorems. Thousands of
papers have been written since on all aspects of this theory ranging from difference
equations to partial differential equations and even integral equations (cf., e.g., [7]
for further details). In this note we revisit a classic theorem of F. V. Atkinson [1],
probably the first such theorem that exhibits a necessary and sufficient condition for
the existence of oscillatory solutions to (nonlinear) Emden-Fowler type equations.

We recall that a solution of a real second order differential equation is said to
be oscillatory on a half-axis provided it has an infinite number of zeros on that
semi-axis. By the standard existence and uniqueness theorem we see that there
must be a sign change at a zero and zeros cannot accumulate on any finite interval.
If the equation has at least one non-trivial solution with a finite number of zeros it
is termed non-oscillatory. The question of interest here involves the determination
of a general criterion that will ensure the non-oscillation of a two-(or more)-term
nonlinear ordinary differential equation of the form (1.1) where the nonlinearity is
of a general type. For the most part, work in this field has centered mostly on
establishing necessary and sufficient conditions for the oscillation of all solutions of
equations of the form y′′(x) + f(x)g(y) = 0, x ∈ [0,∞) in the superlinear case after
Atkinson’s paper [1]. This was followed by an important though little referenced
paper by G. Butler [3] who dropped the non-negativity assumption on f(x) in
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the superlinear case. His necessary and sufficient condition was extended to a
framework that includes both differential and difference equations in [7]. Recent
work in this general area has centered around an extension of Atkinson’s theorem
[1] to delay equations and three-term equations with damping (cf., [8], [11], and
[10]).

We present here a result on the existence of a positive solution of a nonlinear
two-term scalar differential equation of the form

y′′(x) + F (x, y(x)) = 0, x ∈ [0,∞) (1.1)

where F : R+ × R −→ R is always assumed to be continuous on its domain along
with some basic conditions that ensure the existence and uniqueness of solutions
to associated initial value problems. There is no loss of generality in assuming that
(1.1) is defined on R+ rather than on a half-axis such as [a,∞) where a > −∞,
since a simple change of independent variable will transform the equation on [a,∞)
back into (1.1).

Instead of specializing to various types of nonlinearities as is usually done we
will proceed directly to the fully nonlinear case, without the additional standard
asumption that the nonlinearity F (x, y) in (1.1) is variables separable. Using a
fixed point theorem we find, as a special case, a non-oscillation criterion that covers
many of the different equations types observed in the literature (linear, sublinear,
superlinear) as well as some rare transcendental cases and even mixed linear or
semilinear cases. The advantage lies in a unified framework for different settings,
one that provides a condition for the existence of a positive (and so necessarily
non-oscillatory) asymptotically constant solution to the differential equation (1.1).
Due to its generality, it is to be noted that when our results are specified to actual
cases (such as a supelinear equation) our results are generally stronger than existing
ones. But then we also require more than non-oscillation as a goal.

For related results dealing with fully nonlinear equations with damping (e.g.,
F (x, y, y′) in (1.1) see [12]). In [13] the author treats (1.1) under an assumption
of convexity in the second variable on a majorant of F along with some additional
conditions (e.g., F (x, 0) = 0, etc). As a result, Zhao concludes the existence of at
least one positive solution on (0,∞) that is asymptotically linear as x →∞. For an
equation of type (1.1) for the Laplacian in Rn, see [5], where Atkinson’s condition
(3.3), below, is extended to this higher dimensional setting. Our conditions (2.1),
(2.2), (2.3) in the sequel appear to be weaker than those presented in the literature
and so the results may be of interest in the study of the existence of positive
solutions to semilinear elliptic problems (cf., [5], [12], [13]). These papers make
use of the Schauder-Tikhonov fixed point theorem and so generally there is no
uniqueness of the fixed point, in contrast with our technique which does guarantee
its uniqueness by virtue of the use of the contraction mapping principle.

2. The existence of a positive monotone solution

Our techniques invoke the fixed-point theorem of Banach-Cacciopoli (see [6])
and are based on the simple premise that, basically, in the variables separable case,
the nonlinearity in the dependent variable y in (1.1) maps a given compact interval
back into (and not necessarily onto) itself. This, along with the basic existence and
uniqueness theorems appealed to above, will ensure that a non-oscillatory solution
exists which, in fact, must be positive on the semi-axis (0,∞). In the linear case,
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that is where F (x, y) = f(x)y, this property results in the definition of a discon-
jugate equation by Sturm theory (that is, an equation in which every non-trivial
solution has at most one zero).

Theorem 2.1. Let X = {u ∈ C[0,∞)| : 0 ≤ u(t) ≤ M, for all t ≥ 0}, where
M > 0 is given but fixed. Assume that F : R+×R+ → R+ and that for any u ∈ X,∫ ∞

0

t F (t, u(t)) dt ≤ M (2.1)

and that there exists a function k : R+ → R+ such that k is continuous and∫ ∞

0

t k(t) dt < 1, (2.2)

such that for any u, v ∈ R+, we also have

|F (t, u)− F (t, v)| ≤ k(t)|u− v|, t ≥ 0. (2.3)

Then (1.1) has a positive (and so non-oscillatory) monotone solution on (0,∞)
such that y(x) → M as x →∞.

Proof. It is easy to see that the space X defined in the statement of the theorem
is a closed subset of C[0,∞). It follows that (X, ‖ · ‖X) where ‖ · ‖X is defined as
usual by the uniform norm, ‖u‖X = supt∈[0,∞) u(t) is a Banach space. Following
Atkinson (cf., [1]) we look for a uniformly bounded continuous solution of the
nonlinear integral equation

y(x) = M −
∫ ∞

x

(t− x)F (t, y(t)) dt (2.4)

for x ∈ [0,∞). Clearly, the existence of such a solution implies that y(x) → M and
y′(x) → 0 as x →∞. Indeed, once such a solution is found in X we conclude that
y(x) ≥ 0 implies y(x) > 0 for all x ∈ (0,∞), on account of the tacit assumption of
uniqueness of solutions of initial value problems associated with (1.1) and so (2.4).

We define a map on X as usual by

(Tu)(x) = M −
∫ ∞

x

(t− x)F (t, u(t)) dt (2.5)

where u ∈ X. Note that the right-side of (2.5) clearly converges for each x ≥ 0, on
account of (2.1). Indeed, for given u ∈ X and x ≥ 0,

0 ≤
∫ ∞

x

(t− x)F (t, u(t)) dt ≤
∫ ∞

0

t F (t, u(t)) dt ≤ M, (2.6)

since F (t, u(t)) ≥ 0 for such u (which implies that (Tu)(x) ≤ M) and the indefinite
integral is a non-increasing function of x on [0,∞). Thus, (Tu)(x) ≥ 0 for any
x ≥ 0. This shows that TX ⊆ X. Finally, we show that T is a contraction on X
(and so in particular, T is continuous there). For u, v ∈ X,

|(Tu)(x)− (Tv)(x)| ≤
∫ ∞

x

(t− x)|F (t, u(t))− F (t, v(t))| dt

≤
∫ ∞

x

(t− x)k(t)|u(t)− v(t)| dt

≤ ‖u− v‖X

∫ ∞

0

t k(t) dt,
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where we have used (2.3) and the fact that
∫∞

x
(t − x)k(t) dt is a non-increasing

function of x for x ∈ [0,∞), since k(t) ≥ 0. From this we readily see that

‖Tu− Tv‖X ≤ α‖u− v‖X ,

where α < 1 is given by the left-side of (2.2). Hence T is a contraction on X and
so T has a fixed point u = y in X which must satisfy (2.4). The monotonicity is
clear since all quantities in the integral in (2.5) are non-negative. This proves the
theorem. �

For a pointwise criterion on F (t, u) we can formulate the following result.

Corollary 2.2. Let M > 0 be given. Assume that F : R+ ×R+ → R+ and that
there is a continuous function f : R+ → R+ such that∫ ∞

0

tf(t) dt ≤ 1, (2.7)

and
F (t, u) ≤ f(t)g(u), t ≥ 0, u ∈ R+, (2.8)

for some function g where g : [0,M ] → [0,M ] is continuous on [0,M ]. Assume
further that there exists a function k : R+ → R+ such that k is continuous and∫ ∞

0

tk(t) dt < 1,

such that for any u, v ∈ R+, we also have

|F (t, u)− F (t, v)| ≤ k(t)|u− v|, t ≥ 0 .

Then (1.1) has a positive (and so non-oscillatory) monotone solution on (0,∞)
such that y(x) → M as x →∞.

Proof. Proceed as in the theorem up to (2.6). At this point, the estimate (2.8)
is used in lieu of (2.1) to show that (2.1) may be replaced by (2.7) the remaining
argument being similar. �

3. Applications

Although conditions (2.1), (2.3) and (2.2) are stronger than existing correspond-
ing conditions for specific choices of the nonlinearity F (x, y), Theorem 2.1 basically
eliminates the distinction between the classical sublinear and superlinear cases de-
termined by a growth condition on F (x, ·), (cf., [10] for detailed definitions). We will
show that Theorem 2.1 applies in various cases using the simple conditions enun-
ciated there, bearing in mind that these hypotheses can be weakened considerably
in specific cases.

Example 3.1 (A sublinear case). Let F (x, y) = f(x)g(y) where g(y) = |y + 1|ν ,
and 0 < ν < 1. This case is characterized by the convergence of the reciprocal of
g(y) away from zero (cf., [11]). Let f ∈ C[0,∞), f(x) ≥ 0 on [0,∞). Then the
function k(t) in Theorem 2.1 may be chosen as k(t) = f(t)ν since g is Lipschitzian
with Lipschitz constant at most ν on [0,M ] ≡ [0, 1]. An appropriate choice of f(x)
leads to a verification of each of (2.1) and (2.2) provided we choose M = 1 and∫ ∞

0

tf(t) dt ≤ 1
2ν

. (3.1)
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In this case,
y′′ + f(x)|y + 1|ν = 0, x ∈ [0,∞),

has a unique positive solution y(x) → 1 as x → ∞. Of course, oscillations in the
sublinear case have been completely characterized by Belohorec in [2] and others
in recent times (cf., [11] for further details). Note that, in this case, the (necessary
and sufficient) Belohorec condition∫ ∞

0

tνf(t) dt < ∞

is automatically satisfied on account of (3.1).

Example 3.2 (A linear case). Consider

y′′ + f(x)y = 0, x ∈ [0,∞),

where f is chosen so that ∫ ∞

0

t f(t) dt < 1. (3.2)

The choice M = 1 and k(t) = f(t) in Theorem 2.1 gives the basic result that our
linear equation is non-oscillatory (in fact, disconjugate) since it has an asymptot-
ically constant solution y(x) → 1 as x → ∞. In the linear case, this conclusion is
classical. For example, using [4, p. 255, Exercise 3] we see that (3.2) implies that
the linear equation is disconjugate. Furthermore, [6, p. 35, Exercise 6.3] indicates
that our equation must have asymptotically constant solutions under the milder
assumption that the integral appearing in (3.2) is merely finite.

Example 3.3 (A superlinear case). Once again, we let F (x, y) = f(x)g(y) where,
say, g(y) = y2n−1, and n > 1 is an integer. This case, generally motivated by
the convergence of the reciprocal of the integral of g(y) at infinity was inspired by
Atkinson’s paper [1], thus leading to hundreds of papers in the subject. In this case,
note that g is a self-map (i.e., g([0, 1]) = [0, 1]) and g is Lipschitzian with Lipschitz
constant equal to 2n − 1. It then follows from our theorem that if f is chosen so
that ∫ ∞

0

t f(t) dt <
1

2n− 1
,

then y′′ + f(x)y2n−1 = 0 will have a positive solution on (0,∞) (and so is non-
oscillatory there) since it will be asymptotically constant: y(x) → 1 as x →∞. Of
course, our condition is stronger than Atkinson’s original necessary and sufficient
condition for non-oscillation, namely∫ ∞

0

tf(t) dt < ∞, (3.3)

which implies the same result (of non-oscillation but not necessarily of positivity
on (0,∞)).

Example 3.4 (A transcendental case). The following example is rarely covered in
the literature since the reciprocal of the function g(y) = sin(π

2 y) does not converge
at all at infinity (to either a finite or extended real number) due to oscillations in
the nonlinearity, nor does it converge at 0 being infinite there. Thus, it is neither
sublinear nor superlinear. Fixing this g we choose f ∈ C[0,∞), f(x) ≥ 0 so that∫ ∞

0

tf(t) dt <
2
π

.
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Note that g is, once again, a self-map on [0, 1]. In this case, for our choice of f , we
see that use of the theorem shows that the equation

y′′ + f(x) sin(
π

2
y) = 0, x ∈ [0,∞),

admits a positive asymptotically constant solution y(x) → 1 as x →∞.

Example 3.5 (A mixed case). Our final example covers a mixed situation, one
where F (x, y) is a sum of a linear and nonlinear term in the second variable. It
appears that the literature involving such problems is scarce as well. We choose

F (x, y) =
e−xy

4
+

e−2x

1 + y
, (x, y) ∈ R+ × R+.

The choice M = 1 in the theorem gives
∫∞
0

t F (t, u(t)) dt ≤ 1
2 for u ∈ X. In fact,

(2.3) is satisfied provided we put

k(t) =
e−t

4
+

e−2t

2
.

It follows that (2.2) is verified as well and so the nonlinear equation

y′′ +
e−x

4
y +

e−2x

1 + y
= 0, x ∈ [0,∞),

has a positive solution that tends asymptotically to one as x →∞.
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April 27, 2004: Corrigendum

In the proof of Theorem 2.1, replace “Banach space” by “complete metric space”.
Thanks, Angelo Mingarelli.
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