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MULTI POINT BOUNDARY-VALUE PROBLEMS AT
RESONANCE FOR N-ORDER DIFFERENTIAL EQUATIONS:

POSITIVE AND MONOTONE SOLUTIONS

PANOS K. PALAMIDES

Abstract. In this article, we study a complete n-order differential equation
subject to the (p, n − p) right focal boundary conditions plus an additional
nonlocal constrain. We establish sufficient conditions for the existence of a
family of positive and monotone solutions at resonance. The emphasis in this
paper is not only that the nonlinearity depends on all higher-order derivatives
but mainly that the obtaining solution satisfies the above extra condition.
Our approach is based on the Sperner’s Lemma, proposing in this way an
alternative to the classical methodologies based on fixed point or degree theory
and results the introduction of a new set of quite natural hypothesis.

1. Introduction

Consider the differential equation

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), 0 < t < γ, (γ > 1) (1.1)

subject to the multi-point boundary conditions

x(i)(0) = 0 for i = 0, 1, . . . , p− 1,

x(i)(1) = 0 for i = p, p+ 1, . . . , n− 1,
m∑

i=1

αix
(j)(ξi) = 0,

(1.2)

where p ≤ j ≤ n− 1 and m ∈ N are fixed numbers. The boundary value problem

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), 0 < t < γ,

x(i)(0) = 0, for i = 0, 1, . . . , p− 1,

x(i)(1) = 0 for i = p, . . . , n− 1,

(1.3)

is called the (p, n − p) right focal boundary-value problem [1, 2, 5, 10, 14] and it
is a particular case of (1.1)-(1.2). As a matter of fact, (1.3) and its special cases
have already been studied by a number of authors (e. g. [4, 17, 19, 22]). In all
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these cases, f depends only on t and x(t), or on t and derivatives of even order:
x(t), x′′(t), . . . , x(2n−2).

When
∑m

i=1 αi 6= 0, the linear operator Lx(t) = x(n)(t), defined in a suitable
Banach space, is invertible. This is called the non-resonance case; otherwise, when∑m

i=1 ai = 0, it is called the resonance one. If this is the case, the homogeneous
(f = 0) boundary value problem, subject to conditions (1.2) has the nontrivial
solution x(t) = c, where c ∈ R is a constant and so kerL 6= {0}.

In the recent years, a lot of work have been done on the solvability of multi-
point boundary-value problems for second order differential equations at resonance
case (see e.g. [11] and the references therein), since these type of boundary-value
problems occur frequently in many applications. For example we refer here to the
way of determining the speed of a fragellate protozoan in a viscous fluid as well as
to the study of perfectly wetting liquids (see [8] for details).

Eloe and Henderson noticed in [8] that for n = 2, positive solutions of (1.1)-
(1.3) are convex. They also consider a conjugate boundary-value problem (BVP)
and using Green functions and the Krasnosel’skii fixed point theorem on a positive
cone, they obtain existence results, under sub or superlinearity on the nonlinearity
f . This convexity defines a vector field in the face-plane of (1.1), the properties of
which permit us to verify the assumptions of Sperner’s Lemma and then to apply
it in order to obtain positive solutions with also positive sign of a number of their
first derivatives.

In a similar way, Agarwal and O’Regan in [3], by using inequalities on the Green
functions and the nonlinear alternative of Leray-Schauder, obtained existence re-
sults of a conjugate or/and a focal boundary-value problem (BVP), under smallness
and sign assumptions on f , mainly if

|f(t, x, x′, . . . , x(n−1))| ≤ α(t)ψ(|u|)

where for a certain k0, supc∈(0,∞) c/ψ(c) > k0.
Chyan and Henderson [7], consider the (between conjugate and focal) BVP

(−1)n−kx(n) = λa(t)f(t, x),

x(i)(0) = 0, 0 ≤ i ≤ k − 1

x(l)(1) = 0, j ≤ l ≤ j + n− k − 1

for a (fixed) 1 ≤ j ≤ k − 1 and established values of λ to get positive solutions
to that problem, assuming similar conditions. A general overview off much of the
work which has been done on these subjects and the methods used is given in the
book of Agarwal, O’Regan and Wong [5].

Consider the 2n-order nonlinear scalar differential equation

x(2n)(t) = f(t, x(t), x′(t), . . . x(2n−1)(t)), 0 ≤ t ≤ γ, (1.4)

and further the associated (2k, 2(n− k)) multi-point focal boundary value problem
defined by:

x(i)(0) = 0, 0 ≤ j ≤ 2k − 1

x(j)(1) = 0, 2k ≤ j ≤ 2n− 1,
m∑

i=1

aix
(2p)(ξj) = 0

(1.5)
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where f : [0, 1]×R2n → R is continuous, m ≥ 2, n ≥ 2 are integers, 1 ≤ k ≤ n− 1,
p ∈ {k, k + 1, . . . , n − 1}, αi ∈ R (i = 1, 2, . . . ,m) with

∑m
i=1 ai = 0 and 0 ≤ ξ1 <

ξ2 < · · · < ξm ≤ 1 are fixed. Consider the cone

K0 =
{
(x, x′, . . . , x(2n−1)) ∈ R2n/{0} : x(i) ≥ 0, 0 ≤ i ≤ 2k − 1

and (−1)jx(j) ≥ 0, 2k ≤ j ≤ 2n− 1
}
.

We assume throughout this paper that the function f : [0, 1]× R2n → R is contin-
uous and positive:

f(t, x, x′, x′′, . . . , x(2n−1)) > 0, on the cone K0 . (1.6)

Further assume that f is:

(1) Nondecreasing on every of its last 2(n−k) variables and (strictly) increasing
in (at least) one of n−k−1 even-order derivatives x(2k), x(2k+2), . . . , x(2n−2)

(2) Bounded at −∞ on every of its last n−k−1 odd-order derivatives x(2k+1),
. . . , x(2n−1), uniformly for(
t, x, x′, . . . , x(2k−2), x(2k−1), x(2k), x(2k+2), x(2k+4), . . . , x(2n−2)

)
∈W,

where W is any compact subset of [0, 1]× Rn−k:

lim
x(2ρ+1)→−∞

f(t, x(t), x′(t), . . . x(2n−1)(t)) ≤ K, (ρ = k, k + 1, . . . , n− 1). (1.7)

In a recent paper (published in this journal) Liu and Ge [13] based on the coin-
cidence degree method of Gaines and Mawhin [12] proved that the boundary-value
problem at resonance (without any extra condition) (1.1)–(1.8), where

x(i)(0) = 0 for i = 0, 1, . . . , p− 1,

x(i)(1) = 0 for i = p+ 1, . . . , n− 1,
m∑

i=1

αix
(p)(ξi) = 0,

(1.8)

has at least one solution, under the following assumptions:

(A1) There is M > 0 such that for any x ∈ domL/ kerL, with |x(p)(t)| > M for
all t ∈ (0, 1

2 ), it follows that
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds 6= 0

(A2) There is a function a ∈ C0[0, 1] and positive numbers ai and βi ∈ [0, 1)
(i = 0, 1, . . . , n− 1) such that

|f(t, x0, x1, . . . , xn−1)| ≤ a(t) +
n−1∑
i=0

ai|xi|βi

for t ∈ [0, 1] and (x0, x1, . . . , xn−1) ∈ Rn

(A3) There is M∗ > 0 such that for any c ∈ R then either

c
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds < 0,
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or

c
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds > 0,

for any c ∈ R with |c| > M∗.

Motivated and inspired by [13] see also [9, 11, 15, 21], we establish in this paper
sufficient conditions for the existence of at least one solution of (1.1)–1.2 at reso-
nance. Our principal tool for the analysis of trajectories of (1.4) will be a theorem
of combinatorial topology, namely the Knaster-Kuratowski-Mazurkiewicz’s princi-
ple or (as it is known) Sperner’s Lemma (cf. [6]), as we did in [20]. It is worth
noticing that the use of Sperner’s Lemma in this study, gives an alternative to
the usual considerations of topological methods, such as fixed point theories, and
results to more strongly conclusions under possibly weaker but in any case much
different assumptions. In addition, the most known results on focal or conjugate
BVP are based on conditions which are expressed in terms of Green’s functions a
fact making the resulting criteria too complicated for practical use. In this paper,
conditions are of simple form which contain no explicit reference to the Green’s
functions. Moreover we get a whole (n− p− 1)− parametric family of solutions of
BVP (1.4)-(1.5) any member of which satisfies properties as the above (see Remark
2.8 at the end of paper).

We study first two special cases of (1.4). More precisely, for the (2n)-order
differential equation (1.4) and the (2k, 2(n − k)) multi-point focal boundary value
conditions (1.5) we need only natural assumptions like monotonicity, a kind of
boundednes of f and a sign property (see (1.6)-(1.7), so we do not assume any
growth or separation constraint on f ). Then the obtaining solution x(t) is not
only positives, but it has its firth 2k derivatives also positive on the interval (0, 1],
i.e.

x(i)(t) > 0, 0 < t ≤ 1, 0 ≤ i ≤ 2k − 1.

Furthermore we prove that

x(2ρ)(t) > 0, x(2ρ+1)(t) < 0, 0 < t < 1, k ≤ ρ < n− 1.

A similar result is obtaining for the (2p + 1, 2(n − p)) focal boundary-value
problem

x(2n+1)(t) = f(t, x(t), x′(t), . . . x(2n)(t)), 0 ≤ t ≤ 1,

x(j)(0) = 0, 0 ≤ j ≤ 2p,

x(j)(1) = 0, 2p+ 1 ≤ j ≤ 2n,
m∑

i=1

αix
(j)(ξi) = 0;

i.e., obtaining solution x = x(t), t ∈ [0, 1] satisfying

x(i)(t) > 0, 0 < t < 1, 0 ≤ i ≤ 2p

and further

x(2ρ+1)(t) ≥ 0, x(2ρ+2)(t) ≤ 0, 0 < t < 1, p ≤ ρ < n− 1.

As a last result of this work, we indicate how one can study the general boundary-
value problem (1.1)-(1.2) by applying our Theorem 2.7.
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For the sequel, we need some preliminary material and a classical result. Let
p0, p1, . . . , pn−k be n−k+1 points of the (n−k)-dimensional Euclidean space Rn−k.
Then the simplex S = [p0p1 . . . pn−k] is defined by

S :=
{
p ∈ Rn−k : ∃ λi ≥ 0 with

n−k∑
i=0

λi = 1 and p =
n−k∑
i=0

λipi

}
.

The points p0, p1, . . . , pn−k are called vertices of the simplex and the simplex
[pi0pi1 . . . pik

], 0 ≤ k ≤ n − k − 1, is a face of S. If the vectors p0, p1, . . . , pn−k

are linearly independent, then S is an n− k-dimensional simplex spanned by these
points.

Our principle is based on the following result from combinatorial analysis, known
as Sperner’s lemma ([6] or [16, Theorem 5, p. 310]).

Lemma 1.1. Let S be a closed n-simplex with vertices {e0, e1, . . . , en−k} and let
{E1, E2, . . . , En−k} be a closed covering of S such that any closed face [ei0ei1 . . . eik ]
of S is containing in the union Ei0 ∪Ei1 ∪ · · · ∪Eik

. Then the intersection ∩n−k
i=0 Ei

is nonempty.

2. Main Result

To study the general boundary value problem (1.4)-(1.5), we assume first that
both n and p are even integers. In this way we form the particular case,

x(2n)(t) = f(t, x(t), x′(t), . . . x(2n−1)(t)), 0 ≤ t ≤ γ, γ > 1 (2.1)

associated wit the (2k, 2(n− k) multipoint focal value problem

x(i)(0) = 0, 0 ≤ i ≤ 2k − 1,

x(j)(1) = 0, 2k ≤ j ≤ 2n− 1,
m∑

i=1

aix
(2p)(ξj) = 0.

(2.2)

It will be convenient to represent (2.1) as a second order system of the form

X ′′(t) = f(t,X,X ′)

where, for notational reasons, we set X = (Y,Z), if

Y = (y0, y1, . . . , y2n1−1) = (x, x
′′
, . . . , x(2k−2)) ∈ Rk,

Z = (z0, z1, . . . , z2(n−k)) = (x(2k), x(2k+2), . . . , x(2n−2)) ∈ R(n−k).

Then the boundary conditions at (2.2) take the form

Y (0) = Y ′(0) = 0 and Z(1) = Z ′(1) = 0.

For a (fixed) α > 0, solutions of (2.1) are defined by trajectories of the initial value
problems

x(i)(0) = 0, 0 ≤ i ≤ 2k − 1,

x(2j)(0) = α,

x(2j+1)(0) = −λj+1 ≤ 0, k ≤ j ≤ n− 1;

(2.3)

i.e. (2.3) can be written in vector notation as

Y (0) = 0 = Y ′(0) and Z(0) = α(1, 1, . . . , 1), Z ′(0) = v, (2.4)



6 PANOS K. PALAMIDES EJDE-2004/25

where v = −(λk, λk+1, . . . , λn−k) ∈ Rn−k. A solution of the initial value problem
(2.1)-(2.4) will be denoted by

X = X(t; v) = (Y (t, v), Z(t, v)) or simply x = x(t; v).

Assume that K denotes the closed positive cone of Rn−k and let ∂K be its boundary,
which consists of the hyperplanes

Hi = {x ∈ Rn−k : xi = 0, xj ≥ 0, j 6= i} (i = k, k + 1, . . . , n− 1).

Definition 2.1. The trajectory X(t, v) egresses from K through Hi, whenever
there exists 0 < t1 ≤ 1 such that zi(t, v) = x(2i)(t, v) ≥ 0, zi(t1, v) = 0 and
zj(t, v) = x(2j)(t, v) > 0 for 0 ≤ t ≤ t1 (j 6= i).

If moreover there exists an ε > 0 such that zi(t, v) < 0, t1 < t ≤ t1 + ε, then
X(t, v) egresses strictly from the cone K through Hi.

We also consider the modification

F (t,X,X ′) = F (t, Y, Y ′, Z, Z ′) :=

{
f(t, Y, Y ′, Z, Z ′0), if Z ′ � 0
f(t, Y, Y ′, Z, Z ′), otherwise,

(we replace by 0 only the positive coordinates of Z ′, so Z ′0 ≥ 0, where the inequality
Z ′0 ≥ 0 must be regarded components-wise) as well as the associating equation

X ′′ = F (t,X,X ′) (2.5)

The next lemma shows that, if a trajectory satisfies a certain initial condition
of type (2.3) or (2.4), then it egresses from K through any hyperplane Hi, (i =
k, k + 1, . . . , n− 1) for some t1 ≤ 1. Let ei := (δi1, δi2, . . . , δi(n−k)) ∈ Rn−k, where

δij :=

{
1, if i = j

0, if i 6= j

is the well-known Kronecker delta function.

Lemma 2.2. Assume that f is continuous and satisfies (1.6)-(1.7). Then for each
ρ = k, k+1, . . . , n−1 there exists a λρ > 0 such that for any λ > λρ, any trajectory
X(t, v) egresses from K through Hρ, for some t1 ≤ 1.

Proof. Taking into account the assumption (1.6) we may write for all 0 ≤ t ≤ γ,

F (t, x, x′, . . . x(2n−1)) > 0, Y ≥ 0, Y ′ ≥ 0, Z > 0, Z ′ ≤ 0 . (2.6)

Consider now, for any (fixed) ρ = k, . . . , n−1, a solution X(t, λeρ) of the differential
equation (2.5), satisfying the initial conditions

yj(0, λeρ) = 0, y′j(0, λe
ρ) = 0 (j = 0, 1, . . . , 2k − 1),

zj(0, λeρ) = α, z′j(0, λe
ρ) = 0, k ≤ j ≤ n− 1, (j 6= ρ),

zρ(0, λeρ) = α, z′ρ(0, λe
ρ) = −λ.

(2.7)

Since zρ(0;λeρ) = α > 0, by the above representation of X = (Y,Z), there
exists a t̄ > 0 such that for 0 < t < t̄ the coordinates of X satisfy yj(t) > 0
and y′j(0, λe

ρ) > 0 when j = 0, 1, . . . , k − 1 and zj(t) > 0 and z′j(t) > 0 for
j = k, . . . , ρ−1. By the modification F of f and (2.6), it follows also that zj(t) > 0
and z′j(t) > 0, 0 < t < t̄ for j = ρ + 1, . . . , n − 1. Furthermore each component
yj(t), y′j(t), zj(t) and z′j(t) is an increasing function as long as zρ(t, λeρ) > 0. As
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a result, if some component has a zero in (0, 1], the first such zero must be in
zρ(t, λeρ).

Therefore, we must show that for λ sufficiently large the tranjectory X(t;λeρ)
egresses (strictly) from the positive cone K for some t1 ≤ 1.

Assume that this is not the case, i.e. for every λ ∈ R,

x(2ρ)(t;λeρ) ≥ 0, 0 < t ≤ 1. (2.8)

Then by the differential equation (2.5) and the Taylor’s formula, for any t ≤ 1 we
get a point t̂ ≤ t such that (set for simplicity x(t) = x(t; v) = x(t;λeρ))

x(2ρ)(t) =
2n−1∑
j=2ρ

tj

j!
x(j)(0) +

t2n

(2n)!
x(2n)(t̂).

Thus, in view of (2.7) and the choice v = λeρ, we get

x(2ρ)(t) = α

n−1∑
j=ρ

t2j

(2j)!
− t2ρ+1

(2ρ+ 1)!
λ+

t2n

(2n)!
F (t,X(t̂), X ′(t̂)). (2.9)

If we prove that there is M > 0 independent of t̂ and λ such that

|F (t̂, X(t̂), X ′(t̂))| ≤M, (2.10)

then letting λ → +∞, we obviously obtain x(2ρ)(t) < 0, i.e. a contradiction to
(2.8). By the above analysis, the solution x(t) egresses from the cone K through
Hρ and this certainly means that

zρ(t, λeρ) > 0, 0 ≤ t < t1, zρ(t1, λeρ) = 0,

zρ(t, λeρ) < 0, t1 < t < t1 + ε

for some points t1 ≤ 1 and ε > 0. So let us set

λρ := max{λ ≥ 0 : zρ(t, λeρ) = x(2ρ)(t, λeρ) ≥ 0, 0 ≤ t ≤ 1}. (2.11)

Now, to show (2.10), we note first that for λ > λ0 ≥ 0 and since

x(2ρ)(0, λeρ) = α and x(2ρ+1)(0, λeρ) = −λ

x(2ρ)(0, λ0e
ρ) = α and x(2ρ+1)(0, λ0e

ρ) = −λ0,

by continuity of zρ(., λeρ) = x(2ρ)(., λeρ), we get a number 0 < τ ≤ 1 such that

x(2ρ)(t, λ0e
ρ) > x(2ρ)(t, λeρ), 0 < t ≤ τ.

Consequently, in view of (2.7), we easily get that

x(i)(t, λ0e
ρ) > x(i)(t, λeρ), 0 < t ≤ τ, i = 0, 1, . . . 2ρ− 1.

Further, the assumption (2.6) and the monotonicity of f yield (by restricting, if
necessary further the interval [0, τ ])

x(j)(t, λ0e
ρ) > x(j)(t, λeρ), 0 < t ≤ τ, j = 2ρ+ 1, . . . 2n− 1.

Thus
x(i)(t, λ0e

ρ) > x(i)(t, λeρ), 0 < t ≤ τ, i = 0, 1, . . . 2n− 1. (2.12)

We choose λ0 ∈ R (for example λ0 = 0) such that

x(i)(t, λ0e
ρ) > 0, 0 < t ≤ 1 (i = 0, 1, . . . 2n− 1)
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and recall the assumption (in (2.8))

x(2ρ)(t, λeρ) ≥ 0, 0 < t ≤ 1, ρ = k, k + 1, . . . , n− 1,

that for every λ ≥ λ0. Thus noting (2.6) we clearly have

x(i)(t, λeρ) ≥ 0, 0 < t ≤ 1, i = 0, 1, . . . , 2ρ, 2ρ+ 2, . . . , 2n− 1 (2.13)

Let now (in view of (2.12)) ψ(t, λ) = x(t, λeρ)− x(t, λ0e
ρ) and suppose that there

is a (minimal) τ̂ ≤ 1 and an integer j with 0 ≤ j ≤ 2n − 1 such that for all
i = 0, 1, . . . , 2n− 1 :

ψ(i)(t, λ) < 0, 0 < t < τ̂ and ψ(j)(τ̂ , λ) = 0. (2.14)

(1) Assume that j ≤ 2ρ. Then since ψ(2n)(t, λ) = x(2n)(t, λeρ) − x(2n)(t, λ0e
ρ),

integrations leads (as in (2.9)) to

ψ(j)(t, λ) = (λ0 − λ)
t2(ρ−j)

[2(ρ− j)]!
+

t2n

(2n)!
[F (t̄, X(t̄), X ′(t̄))− F (t̄, X(t̄), X ′(t̄))]

for some 0 ≤ t̄ ≤ t. Consequently by (2.14), for t = τ̂ :

(λ− λ0)
τ̂2ρ+1

(2ρ+ 1)!
=

τ̂2n

(2n)!
[F (t̄, X(t̄), X ′(t̄))− F (t̄, X(t̄), X ′(t̄))]. (2.15)

Now since by (1.7), (2.13) and (2.14) we obtain

0 ≤ x(i)(t, λeρ) ≤ x(i)(t, λ0e
ρ), 0 < t ≤ τ̂ , (i 6= 2ρ+ 1)

for every λ ≥ λ0, in view of the definition of the modification F , the second member
of (2.15) is bounded, when λ→ −∞ but not the first one. Thus (2.14) can not be
true and so we get

0 ≤ x(j)(t, λeρ) < x(j)(t, λ0e
ρ),

x(2ρ+1)(t, λeρ) < x(2ρ+1)(t, λ0e
ρ) ≤ 0, 0 < t ≤ 1, λ > λ0.

(2.16)

(2) Assume that j > 2ρ. Then, we also get the contradiction

0 = ψ(2j)(τ̂ , λ) =
t2n

(2n)!
[F (t̄, X(t̄;λeρ), X ′(t̄;λeρ))− F (t̄, X(t̄;λ0e

ρ), X ′(t̄;λeρ))],

by noting (2.16) and the (strictly) monotonicity of F . Thus, (2.14) can not also be
true and so we get (2.16) once again. We set now

K̂ = max{x(j)(t, λ0e
ρ) : j = 0, 1, . . . , 2n− 1, 0 ≤ t ≤ 1, j 6= 2ρ+ 1} > 0

and consider the rectangle R = [0, 1]× [0, K̂]2ρ × (−∞, 0]× [0, K̂]2(n−ρ). By (1.7),
(2.16) and the continuity of F we get

max{F (t,X,X ′) : (t,X,X ′) ∈ R} = M < +∞

and thus∣∣F (t, x(t, λeρ), x′(t, λeρ), . . . , x(2n−1)(t, λeρ))
∣∣ ≤M, 0 < t ≤ 1, λ ≥ λ0.

Hence the estimation (2.10) is established and this concludes the proof. �

We are now ready to formulate and prove our first main result.

Theorem 2.3. The (2k, 2(n−k)) multipoint focal value problem (2.1))-(2.2) has a
positive solution, provided that assumptions of the previous Lemma 2.2 are fulfilled.
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Proof. Let S be the (n − k) simplex spanning by the vertices e0 = 0 and eρ =
−λeρ, k ≤ ρ ≤ n− 1. As usual [ei0ei1 . . . eir ] denote the closed face of S spanning
by the vertices {ei0 , ei1 , . . . , eir}. We choose here λ large enough, so that (see
(2.11)):

• λ ≥ max{λρ : ρ = k, k + 1, . . . , n− 1}
• If an initial vector v starts from e0 = 0 and ends on the face [ei0ei1 . . . eir ]

(which does not contains e0), then at least one of its projection is greater
than the corresponding λρ (we notice that in view of previous Lemma 2.2,
such a trajectory X(t, v) of (2.1) egresses from K).

In the sequel, the statement “X(t, v) remains asymptotic in K” will mean that
X(t, v) does not egress from K through Hρ for some t1 ≤ 1, i.e.

zρ(t; v) = x(2ρ)(t, v) > 0, 0 < t ≤ 1

for all ρ = k, k + 1, . . . , n− 1. Define now the sets

E0 := cl{v ∈ S : X(t, v) remains asymptotic in K},
Eρ = cl{v ∈ S : X(t, v) egresses from K through Hρ for t1 ≤ 1}

To apply Sperner’s lemma, it is necessary to verify that
(i) The sets {Eρ} form a closed covering of S and
(ii) The face [ei0ei1 . . . eir ] ⊆ ∪r

j=0Eij .
The closedness of Eρ is obvious due to the continuous dependence of solutions on

their initial data. Further, their union covers S, since any trajectory either remains
asymptotic in K or egresses from it through some plane Eρ, k ≤ ρ ≤ n− 1.

Consider now any vector v ∈ [ei0ei1 . . . eir ] (more precisely v starts from e0 = 0
and ends on the face [ei0ei1 . . . eir ]) and assume that X(t, v) ∈ K, 0 < t < t1, where
t1 is a egress point, as it has been established in Lemma 2.2. We examine the next
two cases:
(a) If 0 /∈ {i0, i1, . . . , ir}, then by the choice of λ and the previous analysis, obviously
the solution X(t, v) egresses (strictly) from K. If ρ /∈ {i0, i1, . . . , ir}, then z′ρ(0, v) =
x(2ρ+1)(0, v) = 0 and, as we pointed out above by the nature of the vector field,
zρ(t, v) is a positive increasing map, that is zρ(t, v) > 0, 0 < t < t1. Thus
X(t, v) egresses from K on some hyperplane Ei with i 6= ρ. But this means that
ρ ∈ {i0, i1, . . . , ir} i.e. v ∈ Eρ ⊆ ∪r

l=1Eil
.

(b) If 0 ∈ {i0, i1, . . . , ir}, then if X(t, v) remains asymptotic in K, then v ∈ E0 ⊆
∪r

j=0Eij
. Otherwise as we showed at the previous case, X(t, v) egresses from K on

some hyperplane Hij with 0 ≤ j ≤ r, that is we obtain once again v ∈ ∪r
j=0Eij .

Finally, by applying Sperner’s Lemma 1.1, we get a trajectory X(t, v0) with
initial value v0 ∈ E0 ∩

{
∩n−1

i=k Ei

}
. Now for all k ≤ j ≤ n − 1 and in view of

definition of E0 and Eρ, such a trajectory must satisfy

zj(t; v0) > 0, z′j(t; v0) < 0, 0 < t < 1

zj(1; v0) = 0.

Moreover X(t, v0) remains asymptotic in K. Thus we must also have

z′n−1(t; v0) = x(2n−1)(t; v0) < 0, 0 < t < 1 and x(2n−1)(1; v0) = 0.

For if we suppose that x(2n−1)(1) < 0, then the map zn−1(t; v0) = x(2n−2)(t; v0) is
strictly decreasing and thus the trajectory must egresses strictly from the cone at
t1 = 1 through the plane Hn−1, a contradiction, since v0 ∈ E0.
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From the above procedure, it is clear that the obtaining solution (t, v0) of the
differential equation (2.5), satisfies the focal condition

x(i)(0) = 0, 0 ≤ j ≤ 2k − 1

x(j)(1) = 0, 2k ≤ j ≤ 2n− 1,

and further the initial conditions

zj(0, v0) = α, z′j(0, v0) = λ0j , k ≤ j ≤ n− 1,

where v0 = (λ01, λ02, . . . , λ0n−k) and the only restriction on the parameter a is that
a > 0. In this way, we get a whole (n − k)−parametric family of solutions of the
modified differential equation (2.5) satisfying the above focal boundary conditions.

We assert that there is an a > 0 such that the obtaining trajectory X(t, v0)
satisfies further the additional condition

m∑
i=1

αix
(p)(ξi) = 0, p = 2ρ, (ρ = k, k + 1, . . . , n− 1). (2.17)

Recalling that
∑m

i=1 αi = 0, we set

αi =

{
a+

i , if αi ≥ 0
a−i , if αi < 0,

I+ = {i : αi ≥ 0}, I− = {i : αi < 0} and

A =
∑
i∈I+

α+
i =

∑
i∈I−

α−i .

Since the solution x = x(2ρ)(t), 0 ≤ t ≤ 1 is decreasing, we get
m∑

i=1

αix
(2ρ)(ξi) =

∑
i∈I+

α+
i x

(2ρ)(ξi)−
∑
i∈I−

(−α−i )x(2ρ)(ξi)

≤
∑
i∈I+

α+
i x

(2ρ)(ξ1)−
∑
i∈I−

(−α−i )x(2ρ)(ξm)

= A
[
x(2ρ)(ξ1)− x(2ρ)(ξm)

]
.

(2.18)

Suppose that (2.17) is not fulfilled and so there exists an ε0 > 0 such that for every
a > 0,

m∑
i=1

αix
(2ρ)(ξi) ≥ ε0.

If we choose a ≤ ε0/(2A), then by positivity and monotonicity of x = x(2ρ)(t),
0 ≤ t ≤ 1 and noticing (2.18), we get the contradiction

m∑
i=1

αix
(2ρ)(ξi) ≤ Ax(2ρ)(ξ1) ≤ A

ε0
2A

=
ε0
2
.

It is worth noticing (see the following Remark) that the solution, x = x(t; v0), of
the modified differential equation (2.5) is actually a solution of the original equation
(2.1). �
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Remark 2.4. The solution x(t; v0) of (2.5) fulfilling the boundary conditions (2.2),
satisfies further the inequalities:

x(2ρ)(t, v0) > 0, x(2ρ+1)(t, v0) < 0, 0 < t < 1, k ≤ ρ < n− 1.

Especially, since x(2k)(t, v0) ≥ 0, it follows that

x(i)(t) > 0, 0 < t ≤ 1, 0 ≤ i ≤ 2k − 1.

As a result, the solution of (2.5)-(2.2) is positive. Consequently, in view of the
definition of F , the function x = x(t; v0) is also a solution of the original equation
(2.1)

In the previous approach we have assumed that n and p were even integer. We
consider now the (2n+ 1)-order differential equation

x(2n+1)(t) = f(t, x(t), x′(t), . . . x(2n)(t)), 0 ≤ t ≤ 1, (2.19)

along with the associated (2k + 1, 2(n− k)) focal boundary multi-value problem

x(j)(0) = 0, 0 ≤ j ≤ 2k,

x(j)(1) = 0, 2k + 1 ≤ j ≤ 2n− 1,
m∑

i=1

αix
(p)(ξi) = 0,

(2.20)

for an even integer p ∈ {2(k + 1), 2(k + 2), . . . , 2n}.

Theorem 2.5. Under the assumptions of Theorem 2.3, the (2k + 1, 2(n − k))
multipoint focal value problem (2.19)-(2.20) has a solution x = x(t), t ∈ [0, 1] such
that

x(i)(t) > 0, 0 < t < 1, 0 ≤ i ≤ 2k
and further

x(2ρ+1)(t) > 0, x(2ρ+2)(t) < 0, 0 < t < 1, k ≤ ρ < n− 1.

Proof. we set now

X = (Ŷ , Ẑ), Ŷ = (x, x′, x′′, . . . , x(2k)) ∈ R2k+1

and generally as above

Ẑ = (x(2k+1), x(2k+3), . . . , x(2n−1)) ∈ Rn−k.

Then, the boundary conditions (2.20) take the form

Ŷ (0) = 0 and Ẑ(1) = Ẑ ′(1) = 0.

On the other hand, the initial conditions (2.7) take the form

x(i)(0, λeρ) = 0, (i = 0, 1, . . . , 2k),

x(2j+1)(0, λeρ) = α, z
(2j+2)
j (0, λeρ) = 0, k ≤ j ≤ n− 1, j 6= ρ

x(2ρ+1)(0, λeρ) = α, x(2ρ+2)(0, λeρ) = −λ.
Then Lemma 2.2 and Theorem 2.3 can be carried out readily, under the obvious
modifications in their proofs. �

Remark 2.6. By Theorems 2.3 and 2.5 it follows that there are not different results
if the natural number p in (1.3) is odd or even. The keypoint is the value (even or
not) of the number n− p.
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So we may now consider the general differential equation

x(2n+1)(t) = f(t, x(t), x′(t), . . . x(2n−1)(t), x(2n)(t)) (2.21)

and the associated (2k, 2(n− k) + 1) multipoint focal value problem

x(i)(0) = 0, 0 ≤ i ≤ 2k − 1,

x(j)(1) = 0, 2k ≤ j ≤ 2n,
m∑

i=1

aix
(2p+1)(ξj) = 0.

(2.22)

Consider the cone

K∗
0 =

{
(x, x′, x′′, . . . , x(2n−1)) ∈ R2n \ {0} : x(i) ≥ 0, 0 ≤ i ≤ 2k

and (−1)jx(j) ≥ 0, 2k + 1 ≤ j ≤ 2n
}

and assume for the rest of this paper that the function f : [0, 1] × R2n → R is
continuous, negative: f(t, x, x′, x′′, . . . , x(2n−1)) < 0, on the cone K∗

0 and further
(1) f is nondecreasing on every of its last 2(n−k) variables as well as (strictly)

increasing in (at least) one of n − k − 1 odd-order derivatives: x(2k+1),
x(2k+3), . . . , x(2n−1),

(2) Bounded at +∞ on every of its last n − k + 1 even-order derivatives:
x(2k), x(2k+2), . . . , x(2n), uniformly for(
t, x, x′, . . . , x(2k−2), x(2k−1), x(2k+1), x(2k+3), . . . , x(2n−1)

)
∈W,

where W is any compact subset of [0, 1]× Rn−k:

lim
x(2ρ)→+∞

f(t, x(t), x′(t), . . . x(2n−1)(t)) ≤ K, (ρ = k + 1, k + 2, . . . , n).

Theorem 2.7. Under the above assumptions, the (2k, 2(n−k)+1) multipoint focal
value problem (2.21)-(2.22) has a solution x = x(t), t ∈ [0, 1] such that x(i)(t) > 0,
0 < t < 1, 0 ≤ i ≤ 2k and further

x(2ρ+1)(t) < 0, x(2ρ+2)(t) > 0, 0 < t < 1, k ≤ ρ < n− 1.

Proof. We set X = (Y ∗, V ∗, Z∗), where

Y ∗ = (x, x′, . . . , x(2k−1)) ∈ R2k, V ∗ = x(2k) ∈ R,

Z∗ = (x(2k+1), x(2k+3), . . . , x(2n−1)) ∈ R(n−k).

Then the focal boundary conditions at (2.22) take the form

Y ∗(0) = 0, V ∗(1) = 0, Z∗(1) = Z∗′(1) = 0.

and the initial conditions (2.7) (a > 0, λ > 0, m ≥ 0)

x(i)(0) = 0, 0 ≤ i ≤ 2k − 1, x(2k)(0) = m,

x(2j+1)(0) = −α, x(2j+2)(0) = 0, k ≤ j ≤ n− 1. j 6= ρ

x(2ρ+1)(0) = −α, x(2ρ+2)(0) = λρ+1,

(2.23)

Consider the modification (replace now by 0 only the negative coordinates of V ∗

and/or Z∗′)

F ∗(t, Y ∗, V ∗, Z∗, Z∗′) :=

{
f(t, Y ∗, V ∗0 , Z

∗, Z∗′0 ) if V ∗0 ≯ 0 or/and Z∗′ ≯ 0
f(t, Y ∗, V ∗, Z∗, Z∗′) otherwise
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and the differential equation

x(2n+1)(t) = F ∗(t, Y ∗, V ∗, Z∗, Z∗′). (2.24)

For the moment, we fix the initial value x(2k)(0) = m > 0, and then we may follow
the lines of Lemma 2.2 and Theorem 2.3, under the obvious symmetrical alterations
to get a solution

x = xm(t; v0), 0 ≤ t ≤ 1
of (2.23) such that for k ≤ ρ ≤ n− 1,

x(2ρ+1)
m (t; v0) < 0, x(2ρ+2)

m (t; v0) > 0, 0 ≤ t ≤ 1

x(2ρ+1)
m (1; v0) = 0, x(2ρ+2)

m (1; v0) = 0,

Especially, since x(2k+1)
m (t; v0) < 0, 0 ≤ t ≤ 1, the map x(2k)

m (t; v0) is decreasing on
0 ≤ t ≤ 1 and we may show that there is an m0 > 0 such that

x(2k)
m0

(t; v0) > 0, 0 ≤ t < 1 and x(2k)
m0

(1; v0) = 0. (2.25)

Indeed, suppose that for an m1 (for example m1 = 0)

x(2k)
m1

(t; v0) > 0, 0 ≤ t < τ̂ and x(2k)
m1

(t; v0) ≤ 0, τ̂ ≤ t ≤ 1.

Taking now m → +∞ and noticing that the function f is bounded, we may get
(following a procedure similar to the given one in the proof of Lemma 2.2) an
m2 > m1 such that

x(2k)
m2

(t; v0) > 0, 0 ≤ t ≤ 1.
Hence by the continuity (Knesser’s property) of solutions upon their initial values
(see for details [21] and the references therein), we obtain the requesting in (2.25)
m0 ∈ (m1,m2). Finally, the obtaining solution x(t) = xm0(t; v0) clearly satisfies,
for 0 < t < 1,

x(i)
m0

(t; v0) > 0, i = 0, 1, . . . , 2k,

x(2ρ+1)
m0

(t; v0) < 0,

x(2ρ+2)
m0

(t; v0) > 0, ρ = k, k + 1, . . . , n− 1,

and thus noticing the definition of the modification F , we conclude that it is actually
a solution of the initial differential equation. �

Remark 2.8. By the construction of the simplex S (see Theorem 2.3) and es-
pecially the choice of initial conditions (2.7), we clearly get a whole (n − k − 1)-
parametric family of solutions of BVP (2.19)-(2.20). Indeed, the only restriction of
the constant α comes from the inequality a > 0.
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