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OSCILLATION OF SOLUTIONS TO SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS

JÁN SEMAN

Abstract. In this article, we establish conditions under which proper solu-
tions of the second order linear differential equation

(r(t)y′(t))′ + a(t)y(t) = 0

oscillate. The obtained results generalize, extend and improve the results in
Džurina [1].

1. Introduction

Consider the second order linear differential equation

(r(t)y′(t))′ + a(t)y(t) = 0, t ≥ t0, (1.1)

where a and r are continuous functions on [t0,∞),

a(t) ≥ 0 for t ≥ t0 ,

r(t) > 0 for t ≥ t0 and
∫ ∞

t0

1
r(t)

dt = ∞ .
(1.2)

Our results pertain only to the nontrivial continuable solutions x(t) of (1.1), i.e.
x(t) is defined on an interval of the form [tx,∞) and for every T in [tx,∞) we have
sup{|x(t)| : t ≥ T} > 0. Such a solution is called a proper solution of (1.1). A
proper solution x : [tx,∞) → R of (1.1) is said to be oscillatory if it has a sequence
of zeros tending to +∞ and nonoscillatory otherwise. Equation (1.1) is said to
be oscillatory if all its proper solutions are oscillatory, otherwise it is said to be
nonoscillatory. If x(t) is a nonoscillatory solution of (1.1), in what follows, we will
assume that it is positive on its interval of definition.

Among numerous papers dealing with the oscillatory character of the proper
solutions of (1.1), we refer the reader to [1]. We concentrate on the following
results, where R(t) =

∫ t

t0
1

r(s)ds for t ≥ t0.

Theorem 1.1 ([4]). Assume (1.2) and
∫∞

t0
Rα(t)a(t)dt = ∞ for some α ∈ (0, 1).

Then (1.1) is oscillatory.
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Theorem 1.2 ([1]). Assume (1.2) and

lim inf
t→∞

R(t)
∫ ∞

t

a(s)ds >
1
4
. (1.3)

Then (1.1) is oscillatory.

Theorem 1.3 ([3]). Assume (1.2) and∫ ∞

t0

(
(1 +R(t))a(t)− 1

4r(t)(1 +R(t))
)
dt = ∞ . (1.4)

Then (1.1) is oscillatory.

This article consists of an introduction and two more sections. In Section 2 we
show that (1.1) has a positive proper solution if and only if the Ricatti equation

x′(t) +
1
r(t)

x2(t) + a(t) = 0

has a positive proper solution. We use this fact to establish our auxiliary results
for existence or nonexistence of positive proper solutions. In Section 3, using the
results of Section 2, we formulate our main results which generalize, extend and
improve Theorems 1.1,1.2, 1.3. This fact is illustrated by an appropriate example.

2. Auxiliary results

The following proposition shows the relationship between (1.1) and the Ricatti
equation

x′(t) +
1
r(t)

x2(t) + a(t) = 0 . (2.1)

Lemma 2.1. Let (1.2) hold. Then (1.1) has a positive solution if and only if (2.1)
has a positive solution.

Proof. If a(t) = 0 on an interval of the form [T,∞) ⊂ (t0,∞), then the function

x(t) =
1

1 +
∫ t

T
1

r(s)ds

for t ≥ T is a positive solution of (2.1) on [T,∞). Let sup{t ∈ [t0,∞) : a(t) >
0} = ∞ and let y be a positive solution of (1.1) on an interval of the form [T,∞) ⊂
(t0,∞). Then, by Lemma in Kiguradze [2], the function x(t) = r(t)y′(t)/y(t) is
positive. Taking x′ and using (1.1), it is easy to check that x(t) satisfies (2.1) for
t ≥ T .

Let x be a positive solution of equation (2.1) on an interval of the form [T,∞) ⊂
(t0,∞) and consider the function

y(t) = exp
( ∫ t

T

x(s)
r(s)

ds
)

for t ≥ T .

Then, using y′(t) and (2.1), it is easy to see that y(t) satisfies (1.1) for t ≥ T . This
completes the proof of the lemma. �

In view of the above result, it is enough to investigate the existence or nonexis-
tence of positive solutions for equation

x′(t) +
1
ϕ(t)

x2(t) + ψ(t) = 0, (2.2)
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where ϕ and ψ are continuous function on [t0,∞)

ψ(t) ≥ 0 for t ≥ t0 ,

ϕ(t) > 0 for t ≥ t0 and
∫ ∞

t0

1
ϕ(t)

dt = ∞ .
(2.3)

For the proof of existence of positive solutions to (7), we will use of the following
fixed point theorem [5]. This technique is convenient for our needs and uses the
following notion.

Definition 2.2. Let X be a partially ordered set. Then it is said to be a complete
lattice, if each its nonempty subset has a supremum and infimum in X.

Definition 2.3. Let X be a partially ordered set. Then the operator Θ : X 7→ X
is said to be an isotonous one, if Θ[x] ≤ Θ[y] for each x, y ∈ X such that x ≤ y.

Theorem 2.4. Let X be a complete lattice and Θ : X 7→ X be an isotonous
operator. Then Θ has at least one fixed point in X.

The proof of this theroem can be found in [5].

Lemma 2.5. Let (2.3) hold and let x be a positive solution of (2.2) on an interval
of the form [T,∞) ⊂ (t0,∞). Then

x(t) =
∫ ∞

t

x2(s)
ϕ(s)

ds+
∫ ∞

t

ψ(s)ds for t ≥ T . (2.4)

Proof. By (2.2) and (2.3) the function x is nonincreasing on [T,∞) and

x(t) = x(s) +
∫ s

t

x2(u)
ϕ(u)

du+
∫ s

t

ψ(u)du for T ≤ t ≤ s .

Hence for s→∞ we obtain

x(t) = lim
s→∞

x(s) +
∫ ∞

t

x2(u)
ϕ(u)

du+
∫ ∞

t

ψ(u)du for t ≥ T . (2.5)

Let t ≥ T be arbitrary. If lims→∞ x(s) > 0, then, (2.3), it follows that∫ ∞

t

x2(u)
ϕ(u)

du = ∞.

However, this contradicts (2.5) and proves (2.4), which completes the proof. �

To prove our next result, we set

Φ(t) = 1 +
∫ t

t0

1
ϕ(s)

ds , ϕ̃(t) = φ(t)Φ(t),

ψ̃(t) = Φ(t)ψ(t)− 1
4ϕ(t)Φ(t)

for t ≥ t0

and consider the equation

x̃′(t) +
1
ϕ̃(t)

x̃2(t) + ψ̃(t) = 0 . (2.6)

Lemma 2.6. Let (2.3) hold and let ψ̃(t) ≥ 0 for t ≥ t0. Then (2.2) has a positive
solution solution if and only if equation (2.6) has a positive solution.
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Proof. Remark that the functions ϕ̃ and ψ̃ satisfy the conditions (2.3). If ψ̃(t) = 0
on an interval of the form [T,∞) ⊂ (t0,∞), then the function

x(t) =
1

1 +
∫ t

T
1

ϕ̃(s)ds

for t ≥ T is a positive solution of equation (2.6) on the interval (T1,∞), T1 ≥ T .
Now, let sup{t ∈ [t0,∞) : ψ̃(t) > 0} = ∞ and let x be a positive solution of

equation (2.2) on an interval of the form [T,∞) ⊂ (t0,∞). Define the function
x̃(t) = Φ(t)x(t) − 1

2 . Taking x̃′(t) and using (2.2), it is easy to see that x̃(t) is a
solution of equation (2.6) on the interval [T,∞). Moreover, from (2.6) it follows
that x̃′(t) ≤ 0, while x̃(t) is nonincreasing for t ≥ T . Thus, there exists (proper or
improper) limt→∞ x̃(t). If limt→∞ x̃(t) = α 6= 0, then there exist β > 0 and T2 > T
such that x̃2(t) > β and from (2.6),

x̃′(t) ≤ − β

ϕ̃(t)
for t ≥ T2 .

Integrating this inequality from T2 to t, t > T2, and using (2.3), we find that
limt→∞ x̃(t) = −∞. Hence, there is a T3 > T such that x̃(t) < − 1

2 and x(t) < 0 for
t > T3. This contradicts the positivity of x. Therefore, we see that limt→∞ x̃(t) = 0.
Since x̃ is nonincreasing and ψ̃ is not eventually trivial, the function x̃ must be
positive on [T,∞).

On the other hand, if (2.6) has a positive solution x̃ on some interval of the form
[T,∞) ⊂ (t0,∞), then the function x(t) = 2x̃(t)+1

2Φ(t) is a positive solution of equation
(2.2). This completes the proof of lemma. �

Lemma 2.7. Let (2.3) hold and let T > t0 be such that∫ ∞

T

ψ(t)dt <∞ ,∫ ∞

t

Ψ2(s)
ϕ(s)

ds ≤ 1
4
Ψ(t) for t ≥ T,

(2.7)

where Ψ(t) =
∫∞

t
ψ(s)ds for t > T . Then (2.2) has at least one positive solution.

Proof. If ψ(t) = 0 on some [T0,∞) ⊂ [T,∞), then the function

x(t) =
1

1 +
∫ t

S
1

ϕ(s)ds

for t ≥ T0 is a positive solution of (2.2) on [T0,∞).
Assume now that sup{t ∈ [t0,∞) : ψ(t) > 0} = ∞. Then Ψ(t) > 0 for t ≥ t0.

Let X be the set of all nonincreasing functions x defined on [T,∞) and such that

Ψ(t) ≤ x(t) ≤ 2Ψ(t) for t ≥ T . (2.8)

Then X is a , partially ordered set with the usual point-wise ordering, i.e. x ≤ y,
if x(t) ≤ y(t) for any t ≥ T . It is obvious that for any nonempty subset Y of X
the function x(t) = sup{y(t) : y ∈ Y } for t ≥ T is nonincreasing and satisfies (2.8).
The same is valid for the infimum. Thus, the set X is a complete lattice. Define
the operator Θ, acting on the set X, by the formula

Θ[x](t) =
∫ ∞

t

x2(s)
ϕ(s)

ds+ Ψ(t) for t ≥ T . (2.9)



EJDE-2004/28 OSCILLATION OF SOLUTIONS 5

In view of (2.3) and (2.7), Θ[x] is well-defined, Θ[X] ⊂ X, and Θ is an isotonous
operator. Therefore, by Theorem 2.4, there exists an x ∈ X such that x = Θ[x].
Using (2.9) and (2.7)(iii), it is not difficult to show that this fixed point x is the
desired positive solution of equation (2.2) on [T,∞). The proof of the lemma is
complete. �

Lemma 2.8. Let (2.3) hold and let T > t0 be such that∫ ∞

T

ψ(t)dt <∞ ,

Φ(t)
∫ ∞

t

ψ(s)ds ≤ 1
4

for t ≥ T .

(2.10)

Then (2.2) has at least one positive solution.

Proof. The proof of this lemma is similar to the proof of the Lemma 2.7. We use
the same operator Θ, acting on the set X of all nonincreasing functions x defined
on an interval of the form [T,∞) ⊂ (t0,∞) and such that

1
4Φ(t)

≤ x(t) ≤ 1
2Φ(t)

for t ≥ T .

�

Lemma 2.9. Let (2.3) hold and let∫ ∞

t0

ψ(t)dt = ∞ . (2.11)

Then (2.2) has no positive solution.

Proof. Assume, for the sake of contradiction, that (2.2) has a positive solution x
on some interval of the form [T,∞) ⊂ (t0,∞). Then, in view of (2.2), we see that
x′(t) ≤ −ψ(t) for t ≥ T . An integration of this inequality from T to t, t > T , and
the assumption (2.11) lead to a contradiction which proves the lemma. �

Lemma 2.10. Let (2.3) hold and let∫ ∞

t0

ψ(t)dt <∞, lim inf
t→∞

Φ(t)
∫ ∞

t

ψ(s)ds >
1
4
. (2.12)

Then (2.2) has no positive solution.

Proof. Assume, for the sake of contradiction, that (2.2) has a positive solution x
on an interval of the form [T,∞) ⊂ (t0,∞). Then, by Lemma 2.5, (2.4) holds.
Moreover, by (2.12), there exist an α > 1

4 and a T1 ≥ T such that∫ ∞

t

ψ(s)ds ≥ α

Φ(t)
for t ≥ T1 .

Hence, in view of (2.4), we find that x(t) ≥ α
Φ(t) for t ≥ T1. Applying the same

step, we get

x(t) ≥
∫ ∞

t

α2

ϕ(s)Φ2(s)
ds+

∫ ∞

t

ψ(s)ds ≥ α2 + α

Φ(t)
for t ≥ T1.

Repeating the above procedure n-times, we conclude that

x(t) ≥ βn

Φ(t)
for t ≥ S
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where β1 = α and βn+1 = β2
n +α for n = 1, 2, . . . . As we see, the sequence {βn}∞n=1

is nondecreasing and bounded, while limn→∞ βn = β is a solution to the quadratic
equation β2 − β + α = 0. This implies that 1 − 4α ≥ 0, which contradicts α > 1

4 .
The proof of the lemma is complete. �

Lemma 2.11. Let (2.3) hold and let∫ ∞

t0

ψ(t)dt <∞,

∫ ∞

t0

Φα(t)ψ(t)dt = ∞ for some α ∈ (0, 1) . (2.13)

Then (2.2) has no positive solution.

Proof. Assume, for the sake of contradiction , that (2.2) has a positive solution x
on an interval of the form [T,∞) ⊂ (t0,∞). Let z(t) = Φα(t)x(t) for t ≥ T . Then,
by (2.2), for t ≥ T ,

z′(t) = −Φα(t)ψ(t)− Φα(t)
ϕ(t)

[x(t)− α

2Φ(t)
]2 +

α2Φα−2(t)
4ϕ(t)

≤ −Φα(t)ψ(t) +
α2Φα−2(t)

4ϕ(t)
.

Integrating this inequality and using (2.13), we lead to a contradiction. The proof
of the lemma is complete. �

Lemma 2.12. Let (2.3) hold and let∫ ∞

t0

ψ(t)dt <∞, lim sup
t→∞

∫ t

t0

[
Φ(s)ψ(s)− 1

4ϕ(s)Φ(s)
]
ds = ∞ . (2.14)

Then equation (2.2) has no positive solution.

Proof. Assume, for the sake of contradiction , that (2.2) has a positive solution x
on an interval of the form [T,∞) ⊂ (t0,∞). Set z(t) = Φ(t)x(t) − 1

2 for t ≥ T .
Then, by (2.2), for t ≥ T ,

z′(t) = − z2(t)
ϕ(t)Φ(t)

− Φ(t)ψ(t) +
1

4ϕ(t)Φ(t)

≤ −Φ(t)ψ(t) +
1

4ϕ(t)Φ(t)

Integrating this inequality and using (2.14), we conclude that there is a T1 ≥ T
such that z(t) < −1 for t ≥ T1. This implies x(t) < 0 for t ≥ T1, which is a
contradiction. The proof of the lemma is complete. �

Lemma 2.13. Let (2.3) hold, sup{t ∈ [t0,∞) : ψ(t) > 0} = ∞, and let∫ ∞

t0

ψ(t)dt <∞, lim inf
t→∞

∫∞
t

Ψ2(s)
ϕ(s) ds

Ψ(t)
>

1
4
, (2.15)

where Ψ(t) =
∫∞

t
ψ(s)ds. Then (2.2) has no positive solution.

Proof. Let, for the sake of contradiction, (2.2) has a positive solution x on an
interval of the form [T,∞) ⊂ (t0,∞). In view of (2.15), there exist an α > 1

4 and
a T0 ≥ T such that ∫ ∞

t

Ψ2(s)
ϕ(s)

ds ≥ αΨ(t) for t ≥ T0 .
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Using this inequality and (2.4), as in the proof of the Lemma 2.10, we get

x(t) ≥ βnΨ(t) for t ≥ S

where β1 = 1 and βn+1 = αβ2
n + 1 for n = 1, 2, . . . . It is easy to see that the

sequence {βn}∞n=1 is nondecreasing and bounded, while limn→∞ βn = β satisfies
the quadratic equation αβ2 − β + 1 = 0. This implies that 1 − 4α ≥ 0, which
contradicts α > 1

4 . The proof of the lemma is complete. �

3. Main results

Now we turn our attention to equation (1.1). Set

ϕ1(t) = r(t), ψ1(t) = a(t), Φ1(t) = 1 +
∫ t

t0

1
ϕ1(s)

ds ,

ϕi+1(t) = ϕi(t)Φi(t), ψi+1(t) = Φi(t)ψi(t)−
1

4ϕi(t)Φi(t)
,

Φi+1(t) = 1 +
∫ t

t0

1
ϕi+1(s)

ds

(3.1)

for t ≥ t0 and i = 1, 2, . . . . Consider the Ricatti equation

x′(t) +
x2(t)
ϕi(t)

+ ψi(t) = 0 . (3.2)

In what follows we shall assume that for i ∈ {1, 2, . . . } and T > t0,

ψi(t) ≥ 0 for t ≥ T. (3.3)

First, we state the following very important result.

Theorem 3.1. Let (1.2) and (3.3) hold. Then (1.1) has a positive solution if and
only if equation (3.2) has a positive solution.

Proof. Note that the functions ϕ = ϕj and ψ = ψj satisfy the conditions (2.3) for
j = 1, 2, . . . , i. If i = 1, the proof of the lemma follows by applying Lemma 2.1
with ϕ = ϕ1, ψ = ψ1, while, if i > 1, then the proof follows by applying Lemma
2.6 with ϕ = ϕj−1, ψ = ψj−1, ϕ̃ = ϕj , ψ̃ = ψj for j = 2, 3, . . . , i. �

Then, using Theorem 3.1 and the results of the previous section with ϕ = ϕi,
ψ = ψi, we formulate the following statements.

Theorem 3.2. Let (1.2) and (3.3) hold, and let∫ ∞

T

ψi(t)dt <∞ ,∫ ∞

t

Ψ2
i (s)

ϕi(s)
ds ≤ 1

4
Ψi(t) for t ≥ T

(3.4)

where Ψi(t) =
∫∞

t
ψi(s)ds for t > T . Then (1.1) is nonoscillatory.

Theorem 3.3. Let (1.2) and (3.3) hold, and let∫ ∞

T

ψi(t)dt <∞ ,

Φi(t)
∫ ∞

t

ψi(s)ds ≤
1
4

for t ≥ T .

(3.5)

Then (1.1) is nonoscillatory.
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Theorem 3.4. Let (1.2) and (3.3) hold, and let∫ ∞

t0

ψi(t)dt = ∞ . (3.6)

Then (1.1) is oscillatory.

Theorem 3.5. Let (1.2) and (3.3) hold, and let∫ ∞

t0

ψi(t)dt <∞, lim inf
t→∞

Φi(t)
∫ ∞

t

ψi(s)ds >
1
4
. (3.7)

Then (1.1) is oscillatory.

Theorem 3.6. Let (1.2) and (3.3) hold, and let∫ ∞

t0

ψi(t)dt <∞,

∫ ∞

t0

Φα
i (t)ψ(t)dt = ∞ for some α ∈ (0, 1) . (3.8)

Then (1.1) is oscillatory.

Theorem 3.7. Let (1.2) and (3.3) hold, and let∫ ∞

t0

ψi(t)dt <∞, lim sup
t→∞

∫ t

t0

[
Φi(s)ψi(s)−

1
4ϕi(s)Φi(s)

]
ds = ∞ . (3.9)

Then (1.1) is oscillatory.

Theorem 3.8. Let (1.2) and (3.3) hold, sup{t ∈ [t0,∞) : ψ(t) > 0} = ∞, and let∫ ∞

t0

ψi(t)dt <∞, lim inf
t→∞

∫∞
t

Ψ2
i (s)

ϕi(s)
ds

Ψi(t)
>

1
4
, (3.10)

where Ψi(t) =
∫∞

t
ψi(s)ds. Then (1.1) is oscillatory.

Remark 3.9. The above results for i = 1 lead to Theorems 1.1, 1.2, and 1.3.

Example 3.10. To illustrate our results, consider (1.1) with r(t) = 1 and for t ≥ 1,

a(t) =
1

4t2
+

1
4t2(1 + ln t)2

+
1

4t2(1 + ln t)2(1 + ln(1 + ln t))
.

This equation satisfies the conditions (3.9) of the Theorem 3.7 for i = 3, but not for
i < 3. On the other hand, it does not satisfy the conditions of Theorems 1.1-1.3.
In a similar way we can construct examples when i > 3.
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