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PERIODIC DUFFING EQUATIONS WITH DELAY

JEAN-MARC BELLEY & MICHEL VIRGILIO

Abstract. Assuming a priori bounds on the mean of a T -periodic function
p, we show that the Duffing equation

x′′(t) + cx′(t) + g(t− τ, x(t− τ), x′(t− τ)) = p(t),

with delay τ , admits a T -periodic solution.

1. Introduction

The existence of 2π-periodic solutions to the Duffing equation

x′′(t) + g(x(t− τ)) = p(t) (1.1)

with delay τ ≥ 0 is a challenging problem of current interest. In [10] it is shown
that such solutions exist for continuous 2π -periodic p : R → R of mean p = 0 and
continuous g : R → R for which there exist A ∈ [0, 1/π2[ and C ≥ 0 such that, for
all |x| large enough, one has simultaneously

xg(x) > 0 , (1.2)

|g(x)| ≤ A|x|+ C . (1.3)

This result (like that found in [19] for a somewhat different equation with more
complicated a priori bounds) was obtained by means of Brouwer degree theory
with a continuation theorem based on Mawhin’s coincidence degree (see [11] and
[12]). It generalizes, for the case p = 0, a similar result obtained in [9] for p ∈ R
where, for all |x| large enough, condition (1.2) is replaced by

sgn(x)(g(x)− p) > 0 (1.4)

and condition (1.3) by
|g(x)| ≤ C (1.5)

for some C > 0. In practice though, conditions (1.2) and (1.4) are often not met, as
in the case of the classical forced pendulum equation where τ = 0 and g(x) = a sinx
(a > 0). The result presented in [19] rests on a complex inequality which is also not
applicable to the forced pendulum equation (since it then takes the form 0 > 0). In
[5] it is shown by means of coincidence degree that equation (1.1) with τ = 0 and
g′ < 0 (which also does not hold for the pendulum equation) possesses a unique
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2π-periodic solution if and only if p ∈ g(R). As shown in [1], there are cases where
the nonconservative forced pendulum equation with periodic forcing (and τ = 0)
admits no periodic solution. (See also [18].) The results obtained here on the
existence of twice continuously differentiable periodic solutions to equations that
generalize ( 1.1) are applicable to the forced pendulum equation. As we shall see in
Theorem 4.5, the contraction principle yields a result which contains the following:

Theorem 1.1. Given A ∈]0, 1/
√

2[, let g : R → R be a continuous function such
that

|g(x2)− g(x1)| < A|x2 − x1| (1.6)

for all x1, x2 ∈ R and let ϕ be the solution of mean zero of x′′ = p − p, where
p : R → R is a continuous 2π-periodic function of mean p. If

inf
r∈R

g(ϕ+ r) + λ′‖ϕ‖H ≤ p ≤ sup
r∈R

g(ϕ+ r)− λ′‖ϕ‖H

where

g(ϕ+ r) =
1
2π

∫
[0,2π]

g(ϕ(t) + r) dt, λ′ =
√

2A2

1−
√

2A
,

‖ϕ‖H =
[ 1
2π

∫
[0,2π]

(ϕ(t) + ϕ′(t))2 dt
]1/2

,

then the Duffing equation

x′′(t) + g(x(t− τ)) = p(t)

with delay τ ∈ R admits a twice continuously differentiable 2π-periodic solution.

An equation like that of the conservative forced pendulum x′′+a sinx = p where
c = τ = 0 and g(x) = a sinx (a > 0) satisfies the Lipschitz condition (1.6) for A = a
and so, by the theorem above, one has the existence of 2π-periodic solutions of this
equation whenever the stated a priori bounds on p are respected and a ∈]0, 1/

√
2[.

In this paper, one exploits the argument presented in [2] for Josephson’s equation

x′′ + cx′ + dx′ cosx+ a sinx = p

with a, c, d ∈ R. Note that Josephson’s equation does not satisfy the Lipschitz
condition (2.2) on which rests this paper. As for results on the existence of al-
most periodic solutions to the Duffing equation, one could no doubt employ the
techniques used in [3] for Josephson’s equation. This is left for future work.

2. Preliminaries

For a given T > 0, let C(T ) be the class of all continuous real-valued T -periodic
functions on R and L1(T ) the set of all real-valued T -periodic functions on R the
restriction of which to the segment [0, T ] are Lebesgue integrable functions. Let
C1(T ) be the class of all continuously differentiable functions in C(T ), C2(T ) the
class of all twice continuously differentiable functions in C(T ) and L2(T ) the Hilbert
space of all x ∈ L1(T ) with usual finite norm

‖x‖2 =
[ 1
T

∫
[0,T ]

|x(t)|2 dt
]1/2

.
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The inner product on L2(T ) associated with this norm is given by

〈x, y〉2 =
1
T

∫
[0,T ]

x(t)y(t) dt.

For a given c ∈ R, let L be the linear operator

Lx = x′′ + cx′.

The theorem in the previous section will be extended to the case where p ∈ L1(T )
and the function g : R3 → R in the Duffing equation

Lx(t) + g(t− τ, x(t− τ), x′(t− τ)) = p(t) (2.1)

with delay τ ∈ R is continuous and such that g(t, x, y) is T -periodic in t ∈ R for all
(x, y) ∈ R2, and satisfies the Lipschitz condition

|g(t, x2, y2)− g(t, x1, y1)| ≤ A|x2 − x1|+B|y2 − y1| (2.2)

for all t ∈ R, suitable A,B ∈ [0,∞[ and all (x1, y1), (x2, y2) ∈ R2. This condition
implies the inequality

sup{|g(t, x, y)| : t ∈ R} ≤ A|x|+B|y|+ C (2.3)

for all (x, y) ∈ R2 and some C ≥ 0 (put, for example, C = sup{|g(t, 0, 0)| : t ∈ R}).
The inequality (2.3) is a natural generalization of (1.3).

The mean x of any x ∈ L1(T ) is given by the Lebesgue integral

x =
1
T

∫
[0,T ]

x(t) dt

and x can be identified with its Fourier series∑
n∈Z

x̂(n)einωt,

where i =
√
−1, ω = 2π/T and

x̂(n) =
1
T

∫
[0,T ]

x(t)e−inωt dt.

Hence, x̂(0) = x and, since x is real-valued, x̂(−n) is the complex conjugate of x̂(n).
The class P (T ) of real trigonometric polynomials is the subset of all x ∈ L1(T )
with x̂(n) = 0 for all but at most finitely many n ∈ Z. Given S ⊂ L1(T ), S̃ denotes
that subset of L1(T ) given by

S̃ = {x− x : x ∈ S}

and so one has x = x̃+ x for all x ∈ L1(T ). If x, y ∈ L̃1(T ) are such that∫
[0,T ]

x(t)q′(t) dt = −
∫

[0,T ]

y(t)q(t) dt

for all q ∈ P̃ (T ), then y is the weak derivative of x (denoted x′) and x can be taken
continuous by means of x = z − z where

z(t) =
∫

[0,t]

y(t) dt
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for all t ∈ R. Similarly, if x, z ∈ L̃1(T ) are such that∫
[0,T ]

x(t)q′′(t) dt =
∫

[0,T ]

z(t)q(t) dt

for all q ∈ P̃ (T ), then z is the weak second derivative of x (denoted x′′) and x can
be taken continuously differentiable.

Let H be the subspace of L2(T ) consisting of all x ∈ C(T ) with weak derivative
x′ ∈ L̃2(T ). On H one has the inner product

〈x, y〉H = 〈x, y〉2 + 〈x′, y′〉2
with associated norm

‖x‖H = [‖x‖2
2 + ‖x′‖2

2]
1/2 = ‖x+ x′‖2

and, on H̃, the well-known Sobolev inequality (see for example [14])

sup
0≤t≤T

|x(t)|2 ≤ T 2

12
‖x′‖2

2.

Consequently, strong convergence in H̃ implies uniform convergence (to an element
of C̃(T )). Furthermore, H̃ is complete, as is now shown.

Proposition 2.1. H̃ is a Hilbert space.

Proof. Let {xn} be a Cauchy sequence in H̃. Then there exists y ∈ L̃2(T ) such
that ‖y − x′n‖2 → 0 (as n → ∞) and, by above, there exists x ∈ C̃(T ) such that
‖x − xn‖2 → 0 (as n → ∞). For any q ∈ P̃ (T ), the relation 〈xn, q

′〉2 = −〈x′n, q〉2
holds for all n, and so in the limit as n→∞, 〈x, q′〉2 = −〈y, q〉2. From this follows
that y = x′ in L̃2(T ). This shows that x ∈ H̃. �

Remark 2.2. Sobolev’s inequality yields

|x(t)| ≤ T√
12
‖x‖H

for all t ∈ R. Thus, a point evaluation is a bounded linear functional on H̃ and so, if
a sequence {xn} converges weakly in H̃ to x0 (denoted xn ⇀ x0), then it converges
pointwise to x0. By the Banach-Steinhaus theorem, {xn} is bounded in H̃ and so,
by the above inequality, {xn(t)} is a uniformly bounded sequence of functions.

For ψ ∈ H, put

gτ [ψ](t) = g(t− τ, ψ(t− τ), ψ′(t− τ)).

Proposition 2.3. Given a continuous function g : R3 → R for which g(t, x, y) is
T -periodic in t ∈ R for all (x, y) ∈ R2, let there exist A,B,C ∈ [0,∞[ for which
condition (2.3) is satisfied for all t, x, y ∈ R. Then gτ [ψ] ∈ L2(T ) for all ψ ∈ H.

Proof. One has, for any ψ ∈ H,

‖gτ [ψ]‖2 ≤ ‖A|ψ|+B|ψ′|+ C‖2 ≤ C +
√
A2 +B2‖ψ‖H <∞

and so gτ [ψ] ∈ L2(T ). �
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One now introduces a subspace of H̃ used later in section 3. Let H be the
subspace of H given by

H = {x ∈ C1(T ) : x′ ∈ H}
and on which is defined the inner product

〈x, y〉H = 〈x′, y′〉H .

This inner product is associated with the norm ‖x‖H on H̃ given by ‖x‖H = ‖x′‖H .

Proposition 2.4. H̃ is a Hilbert space.

This result is proved like Proposition 2.1 with the sequences {xn} and {x′n}
replaced by {x′n} and {x′′n} respectively.

Remark 2.5. By Wirtinger’s inequality ω‖x‖2 ≤ ‖x′‖2 on H̃ (see, for example
[14]) one obtains

ω‖x‖H ≤ ‖x‖H
for all x ∈ H̃. Furthermore, Sobolev’s inequality yields

|x′(t)| ≤ T√
12
‖x′‖H

for all x ∈ H̃ and so if a sequence {xn} converges weakly in H̃ to x0 (also denoted
xn ⇀ x0) then x′n converges pointwise to x′0. The sequence {xn} also converges
weakly to x0 in H̃ since, for all q ∈ P̃ (T ), one has

lim
n→∞

〈xn, q
′′〉H = − lim

n→∞
〈xn, q〉H = −〈x0, q〉H = −〈x′0, q′〉H = 〈x0, q

′′〉H

and from this follows that xn also converges pointwise (to x0).

Given p ∈ L1(T ), there exists a unique function ϕ ∈ C̃1(T ) ⊂ H̃, with weak
second derivative ϕ′′ ∈ L̃1(T ), which satisfies the linear differential equation

Lx(t) = p̃(t). (2.4)

Furthermore ϕ ∈ C̃2(T ) whenever p ∈ C(T ). The substitution in (2.1) of ϕ+x ∈ H
in place of x ∈ H yields the equivalent equation

Lx+ gτ [ϕ+ x] = p. (2.5)

The existence of a solution x ∈ C1(T ) of (2.5) with weak second derivative x′′ ∈
L̃2(T ) is equivalent to the existence of a scalar r ∈ R and of a function xr ∈ H̃ such
that x = xr is a solution of

Lx+ gτ [ϕ+ x+ r] = p

in L2(T ). This, in turn, is equivalent to finding a scalar r ∈ R and a function
xr ∈ H̃ such that x = xr is simultaneously a solution of

Lx+ g̃τ [ϕ+ x+ r] = 0 (2.6)

in L̃2(T ) and of
gτ [ϕ+ x+ r] = p. (2.7)

To ease notation, let gτ,r[x] = gτ [ϕ+ x+ r]. Then equation (2.6) becomes

Lx+ g̃τ,r[x] = 0 (2.8)
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in L̃2(T ) while (2.7) takes the form

gτ,r[x] = p. (2.9)

This reformulation of the original problem is modeled after that found in [7] for the
forced pendulum equation.

3. The case g = g(t, x, y)

For a given r ∈ R, equation (2.8) is equivalent to the system of equations

(n2ω2 − inωc)x̂(n) = ĝτ,r[x](n)

for all n ∈ Z\{0}. Let Gτ,r be defined on H̃ by

Gτ,r(x)(t) =
∑

n∈Z\{0}

1
(n2ω2 − inωc)

ĝτ,r[x](n)einωt. (3.1)

The function
γ(t) =

∑
n∈Z\{0}

1
(n2ω2 − inωc)

einωt

lies in H̃ and yields
Gτ,r(x) = γ ∗ gτ,r[x]

for all x ∈ H̃, where the star represents the convolution operator.

3.1. Contraction principle on H̃. The Lipschitz condition (2.2) implies con-
dition (2.3) and so, by Proposition 2.3 , gτ [ψ] ∈ L2(T ) for all ψ ∈ H. Hence
Gτ,r : H̃ → H̃ ⊂ H̃ and so Gτ,r maps H̃ into itself and x = xr ∈ H̃ is a solution of
(2.8) in the sense of L̃2(T ) whenever it is a fixed point of Gτ,r on H̃. The existence
of such a fixed point is established by means of the contraction principle in the
following theorem.

Theorem 3.1. Let g : R3 → R be a continuous function such that g(t, x, y) is
T -periodic in t ∈ R for all (x, y) ∈ R2 and let A,B ∈ [0,∞[ and c ∈ R be such that

A2 +B2 < ω2
(ω2 + min{1, c2}

ω2 + 1
)

(3.2)

and (2.2) is satisfied for all t ∈ R and all (x1, y1), (x2, y2) ∈ R2. Then, given
p ∈ L1(T ) and r ∈ R, there exists a unique continuously differentiable T -periodic
function xr of mean zero, with weak second derivative x′′r ∈ L2(T ), which is a
solution of equation (2.8) in the sense of L2(T ). Furthermore,

xr = lim
n→∞

Gn
τ,r(x) (3.3)

in L2(T ) for all x ∈ L2(T ), and if p ∈ C(T ) then xr ∈ C2(T ).

Proof. For any x, y ∈ H̃ one has

‖Gτ,r(y)−Gτ,r(x)‖2
H =

∑
n∈Z\{0}

∣∣ (inω − n2ω2)[ĝτ,r[y](n)− ĝτ,r[x](n)]
n2ω2 − inωc

∣∣2
≤ σ2

∑
n∈Z\{0}

|ĝτ,r[y](n)− ĝτ,r[x](n)|2

≤ σ2‖gτ,r[y]− gτ,r[x]‖2
2 ,
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where

σ = sup
n∈Z\{0}

[ n2ω2 + n4ω4

n4ω4 + n2ω2c2
]1/2

=

{
1 if c2 ≥ 1√

ω2+1
ω2+c2 if c2 < 1

=

√
ω2 + 1

ω2 + min{1, c2}

and so one obtains

‖Gτ,r(y)−Gτ,r(x)‖H ≤ σ

ω

√
A2 +B2‖y − x‖H.

Hence, whenever (3.2) holds, Gτ,r is a contraction on H̃ and so admits a unique
fixed point xr ∈ H̃ given by the successive approximations (3.3) of Banach and
Picard. �

Since ϕ′′ ∈ L1(T ), the above result can be reformulated in terms of zr = ϕ+xr+r
as follows:

Corollary 3.2. Let g : R3 → R be a continuous function such that g(t, x, y) is
T -periodic in t ∈ R for all (x, y) ∈ R2. Also, let c ∈ R and A,B ∈ [0,∞[ be such
that (2.2) and (3.2) hold for all t ∈ R. Then, given r ∈ R and p ∈ L1(T ), there
exists a function zr ∈ C1(T ) of mean r, with weak second derivative z′′r ∈ L1(T ),
such that for some constant kr ∈ R, x = zr is a solution in the sense of L1(T ) of
the Duffing equation

x′′(t) + cx′(t) + g(t− τ, x(t− τ), x′(t− τ)) = p(t) + kr

with delay τ ∈ R. Furthermore, if p ∈ C(T ) then zr ∈ C2(T ).

The constant kr is given by

kr =
1
T

∫
[0,T ]

[g(t, zr(t), z′r(t))− p(t)] dt. (3.4)

The conservative pendulum equation

x′′ + a sinx = p(t) (3.5)

with a ∈ R and continuous T -periodic forcing p(t), can be used to show that (2.8)
may admit no solution that also solves (2.9) (i.e. for which kr 6= 0 for all r ∈ R).
For example, if the constant term in the Fourier series of the forcing p(t) is too
great, then the pendulum will wind indefinitely about its fixed point, and so no
periodic motion will be possible. (See also [1].)

When p ∈ {gτ,r[zr] : r ∈ R}, equation (2.9) is satisfied for some r ∈ R and one
obtains the following resolution of the original equation (2.1).

Corollary 3.3. If, in the context of the theorem, one has p = gτ,r[zr] for some
r ∈ R, then there exists a continuously differentiable function with weak second
derivative in L1(T ), which is a solution of equation (2.1) in the sense of L1(T ).
Furthermore, if p ∈ C(T ) then the solution is twice continuously differentiable.

One now searches for conditions that will permit the existence of some r ∈ R
such that kr = 0 (i.e. such that xr solves not only (2.8) but also (2.9)).
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Lemma 3.4. In the context of the previous theorem, if r → r0 in R, then xr ⇀ xr0

in H̃.

Proof. By the contraction principle, the set {xr : r ∈ R} lies in a (weakly compact)
ball in H̃ and so there exists a subsequence {xrn

}∞n=1 such that rn → r0 and xrn

converges weakly in H̃ to an element x0 as n → ∞. Thus, by Remark 2.5 both
{xrn

}∞n=1 and {x′rn
}∞n=1 are uniformly bounded sequences which converge pointwise

to x0 and x′0, respectively. Hence, for all q ∈ P̃ (T ), one has by Lebesgue’s dominated
convergence theorem

lim
n→∞

〈Lxrn
, q〉2 = − lim

n→∞
〈x′rn

+ cxrn
, q′〉2 = −〈x′0 + cx0, q

′〉2 = 〈Lx0, q〉2

and

lim
n→∞

〈gτ,rn [xrn ], q〉2 = 〈gτ,r0 [x0], q〉2.

Since 〈Lxrn
+ gτ,rn

[xrn
], q〉2 = 0 for all n ∈ N, then in the limit as n → ∞ one

obtains

〈Lx0 + gτ,r0 [x0], q〉2 = 0

for all q ∈ P̃ (T ). By uniqueness, x = xr0 is the only solution in H̃ of

〈Lx+ gτ,r0 [x], q〉2 = 0

and so one has x0 = xr0 . �

The intermediate value theorem can now be applied to justify the existence of a
solution of equation (2.9) (i.e. the existence of r ∈ R for which kr = 0). Thus, one
has the following corollary to Theorem 3.1.

Corollary 3.5. In the context of the theorem, equation (2.1) admits a continuously
differentiable solution with weak second derivative in L1(T ) if and only if

inf
r∈R

g(t, ϕ+ xr + r, ϕ′ + x′r) ≤ p ≤ sup
r∈R

g(t, ϕ+ xr + r, ϕ′ + x′r). (3.6)

Furthermore, if p is continuous, then the solution is twice continuously differen-
tiable.

The bounds in (3.6) being difficult to calculate in most cases, a priori bounds
for p that imply condition (3.6) will now be obtained.



EJDE-2004/30 PERIODIC DUFFING EQUATIONS WITH DELAY 9

3.2. A priori bounds for p. By (2.2) one has

|gτ,r[xr]− gτ,r[Gn
τ,r(x)]| ≤

1
T

∫
[0,T ]

|gτ,r[xr](t)− gτ,r[Gn
τ,r(x)](t)| dt

≤ 1
T

∫
[0,T ]

A|xr(t)− [Gn
τ,r(x)](t)| dt

+
1
T

∫
[0,T ]

B|x′r(t)− [Gn
τ,r(x)]

′(t)| dt

≤
√
A2 +B2‖xr −Gn

τ,r(x)‖H

≤
√
A2 +B2

∞∑
k=n

‖Gk+1
τ,r (x)−Gk

τ,r(x)‖H

≤
√
A2 +B2‖Gτ,r(x)− x‖H

∞∑
k=n

(
β

ω
)k

=
(β/ω)n

1− β/ω

√
A2 +B2‖Gτ,r(x)− x‖H ,

where

β = σ
√
A2 +B2 =

√
(A2 +B2)(ω2 + 1)
ω2 + min{1, c2}

. (3.7)

Hence (3.6) holds whenever, for an x ∈ H̃ and some n ∈ N, one has

inf
r∈R

gτ,r[Gn
τ,r(x)] + λn‖Gτ,r(x)− x‖H

≤ p

≤ sup
r∈R

gτ,r[Gn
τ,r(x)]− λn‖Gτ,r(x)− x‖H ,

where

λn =
(β/ω)n

1− β/ω

√
(A2 +B2) .

For x = −ϕ one has Gτ,r(−ϕ) = 0 and so (3.6) holds whenever, for some n ∈ N,
one has

inf
r∈R

gτ,r[Gn
τ,r(−ϕ)] + λn‖ϕ‖H ≤ p ≤ sup

r∈R
gτ,r[Gn

τ,r(−ϕ)]− λn‖ϕ‖H , (3.8)

where

gτ,r[Gn
τ,r(−ϕ)] =

1
T

∫
[0,T ]

gτ,r[Gn
τ,r(−ϕ)] dt .

The following statement subsumes what has been proved for the case n = 1.

Theorem 3.6. Let p : R → R with mean p be a T -periodic function which is
Lebesgue integrable on [0, T ] and, for a given c ∈ R, let ϕ be the continuously
differentiable solution of mean zero of the linear equation x′′+ cx′ = p− p. Also let
A,B ∈ [0,∞[ be such that

β =

√
(A2 +B2)(ω2 + 1)
(ω2 + min{1, c2})

< ω ,



10 J.-M. BELLEY & M. VIRGILIO EJDE-2004/30

where ω = 2π/T and let g : R3→ R be a continuous function for which g(t, x, y) is
T -periodic in t ∈ R for all (x, y) ∈ R2 and such that

|g(t, x2, y2)− g(t, x1, y1)| ≤ A|x2 − x1|+B|y2 − y1|
for all t ∈ R and all (x1, y1), (x2, y2) ∈ R2. If

inf
r∈R

[g(t, ϕ+ r, ϕ′) + λ‖ϕ‖H ] ≤ p ≤ sup
r∈R

[g(t, ϕ+ r, ϕ′)− λ‖ϕ‖H ] ,

where

g(t, ϕ+ r, ϕ′) =
1
T

∫
[0,T ]

g(t, ϕ(t) + r, ϕ′(t)) dt ,

‖ϕ‖H = [
1
T

∫
[0,T ]

|ϕ(t) + ϕ′(t)|2 dt]1/2 ,

λ =
β

ω − β

√
(A2 +B2) .

Then the Duffing equation

x′′(t) + cx′(t) + g(t− τ, x(t− τ), x′(t− τ)) = p(t)

with delay τ ∈ R admits a continuously differentiable T -periodic solution with
weak second derivative which is Lebesgue integrable on [0, T ]. Furthermore, if p is
continuous, then the solution is twice continuously differentiable.

Example 3.7. For α ∈ R, the Duffing equation with delay τ ∈ R

x′′(t) +
1
3

cos2(t− τ) ln(1 + x2(t− τ) + (x′)2(t− τ)) = α+ sin t

is such that c = 0, T = 2π (and so ω = 1), ϕ(t) = − sin t and

g(t, x, y) =
1
3

cos2(t) ln(1 + x2 + y2).

Since
| ln(1 + x2

2 + y2
2)− ln(1 + x2

1 + y2
1)| ≤ |x2 − x1|+ |y2 − y1|

for all (x1, y1), (x2, y2) ∈ R2, then

|g(t, x2, y2)− g(t, x1, y1)| ≤
1
3
[|x2 − x1|+ |y2 − y1|]

and so one has (2.2) for A = B = 1
3 . Furthermore β = 2/3 < 1, ‖ϕ‖H = 1,

λ = 2
√

2/3,

inf
r∈R

g(t, ϕ+ r, ϕ′) = inf
r∈R

1
6π

∫
[0,2π]

(cos2 t) ln(1 + (r − sin t)2 + cos2 t) dt

≤ inf
r∈R

1
6π

∫
[0,2π]

(cos2 t) ln(1 + (|r|+ | sin t|)2 + cos2 t) dt

=
1
6π

ln 2
∫

[0,2π]

cos2 t dt

=
1
6

ln 2

and

sup
r∈R

g(t, ϕ+ r, ϕ′) = sup
r∈R

1
6π

∫
[0,2π]

ln(1 + (r − sin t)2 + cos2 t) = ∞.
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Hence, by the previous theorem, the Duffing equation admits a 2π -periodic solution
whenever

1
6

ln 2 +
2
√

2
3

≤ α <∞.

The example above does not fulfill condition (1.4) and so the results in [10] and
[19] (as well as those in [4], [6], [8] [13] and [15] for the case τ = 0) do not apply.

4. The case g = g(t, x)

In this case condition (2.2) becomes

|g(t, x2)− g(t, x1)| ≤ A|x2 − x1| (4.1)

for suitable A ≥ 0 and all t, x1,x2 ∈ R, and so (2.3) becomes

sup{|g(t, x)| : t ∈ R} ≤ A|x|+ C (4.2)

for some C ≥ 0 and all x ∈ R., One can take C = sup{|g(t, 0)| : t ∈ R}, for example.

4.1. Contraction principle on H̃. By Proposition 2.3, one has Gτ,r : H̃ → H̃
⊂ H̃ and so x = xr ∈ H̃ is a solution of (2.8) in the sense of L̃2(T ) if and only if
it is a fixed point of Gτ,r on H̃. Thus, the following analog of Theorem 3.1 for the
case g = g(t, x) does not require the space H̃ for its proof. The less restrictive space
H̃ is sufficient and this results in a somewhat different (and more useful) inequality
than (3.2).

Theorem 4.1. Let g : R2 → R be a continuous function such that g(t, x) is T -
periodic in t ∈ R for all x ∈ R and let A ≥ 0 and c ∈ R be such that

A2 < ω2
(ω2 + c2

ω2 + 1
)

(4.3)

holds and (4.1) is satisfied for all t, x1, x2 ∈ R. Then, given p ∈ L1(T ) and r ∈ R,
there exists a unique continuously differentiable T -periodic function xr of mean
zero, with weak second derivative x′′r ∈ L2(T ), which is a solution of equation (2.8)
in the sense of L2(T ). Furthermore,

xr = lim
n→∞

Gn
τ,r(x)

in L2(T ) for all x ∈ L2(T ), and if p ∈ C(T ) then xr ∈ C2(T ).

Proof. Proceeding as in the proof of Theorem 3.1, one obtains for all x, y ∈ H̃,

‖Gτ,r(y)−Gτ,r(x)‖H ≤ β′‖y − x‖H

where

β′ = σ′A =
A

ω

√
ω2 + 1
ω2 + c2

< 1 .

Hence Gτ,r is a contraction on H̃ and so admits a unique fixed point xr ∈ H̃ given
by the successive approximations of Banach and Picard. �

As was done for Corollary 3.2, one can also reformulate the result above in terms
of zr = ϕ+ xr + r where ϕ is the unique T -periodic solution of mean zero of (2.4)
with ϕ′′ ∈ L1(T ).
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Corollary 4.2. Let c ∈ R and A ≥ 0 be such that (4.1) and (4.3) hold and let
g : R2 → R be a continuous function such that g(t, x) is T -periodic in t ∈ R for all
x ∈ R. Then, given r ∈ R and p ∈ L1(T ) of mean p, there exists zr ∈ C1(T ) of
mean r with weak second derivative z′′r ∈ L1(T ) such that, for some kr ∈ R, x = zr

is a solution in the sense of L1(T ) of the Duffing equation

x′′(t) + cx′(t) + g(t− τ, x(t− τ)) = p(t) + kr

with delay τ ∈ R. Furthermore, if p ∈ C(T ) then zr ∈ C2(T ).

The constant kr is again given by (3.4). The following lemma permits one to
deduce, under condition (3.6), the existence of some r ∈ R such that kr = 0 (i.e.
such that xr is also a solution of (2.9)).

Lemma 4.3. In the context of the previous theorem, if r → r0 in R then xr ⇀ xr0

in H̃.

The proof is like that of Lemma 3.4. The intermediate value theorem now yields
the following corollary to Theorem 3.6.

Corollary 4.4. In the context of the previous theorem, equation (2.1) admits a
continuously differentiable solution with weak second derivative in L1(T ) if and
only if (3.6) is satisfied. Furthermore, if p is continuous, then the solution is twice
continuously differentiable.

Clearly condition (3.6) holds whenever one has sgn(x)(g(t, x) − p) > 0 for all
t ∈ R and all |x| large enough. This is essentially condition (1.4) found in [9].

4.2. A priori bounds for p. Proceeding as in section 3.2, one has, for all x ∈ H̃
and all n ∈ N,

|gτ,r[xr]− gτ,r[Gn
τ,r(x)]| ≤

A(β′)n

1− β′
‖Gτ,r(x)− x‖2 ,

where

β′ = Aσ′ =
A

ω

√
ω2 + 1
ω2 + c2

.

Hence condition (3.6) holds whenever

inf
r∈R

gτ,r(Gn
τ,r(x)) + λ′n‖Gτ,r(x)− x‖2 ≤ p ≤ sup

r∈R
gτ,r(Gn

τ,r(x))− λ′n‖Gτ,r(x)− x‖2

for some x ∈ H̃ and an n ∈ N, where

λ′n =
A(β′)n

1− β′
.

The case x = −ϕ and n = 1 yields the following:

Theorem 4.5. Let p : R → R with mean p be a T -periodic function which is
Lebesgue integrable on [0, T ] and ϕ be the continuously differentiable solution of
mean zero of the linear equation x′′ + cx′ = p − p for a given c ∈ R. Also let
A ∈ [0,∞[ be such that

β′ =
A

ω

√
ω2 + 1
ω2 + c2

< 1 ,
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where ω = 2π/T and let g : R2→ R be a continuous function for which g(t, x) is
T -periodic in t ∈ R for all x ∈ R and such that

|g(t, x2)− g(t, x1)| ≤ A|x2 − x1|

for all t, x1, x2 ∈ R. If

inf
r∈R

[g(t, ϕ+ r) + λ′‖ϕ‖2] ≤ p ≤ sup
r∈R

[g(t, ϕ+ r)− λ′‖ϕ‖2] ,

where

‖ϕ‖2 = [
1
T

∫
[0,T ]

|ϕ(t)|2 dt] 1
2 and λ′ =

Aβ′

1− β′

then the equation

x′′(t) + cx′(t) + g(t− τ, x(t− τ)) = p(t)

with delay τ ∈ R admits a continuously differentiable T -periodic solution with weak
second derivative which is Lebesgue integrable on [0, T ]. Furthermore, if p is con-
tinuous, then the solution is twice continuously differentiable.

To show that the results of this section can be applied to cases not covered by
section 3.2, consider the following example where β > 1 and β′ < 1.

Example 4.6. For α ∈ R the equation with delay τ ∈ R

x′′(t) + 2x′(t) +
√

2 cos2(t− τ) ln(1 + x2(t− τ)) = α+ sin t− 2 cos t

is such that c = 2, T = 2π (and so ω = 1), ϕ(t) = − sin t and

g(t, x) =
√

2 cos2(t) ln(1 + x2).

Hence
|g(t, x2)− g(t, x1)| ≤

√
2|x2 − x1|

and so one has (4.1) for A =
√

2. Furthermore β′ = 2/
√

5 < 1 (and β =
√

2 > 1),
‖ϕ‖2 = 1/

√
2, λ′ = 2

√
2/(

√
5− 2),

inf
r∈R

g(t, ϕ+ r) = inf
r∈R

√
2

2π

∫
[0,2π]

cos2(t) ln(1 + (r − sin t)2) dt

≤ inf
r∈R

√
2

2π

∫
[0,2π]

cos2(t) ln(1 + (|r|+ | sin t|)2) dt

<

√
2

2π
ln 2

∫
[0,2π]

cos2(t) dt

=
1√
2

ln 2

and

sup
r∈R

g(t, ϕ+ r) = sup
r∈R

√
2

2π

∫
[0,2π]

cos2(t) ln(1 + (r − sin t)2) dt = ∞ .

Hence, by the previous theorem, the delay equation admits a 2π-periodic solution
whenever

1√
2

ln 2 +
2

(
√

5− 2)
≤ α <∞ .
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5. The case of bounded g = g(t, x)

Let g : R2 → R be a bounded continuous function such that g(t, x) is T -periodic
in t ∈ R for all x ∈ R. Condition (4.2) then reduces to

sup{|g(t, x)| : t ∈ R} ≤ C (5.1)

for some C ≥ 0 and all x ∈ R.

5.1. Contraction principle on L̃2(T ). Suppose that one has simultaneously con-
ditions (4.1) and (5.1). Since g is bounded and continuous, one has gτ,r[x] ∈ L2(T )
for all x ∈ L2(T ) and so (3.1) defines Gτ,r as a function from L̃2(T ) to H̃ ⊂ L̃2(T ).
Hence a fixed point of Gτ,r on L̃2(T ) lies in H̃. Proceeding as in the proof of
Theorem 3.1, one obtains for all x, y ∈ L̃2(T ),

‖Gτ,r(y)−Gτ,r(x)‖2
2 ≤ (β′′)2‖y − x‖2

2

where
β′′ =

A

ω
√
ω2 + c2

.

Hence, when β′′ < 1, Gτ,r is a contraction on L̃2(T ) and so admits a unique fixed
point xr ∈ H̃ given by the successive approximations of Banach and Picard. This
proves the following statement.

Theorem 5.1. Let g : R2 → R be a bounded continuous function such that g(t, x)
is T -periodic in t ∈ R for all x ∈ R and let A ≥ 0 and c ∈ R be such that

A < ω
√
ω2 + c2 (5.2)

holds and (4.1) is satisfied for all t, x1, x2 ∈ R. Then, given p ∈ L1(T ) and r ∈ R,
there exists a unique continuously differentiable T -periodic function xr of mean
zero, with weak second derivative x′′r ∈ L2(T ), which is a solution of equation (2.8)
in the sense of L2(T ). Furthermore,

xr = lim
n→∞

Gn
τ,r(x)

in L2(T ) for all x ∈ L2(T ), and if p ∈ C(T ) then xr ∈ C2(T ).

Condition (5.2) is an improvement over (4.3) which, in turn, is an improvement
over (3.2) with B = 0. There are important cases where g satisfies both the
Lipschitz condition (4.1 ) and the boundedness condition (5.1). For example, the
nonconservative pendulum equation

x′′ + cx′ + a sinx = p (5.3)

with a, c ∈ R and forcing p ∈ L1(T ) is such that these two conditions hold for
A = C = |a|. Hence ( 5.2) becomes

|a| < ω
√
ω2 + c2

and so in this manner one obtains the result stated in [18] (and proved in [7] and
[14]) to the effect that the equation

x′′ + a sinx = p(t) + (asinx− p)

admits a twice continuously differentiable T -periodic solution of mean zero when-
ever (5.2) holds.

The intermediate value theorem now yields the following statement.
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Corollary 5.2. In the context of the previous theorem, equation (2.1) admits a
continuously differentiable solution with weak second derivative in L1(T ) if and
only if (3.6) is satisfied. Furthermore, if p is continuous, then the solution is twice
continuously differentiable.

The pendulum equation (5.3) is such that the function g(t, x) = a sinx is 2π-
periodic in x for all t ∈ R. This fact yields results for (5.3) that are stronger
than the above corollary and that have been given in [18] (and generalized in [2]).
Moreover, we point out that when (5.2) holds the techniques employed in [18] yield
the added result that the map r → xr from R to C2(T ) is analytic. On the other
hand, [16] provides an upper bound, as a function of p, for the number of T -periodic
solutions of (5.3) when aT 2 < 18

√
3, c = 0 and p ∈ L1(T ). No condition other than

(3.6) is imposed on p. Clearly the condition aT 2 < 18
√

3 in [16] is more restrictive
than the inequality aT 2 < 4π2 imposed in [2] and [18] for the case c = 0. Similar
results, applicable to the conservative pendulum equation, are obtained in [17] for
equation (2.1) with τ = 0, c = 0 and g(t, x) = ∂

∂xV (t, x) where the potential V (t, x)
must satisfy certain subquadraticity conditions. No similar result is obtained here.
On the other hand, the elementary contraction principle allows one in the following
section to replace condition (3.6) by more manageable a priori bounds.

Example 5.3. Given a continuous 2π-periodic function p : R → R, the equation
with delay τ ∈ R

x′′(t) + x′(t) +

√
3
2

cos(t− τ) sinx(t− τ) = p(t)

is such that c = 1, T = 2π (and so ω = 1), g(t, x) =
√

3/2 cos t sinx, and so one has
(4.1) and (5.2) for A =

√
3/2. One notes that β′′ =

√
3/2 < 1 and β′ =

√
3/2 > 1,

and so (5.2) is satisfied while (4.3) is not. Thus, by the previous corollary, the delay
equation admits a twice continuously differentiable 2π-periodic solution if and only
if (3.6) holds.

5.2. A priori bounds for p. Proceeding as in section 4.2, one has

|gτ,r[xr]− gτ,r[Gn
τ,r(x)]| ≤

A(β′′)n

1− β′′
‖Gτ,r(x)− x‖2

for all x ∈ L̃2(T ) and all n ∈ N. Hence condition (3.6) holds whenever

inf
r∈R

gτ,r[Gn
τ,r(x)] + λ′′n‖Gτ,r(x)− x‖2 ≤ p ≤ sup

r∈R
gτ,r[Gn

τ,r(x)]− λ′′n‖Gτ,r(x)− x‖2

(5.4)
for some x ∈ L̃2(T ) and an n ∈ N, where

λ′′n =
A(β′′)n

1− β′′
.

Thus the case x = −ϕ and n = 1 yields the following result.

Theorem 5.4. Let p : R → R with mean p be a T -periodic function which is
Lebesgue integrable on [0, T ] and ϕ be the continuously differentiable solution of
mean zero of the linear equation x′′ + cx′ = p − p for a given c ∈ R. Also let
A ∈ [0,∞[ be such that

β′′ =
A

ω
√
ω2 + c2

< 1
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where ω = 2π/T and let g : R2→ R be a bounded continuous function for which
g(t, x) is T -periodic in t ∈ R for all x ∈ R and such that

|g(t, x2)− g(t, x2)| ≤ A|x2 − x1|

for all t, x1, x2 ∈ R. If

inf
r∈R

g(t, ϕ+ r) + λ′′‖ϕ‖2 ≤ p ≤ sup
r∈R

g(t, ϕ+ r)− λ′′‖ϕ‖2

where

‖ϕ‖2 = [
1
T

∫
[0,T ]

|ϕ(t)|2 dt]1/2 and λ′′ =
Aβ′′

1− β′′

then the equation

x′′(t) + cx′(t) + g(t− τ, x(t− τ)) = p(t)

with delay τ ∈ R admits a continuously differentiable T -periodic solution with
weak second derivative which is Lebesgue integrable on [0, T ]. Furthermore, if p is
continuous, then the solution is twice continuously differentiable.

The above theorem can now be applied to the forced pendulum equation.

Example 5.5. Given T > 0 and ω = 2π/T , suppose that the nonconservative
pendulum equation

x′′(t) + cx′(t) + a sinx(t) = α+ b sinωt

with forcing p(t) = α+ b sinωt is such that |a| < ω
√
ω2 + c2. Then

ϕ(t) = − bω

c2ω2 + ω4
[c cosωt+ ω sinωt]

is the T -periodic solution of mean zero of the linear equation

x′′(t) + cx′(t) = b sinωt.

One has

‖ϕ‖2 =
|b|√

2
√
ω2 + c2

and, by Maclaurin’s series expansion for trigonometric functions,

sinϕ = sin(− beiωt

2(cω + iω2)
− be−iωt

2(cω − iω2)
)

=
1
T

∫ T

0

sin(− beiωt

2(cω + iω2)
) cos(

be−iωt

2(cω − iω2)
) dt

+
1
T

∫ T

0

cos(
beiωt

2(cω + iω2)
) sin(− be−iωt

2(cω − iω2)
) dt

= 0 .

Thus,

inf
r∈R

asin(ϕ+ r) = inf
r∈R

a[cosϕ sin r + sinϕ cos r] = inf
r∈R

acosϕ sin r = −|acosϕ|

and

sup
r∈R

asin(ϕ+ r) = sup
r∈R

a[cosϕ sin r + sinϕ cos r] = sup
r∈R

acosϕ sin r = |acosϕ|
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and so, by the previous theorem, one is assured of the existence of a twice continu-
ously differentiable T -periodic solution whenever α satisfies

−|acosϕ|+ λ′′
|ab|√

2
√
ω2 + c2

< α < |acosϕ| − λ′′
|ab|√

2
√
ω2 + c2

where

λ′′ =

√
a2

ω
√
ω2 + c2 − |a|

and

cosϕ = cos(− beiωt

2(cω + iω2)
− be−iωt

2(cω − iω2)
)

=
1
T

∫ T

0

cos(
beiωt

2(cω + iω2)
) cos(

be−iωt

2(cω − iω2)
) dt

− 1
T

∫ T

0

sin(
beiωt

2(cω + iω2)
) sin(

be−iωt

2(cω − iω2)
) dt

=
∞∑

n=0

(−1)n

(2n(n!))2
(

b2

c2ω2 + ω4
)n.

In many cases the a priori bounds of the previous theorem are never satisfied.
For example, the equation with delay τ ∈ R

x′′(t) + x′(t) +

√
3
2

cos(t− τ) sinx(t− τ) = α− sin t+ cos t (5.5)

is such that ϕ(t) = sin t. Hence

g(t, ϕ+ r) =

√
3/2
2π

∫ 2π

0

cos t sin(r + sin t) dt = 0

and so
inf
r∈R

g(t, ϕ+ r) = sup
r∈R

g(t, ϕ+ r) = 0.

Thus, the a priori bounds of the previous theorem are not satisfied here. So one
needs to apply (5.4) for different choices than x = −ϕ and/or n = 1.

References

[1] J. M. Alonso, “Nonexistence of periodic solutions for a damped pendulum equation” , Diff.
Int. Eq. 10 (1997), no. 6, 1141-1148.

[2] J.-M. Belley and K. Saadi Drissi, “Existence of periodic solutions to the forced Josephson

equation” , Acad. Roy. Belg. Bull. Cl. Sci. (6) 12 (2001), no. 7-12, 209-224.
[3] J.-M. Belley and K. Saadi Drissi, “Almost periodic solutions to Josephson’s equation” ,

Nonlinearity 16 (2003), no. 1, 35-47.

[4] L. Cesari and R. Kannan, “Periodic solutions in the large of Liénard systems with forced
fording term”, Boll. Un Mat. Ital., A(6) 1(1982), 217-224.

[5] H. B. Chen, L. Yu and X. Y. Yuan, “Existence and uniqueness of periodic solution of Duffing’s

equation”, J. Math. Res. Exposition 22(2002), no. 4, 615-620.
[6] A. Fonda and D. Lupo, “Periodic solutions of second order ordinary differential equations”,

Boll. Un Mat. Ital., A(7) 3(1989), 291-299.
[7] G. Fournier and J. Mahwin, “On periodic solutions of forced pendulum-like equations” , J.

Diff. Eq. 60 (1985), 381-395.

[8] J. P. Gossez and P. Omari, “Nonresonance with respect to the Fučik spectrum for periodic
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