INTEGRABILITY OF BLOW-UP SOLUTIONS TO SOME NON-LINEAR DIFFERENTIAL EQUATIONS

MICHAEL KARLS \& AHMED MOHAMMED

$$
\begin{aligned}
& \text { Abstract. We investigate the integrability of solutions to the boundary blow- } \\
& \text { up problem } \\
& \qquad r^{-\lambda}\left(r^{\lambda}\left(u^{\prime}\right)^{p-1}\right)^{\prime}=H(r, u), \quad u^{\prime}(0) \geq 0, \quad u(R)=\infty
\end{aligned}
$$

under some appropriate conditions on the non-linearity H.

1. Introduction

Let $\lambda \geq 0, p>1, R>0$. For $0<r<R$ we consider solutions $u \in C^{1}([0, R))$ of the problem

$$
\begin{gather*}
r^{-\lambda}\left(r^{\lambda}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=H(r, u) \\
u(0) \geq 0, \quad u^{\prime}(0) \geq 0, \quad \lim _{r \rightarrow R} u(r)=\infty \tag{1.1}
\end{gather*}
$$

Here H satisfies the conditions
(H1) $H:[0, R) \times[0, \infty) \rightarrow[0, \infty)$ is continuous,
(H2) $H(\cdot, s)$ is non-decreasing,
(H3) $H(0, s)>0$ for all $s>0$.
Further assumptions on H will be given as needed. In the literature, solutions of (1.1) are known as blow-up solutions, explosive solutions or large solutions.

These type of equations arise as radial solutions of the p-Laplace equation, as well as the Monge Ampére equation on balls. Radial solutions u of the p-Laplace equation

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=J(|x|, u),
$$

in the ball $B:=B(0, R) \subseteq \mathbb{R}^{N}$ satisfy the first equation of 1.1 with $\lambda=N-1$, $H(r, u)=J(r, u)$. Likewise radial solutions of the Monge Ampére equation

$$
\operatorname{det}\left(D^{2} u\right)=J(|x|, u)
$$

in the ball B also satisfy the first equation of (1.1) with $\lambda=0, p=N+1$ and $H(r, u)=N r^{N-1} J(r, u)$.

[^0]Noting that u^{\prime} is non-negative for any solution u of 1.1 , we will find it convenient to rewrite equation 1.1) as

$$
\begin{gather*}
\left(\left(u^{\prime}\right)^{p-1}\right)^{\prime}+\frac{\lambda}{r}\left(u^{\prime}\right)^{p-1}=H(r, u) \tag{1.2}\\
u(0) \geq 0, \quad u^{\prime}(0) \geq 0, \quad u(R)=\infty
\end{gather*}
$$

A necessary and sufficient condition for the existence of a solution to problem 1.1) with $u^{\prime}(0)=0, H(r, u)=f(u)$, and $f(0)=0$, is the (generalized) Keller-Osserman condition (see [5, 9, 8]).

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d s}{F(s)^{1 / p}}<\infty, \quad F(s)=\int_{0}^{s} f(t) d t \tag{1.3}
\end{equation*}
$$

If a nonnegative, non-decreasing continuous function F defined on $[0, \infty)$ satisfies the Keller-Osserman condition $\sqrt{1.3}$ for some $p>1$, we will indicate this by writing $F \in K O(p)$.

When $H(r, s)=f(s)$, and $\lambda=N-1$, problem (1.1) has been studied extensively by several authors, (see [1, 2, 5, 6, 7, 8, 9] and the references therein). The questions of existence, uniqueness and asymptotic boundary estimates have received particular attention. The case when $p=2$ and $H(r, s)=g(r) f(s)$ with $g \in C([0, R])$, possibly vanishing on a set of positive measure, has been considered in 6. In all these cases, the Keller-Osserman condition on f remains the key condition for the existence of solutions. However, if g is allowed to be unbounded the situation is completely different and existence and boundary behavior of a blow-up solution depends on how fast g is allowed to grow near R. For such cases we refer the reader to [10] or [12]. For a discussion on solutions of (1.1) for general non-linearity H, we refer the reader to the paper [13].

In this paper we are interested in studying the integrability property of blow-up solutions to 1.1 for $F \in K O(p)$. A blow-up solution may not have any integrability property at all, as the following example, taken from [11], shows.

Example 1.1. Let $u(r)=-1+e^{(1-r)^{-1}}$. Then

$$
\begin{gathered}
u^{\prime \prime}(r)=f(u), \quad 0<r<1 \\
u^{\prime}(0) \geq 0, \quad u(1)=\infty
\end{gathered}
$$

where $f(s)=(s+1)\left[\log ^{4}(s+1)+2 \log ^{3}(s+1)\right], s \geq 0$. Notice that $u \notin L^{\gamma}(0,1)$ for any $\gamma>0$. The antiderivative F of f that vanishes at zero is given by $F(s)=$ $\left((s+1)^{2} \log ^{4}(s+1)\right) / 2$, and observe that $F \in K O(2)$, but $F \notin K O(\alpha)$ for any $\alpha>2$.

On the other extreme any positive power of a blow-up solution could be integrable. This can be seen from the following example.

Example 1.2. We fix $0<R<1 / 2$ and let

$$
f(s)=e^{s}-1, \quad s \in[0, \infty), \quad \text { and } \quad g(r)=\frac{1}{(r-R+1)(R-r)}, \quad r \in[0, R)
$$

Then $u(r)=-\log (R-r)$ is a solution of

$$
\begin{gathered}
u^{\prime \prime}(r)=g(r) f(u), \quad 0<r<R \\
u^{\prime}(0) \geq 0, \quad u(r) \rightarrow \infty \quad \text { as } r \rightarrow R
\end{gathered}
$$

Note that $u \in L^{\gamma}(0, R)$ for all $\gamma>0$. In this example the primitive F of f with $F(0)=0$ satisfies $F \in K O(\alpha)$ for all $\alpha>0$.

The outline of the paper is as follows. In Section 2 we compare solutions u of (1.2) with solutions of

$$
\begin{gather*}
\left(\left(w^{\prime}\right)^{p-1}\right)^{\prime}+\frac{\lambda}{r}\left(w^{\prime}\right)^{p-1}=H(0, w) \tag{1.4}\\
w(0) \geq 0, \quad w^{\prime}(0)=0, \quad w(R)=\infty
\end{gather*}
$$

for $0<r<R$.
The main result of Section 2, Theorem 2.4 , is used in Section 3 to prove the following integrability result for solutions of (1.2).

Theorem 1.3. Suppose in addition to (H1)-(H3), H(r, $)$ is non-decreasing on $[0, R)$ and for $f(s)=H(0, s), f(0)=0$ and $F \in K O(\alpha)$ for some $\alpha>p$. Then $u \in L^{(\alpha-p) / p}(0, R)$ for any solution u of (1.2).

In Section 3, we also show that for $H(r, s)=g(r) f(s)$, the following result holds.
Theorem 1.4. Let $H(r, s)=g(r) f(s)$ satisfy (H1)-(H3), with $g(0)>0$ and g positive, non-decreasing near R. Suppose (1.2) has a blow-up solution u such that $u \in L^{(\alpha-p) / p}(0, R)$ for some $\alpha>p$. If $g \in L^{1 / \sigma}(0, R)$ with $0<\sigma<p(\alpha-p) / \alpha$, then $F \in K O(\gamma)$ for some $p<\gamma<\alpha$.

Remark 1.5. When $H(r, s)=g(r) f(s)$, (H3) and the requirement that $g(0)>0$ imply that $f(s)>0$ for $s>0$. Since $f(s)>0$, it follows from (H1) that g is non-negative on $[0, R)$.

Finally, we give some corollaries to Theorem 1.4

2. A Comparison Result

We will need the following comparison lemma (see [13] for a proof). For notational convenience in stating the lemma and in this section, we let L denote the differential operator on the left hand side of equation 1.1) above. In this lemma, we use the following notation: $u(a+)<w(a+)$ means there exists $\epsilon>0$ such that $u<w$ in $(a, a+\epsilon)$.
Lemma 2.1. Let $0 \leq a<b$, and suppose $u, w \in C^{1}([a, b])$ with $\left(u^{\prime}\right)^{p-1},\left(w^{\prime}\right)^{p-1} \in$ $C^{1}((a, b])$ satisfy

$$
\begin{gathered}
L u-G(r, u) \leq L w-G(r, w) \quad \text { in }(a, b] \\
u(a+)<w(a+), \quad u^{\prime}(a) \leq w^{\prime}(a)
\end{gathered}
$$

for some function $G(r, s)$ which is non-decreasing in the second variable s. Then $u^{\prime} \leq w^{\prime}$ in $[a, b]$, which implies $u<w$ in $(a, b]$.

Another result we will need is the following, which is a consequence of Lemma 2.1 in [4] via L'Hôpital's Rule.

Lemma 2.2. If $F \in K O(\alpha)$ for some $\alpha>1$, then

$$
\lim _{t \rightarrow \infty} \frac{t^{\alpha}}{F(t)}=0
$$

We need the following lemma, which shows that solutions of 1.2 with initial slope zero have non-decreasing slope for $r \in[0, R)$.

Lemma 2.3. Suppose in addition to (H1)-(H3), $H(r, \cdot)$ is non-decreasing on $[0, R)$. If for $0<r<R$, w is a solution of

$$
\begin{equation*}
\left(\left(w^{\prime}\right)^{p-1}\right)^{\prime}+\frac{\lambda}{r}\left(w^{\prime}\right)^{p-1}=H(r, w), \quad w(0) \geq 0, \quad w^{\prime}(0)=0, \quad w(R)=\infty \tag{2.1}
\end{equation*}
$$

then w^{\prime} is non-decreasing on $[0, R)$.
Proof. Let w be a solution of (2.1). Integrating the equation $\left(r^{\lambda}\left(w^{\prime}\right)^{p-1}\right)^{\prime}=$ $r^{\lambda} H(r, w)$ over the interval $(0, r)$ for any $r \in(0, R)$ and recalling that w^{\prime} is nonnegative, we obtain

$$
\begin{aligned}
\left(w^{\prime}\right)^{p-1} & =r^{-\lambda} \int_{0}^{r} s^{\lambda} H(s, w(s)) d s \\
& \leq r^{-\lambda} H(r, w(r)) \int_{0}^{r} s^{\lambda} d s \\
& =\frac{r}{\lambda+1} H(r, w)
\end{aligned}
$$

Using this inequality back in the equation (2.1) we obtain

$$
\begin{aligned}
H(r, w) & =\left(\left(w^{\prime}\right)^{p-1}\right)^{\prime}+\frac{\lambda}{r}\left(w^{\prime}\right)^{p-1} \\
& \leq\left(\left(w^{\prime}\right)^{p-1}\right)^{\prime}+\frac{\lambda}{r} \cdot \frac{r}{\lambda+1} H(r, w)
\end{aligned}
$$

so that

$$
\begin{equation*}
\left(\left(w^{\prime}\right)^{p-1}\right)^{\prime} \geq \frac{1}{\lambda+1} H(r, w), \quad 0<r<R \tag{2.2}
\end{equation*}
$$

The fact that w^{\prime} is non-decreasing on $(0, R)$ is a consequence of 2.2 as follows. Let $0<r_{1}<r_{2}<R$. Integrating 2.2 on $\left(r_{1}, r_{2}\right)$ leads to

$$
\left(w^{\prime}\left(r_{2}\right)\right)^{p-1}-\left(w^{\prime}\left(r_{1}\right)\right)^{p-1} \geq \frac{1}{\lambda+1} \int_{r_{1}}^{r_{2}} H(s, w(s)) d s \geq 0
$$

We are now ready to state and prove the main result of this section.
Theorem 2.4. Suppose in addition to (H1)-(H3), H(r, •) is non-decreasing on $[0, R)$ and for $f(s)=H(0, s), f(0)=0$ and $F \in K O(p)$. Then there is a solution w of (1.4) such that for any solution u of (1.2),

$$
u(r) \leq w(r), \quad 0 \leq r<R
$$

Proof. For each positive integer k, with $1 / k<R$, let w_{k} be a solution, in $(0, R-$ $1 / k)$, of the problem

$$
\begin{gather*}
\left(\left(w^{\prime}\right)^{p-1}\right)^{\prime}+\frac{\lambda}{r}\left(w^{\prime}\right)^{p-1}=H(0, w), \tag{2.3}\\
w(0) \geq 0, \quad w^{\prime}(0)=0, \quad w(R-1 / k)=\infty
\end{gather*}
$$

This is possible, since $f(s)=H(0, s)$ satisfies the Keller-Osserman condition.
Since $H(0, u) \leq H(r, u)$ for all $0 \leq r<R$, we first note that

$$
L w_{k}-H\left(0, w_{k}\right) \leq L u-H(0, u) \quad \text { on }(0, R-1 / k)
$$

Suppose that $w_{k}(0)<u(0)$. Then, since $0=w_{k}^{\prime}(0) \leq u^{\prime}(0)$, by Lemma 2.1 we conclude that $w_{k}<u$ on $(0, R-1 / k)$. But this is obviously not possible since w_{k}
blows up at $R-1 / k$ and u does not. Thus we must have $u(0) \leq w_{k}(0)$. Actually, we claim that

$$
u(r) \leq w_{k}(r), \quad \text { for all } r \text { with } 0 \leq r<R-\frac{1}{k}
$$

Suppose to the contrary that $u(r)>w_{k}(r)$ for some $0<r<R-1 / k$. Since $u(0) \leq w_{k}(0)$ the function $u-w_{k}$ takes on a positive maximum inside [0, r_{1}] where r_{1} is taken sufficiently close to $R-1 / k$. If r^{*} is such a maximum point, then we have

$$
w_{k}\left(r^{*}\right)<u\left(r^{*}\right), \quad \text { and } \quad w_{k}^{\prime}\left(r^{*}\right)=u^{\prime}\left(r^{*}\right) .
$$

By the comparison Lemma 2.1 we conclude that $w_{k}<u$ on $\left(r^{*}, R-1 / k\right)$, which is impossible. Thus we must have $u(r) \leq w_{k}(r), r \in(0, R-1 / k)$, as claimed.

By a similar argument as above, and using w_{k+1} instead of u, we also conclude that

$$
w_{k+1}(r) \leq w_{k}(r), \quad 0 \leq r<R-\frac{1}{k}
$$

Using this and the fact that w_{k} and w_{k+1} satisfy equation 2.3 we obtain

$$
\begin{aligned}
\left(w_{k+1}^{\prime}(r)\right)^{p-1} & =r^{-\lambda} \int_{0}^{r} s^{\lambda} H\left(0, w_{k+1}(s)\right) d s \\
& \leq r^{-\lambda} \int_{0}^{r} s^{\lambda} H\left(0, w_{k}(s)\right) d s \\
& =\left(w_{k}^{\prime}(r)\right)^{p-1}, \quad 0<r<R-1 / k
\end{aligned}
$$

This shows that $w_{k+1}^{\prime}(r) \leq w_{k}^{\prime}(r), 0 \leq r<R-1 / k$. Therefore, we have

$$
\begin{equation*}
w_{n}^{\prime}(r) \leq w_{m}^{\prime}(r), \quad 0 \leq r<R-1 / m \tag{2.4}
\end{equation*}
$$

whenever $n \geq m>1 / R$.
For $t, r \in(0, R-1 / k)$, and $n>k$ we have

$$
\left|w_{n}(r)-w_{n}(t)\right|=\left|\int_{t}^{r} w_{n}^{\prime}(s) d s\right| \leq w_{n}^{\prime}(\zeta)|r-t| \leq w_{k+1}^{\prime}(R-1 / k)|r-t|
$$

where $\zeta=\max \{r, t\}$. The fact that w_{k+1}^{\prime} is non-decreasing, by Lemma 2.3 has been exploited in the last inequality.

Thus $\left\{w_{n}\right\}_{n=k+1}^{\infty}$ is a bounded equicontinuous family in $C([0, R-1 / k])$, and hence has a uniformly convergent subsequence. Let w be the limit. For $r \in[0, R-1 / k]$ and $n>k$ the solution w_{n} satisfies the integral equation

$$
w_{n}(r)=w_{n}(0)+\int_{0}^{r}\left(\int_{0}^{t}\left(\frac{s}{t}\right)^{\lambda} H\left(0, w_{n}(s)\right) d s\right)^{1 /(p-1)} d t
$$

Letting $n \rightarrow \infty$ we see that w satisfies the same integral equation. Since k is arbitrary we conclude that w satisfies equation (1.4). Since $u \leq w_{n}$ on ($0, R-1 / k$) for each $n \geq k$ we conclude that $u \leq w$ on $(0, R)$.

3. Proofs of Main Results and Some Corollaries

Proof of Theorem 1.3. By Theorem 2.4 we take a solution w of 1.4 such that $u(r) \leq w(r)$ for $0 \leq r<R$. Using $f(w):=H(0, w)$ in place of $H(r, w)$ in inequality (2.2), we note that w satisfies

$$
\left(\left(w^{\prime}\right)^{p-1}\right)^{\prime}>\frac{1}{\lambda+1} f(w), \quad 0<r<R
$$

Multiplying both sides of the above inequality by w^{\prime} and integrating on $(0, r)$, we find that for r close to R,

$$
\begin{aligned}
\frac{p-1}{p}\left(w^{\prime}(r)\right)^{p} & \geq \frac{1}{\lambda+1}[F(w(r))-F(w(0))] \\
& =\frac{1}{\lambda+1} F(w(r))\left[1-\frac{F(w(0))}{F(w(r))}\right] .
\end{aligned}
$$

Thus, for some positive constants C and τ, which may change in each line below, but depend only on the constants λ and the primitive F, we see that

$$
\frac{p-1}{p}\left(w^{\prime}(r)\right)^{p} \geq C F(w(r)), \quad \tau<r<R,
$$

or

$$
\begin{equation*}
F(w(r))^{1 / p} \leq C w^{\prime}(r), \quad \tau<r<R . \tag{3.1}
\end{equation*}
$$

From Lemma 2.2 it follows that

$$
\begin{equation*}
w(r) \leq F(w(r))^{\frac{1}{\alpha}}, \quad \tau<r<R . \tag{3.2}
\end{equation*}
$$

Using (3.1) and (3.2), we obtain

$$
\begin{aligned}
\int_{\tau}^{R} w(r)^{\frac{\alpha-p}{p}} d r & \leq \int_{\tau}^{R} F(w(r))^{\frac{1}{p}-\frac{1}{\alpha}} d r \\
& \leq C \int_{\tau}^{R} \frac{w^{\prime}(r)}{F(w(r))^{\frac{1}{\alpha}}} d r \\
& =C \int_{w(\tau)}^{\infty} \frac{1}{F(t)^{\frac{1}{\alpha}}} d t<\infty
\end{aligned}
$$

Thus, recalling that $u \leq w$ on $(0, R)$ we get

$$
\int_{\tau}^{R} u(r)^{\frac{\alpha-p}{p}} d r \leq C \int_{w(\tau)}^{\infty} \frac{1}{F(t)^{\frac{1}{\alpha}}} d t<\infty
$$

giving the desired result.
Proof of Theorem 1.4. Suppose that g is positive and non-decreasing on $\left(r_{*}, R\right)$ for some $0<r_{*}<R$. Observe that from 1.2 we obtain

$$
\left(\left(u^{\prime}\right)^{p-1}\right)^{\prime} \leq g(r) f(u)
$$

and multiplying both sides of this by u^{\prime} and integrating on $\left(r_{*}, r\right)$ we find that

$$
\frac{u^{\prime}}{F(u)^{1 / p}} \leq(q g(r))^{1 / p}\left[1+\frac{u^{\prime}\left(r_{*}\right)^{p}}{q g(r) F(u(r))}\right]^{1 / p}, \quad r_{*}<r<R,
$$

where q is the Hölder conjugate exponent of p. From this we conclude that, for some positive constants C and r_{0},

$$
\begin{equation*}
\frac{u^{\prime}}{F(u)^{1 / p}} \leq C g(r)^{1 / p}, \quad r_{0}<r<R \tag{3.3}
\end{equation*}
$$

Let $\gamma=\alpha(1-\sigma / p)$. The hypothesis $0<\sigma<p(\alpha-p) / \alpha$ implies that $p<\gamma<\alpha$. Using 3.3 and Hölder's inequality, we obtain

$$
\begin{aligned}
& \int_{u\left(r_{0}\right)}^{\infty} \frac{1}{F(t)^{1 / \gamma}} d t \\
& =\int_{u\left(r_{0}\right)}^{\infty} \frac{t^{(\alpha-p) / \alpha}}{F(t)^{1 / \gamma}} \cdot \frac{1}{t^{(\alpha-p) / \alpha}} d t \\
& \leq\left(\int_{u\left(r_{0}\right)}^{\infty} \frac{t^{[(\alpha-p) / \alpha] \cdot[\gamma / p]}}{F(t)^{1 / p}} d t\right)^{p / \gamma}\left(\int_{u\left(r_{0}\right)}^{\infty} \frac{1}{t^{[(\alpha-p) / \alpha] \cdot[\gamma /(\gamma-p)]}} d t\right)^{(\gamma-p) / \gamma} \\
& \leq C\left(\frac{\alpha}{p} \cdot \frac{\gamma-p}{\alpha-\gamma}\right)^{(\gamma-p) / \gamma}\left(\int_{r_{0}}^{R} \frac{u^{\prime}(r) u(r)^{[(\alpha-p) / p] \cdot[\gamma / \alpha]}}{F(u(r))^{1 / p}} d r\right)^{p / \gamma} \\
& \leq C\left(\frac{\alpha}{p} \cdot \frac{\gamma-p}{\alpha-\gamma}\right)^{(\gamma-p) / \gamma}\left(\int_{0}^{R} g(r)^{1 / p} u(r)^{[(\alpha-p) / p] \cdot[\gamma / \alpha]} d r\right)^{p / \gamma} \\
& \leq C\left(\frac{\alpha}{p} \cdot \frac{\gamma-p}{\alpha-\gamma}\right)^{(\gamma-p) / \gamma}\left(\int_{0}^{R} g(r)^{1 / p \cdot \alpha /(\alpha-\gamma)} d r\right)^{\frac{p}{\gamma} \cdot \frac{\alpha-\gamma}{\alpha}}\left(\int_{0}^{R} u(r)^{(\alpha-p) / p} d r\right)^{p / \alpha} .
\end{aligned}
$$

Recalling that $1 / p \cdot \alpha /(\alpha-\gamma)=1 / \sigma$, by hypothesis the right hand side of the last inequality is finite and this proves the claim.

Note that if g is bounded on $[0, R)$, but not necessarily non-decreasing near R, the right hand side of (3.3) can be replaced by a constant. The proof of Theorem 1.4 shows that $F \in K O(\gamma)$ for any $0<\gamma<\alpha$. We record this as follows.

Corollary 3.1. Let $H(r, s)=g(r) f(s)$ satisfy (H1)-(H3), with $g(0)>0$. Suppose (1.2) has a blow-up solution that belongs to $L^{(\alpha-p) / p}(0, R)$ for some $\alpha>p$. If g is bounded, then $F \in K O(\gamma)$ for any $0<\gamma<\alpha$.

Remark 3.2. The conclusion of Corollary 3.1 is false when g is unbounded near R as the following example shows.

The function $u(r)=(1-r)^{-1}$ is a solution of

$$
\begin{gathered}
u^{\prime \prime}(r)=g(r) f(u) \\
u(0) \geq 0, \quad u^{\prime}(0) \geq 0, \quad u(1)=\infty
\end{gathered}
$$

where

$$
g(r):=2 /(1-r), \quad \text { and } \quad f(s):=s^{2} .
$$

Observe that $u \in L^{(\alpha-2) / 2}(0,1)$ for $2<\alpha<4$. However note that $F \notin K O(3)$.
Corollary 3.3. Suppose $H(r, s)=g(r) f(s)$ satisfies (H1)-(H3), with $g(0)>0, g$ non-decreasing on $[0, R)$, and $f(0)=0$. Further, let g be bounded on $[0, R)$, and let $F \in K O(p)$. Then a blow up solution u of (1.1) belongs to $L^{q}(0, R)$ for some $q>0$ if and only if $F \in K O(\gamma)$ for some $\gamma>p$.

Proof. Suppose $F \in K O(\gamma)$ for some $\gamma>p$. Then by Theorem 1.3, we see that $u \in L^{q}(0, R)$ for $q=(\gamma-p) / p$. For the converse, suppose that $u \in L^{q}(0, R)$ for some $q>0$. Then for $\alpha=p(q+1)$ we see that $q=(\alpha-p) / p$ so that by the above corollary, $F \in K O(\gamma)$ for some $p<\gamma<p(q+1)$.

References

[1] C. Bandle, M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. d'Anal. Math., 58 (1992), 9-24.
[2] C. Bandle, M. Marcus, Asymptotic behavour of solutions and their derivatives for semilinear elliptic problems with blow-up on the boundary, Ann. Inst. H. Poincare 12, (1995), 155-171.
[3] C. Bandle, Y. Cheng, G. Porru, Boundary blow-up in semilinear elliptic problems with singular weights at the boundary, Institut Mitag-Leffler, Report No. 39, (1999/2000),1-14.
[4] F. Gladiali, G. Porru, Estimates for explosive solutions to p-Laplace equations, Progress in Partial Differential Equations, (Pont-á-Mousson 1997), Vol. 1, Pitman Res. Notes Math. Series, Longman 383 (1998), 117-127.
[5] J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
[6] A. V. Lair, A Necessary and Sufficient Condition for Existence of Large Solutions to semilinear Elliptic Equations, J. Math. Anal. Appl. 240 (1999),205-218.
[7] A.C. Lazer, P.J. McKenna, Asymptotic behaviour of solutions of boundary blow up problems, Differential and Integral Equations, 7 (1994), 1001-1019.
[8] J. Matero, Quasilinear Elliptic Equations with Boundary Blow-up, J. d'Anal. Math., 69 (1996) 229-247
[9] R. Osserman, On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7 (1957), 1641-1647.
[10] A. Mohammed, Boundary behavior of blow-up solutions to some weighted non-linear differential equations, Electron. J. Diff. Eqns., 2002 (2002), No. 78, 1-15.
[11] A. Mohammed, G. Porru, Boundary Behaviour and Integrability of Large solutions to pLaplace equations, Mat. Contemp. 19 (2000), 31-40
[12] A. Mohammed, G. Porcu, G. Porru, Large solutions to some non-linear O.D.E. with singular coefficients, Non-linear Analysis, TMA. 47(1) (2001) 513-524
[13] W. Reichel, W. Walter, Radial solutions of equations and inequalities involving the pLaplacian, J. Ineq. Appl. 1 (1997), 47-71

Michael Karls
Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA
E-mail address: mkarls@bsu.edu
Ahmed Mohammed
Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA
E-mail address: amohammed@bsu.edu

[^0]: 1991 Mathematics Subject Classification. 34C11, 34B15, 35J65.
 Key words and phrases. Blow-up solution, Keller-Osserman condition, integrability.
 © 2004 Texas State University - San Marcos.
 Submitted December 25, 2003. Published March 8, 2004.

