Electronic Journal of Differential Equations, Vol. 2004(2004), No. 33, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

INTEGRABILITY OF BLOW-UP SOLUTIONS TO SOME NON-LINEAR DIFFERENTIAL EQUATIONS

MICHAEL KARLS & AHMED MOHAMMED

ABSTRACT. We investigate the integrability of solutions to the boundary blow-up problem

 $r^{-\lambda} \big(r^{\lambda} (u')^{p-1} \big)' = H(r, u), \quad u'(0) \ge 0, \quad u(R) = \infty$ under some appropriate conditions on the non-linearity H.

1. INTRODUCTION

Let $\lambda \ge 0, p > 1, R > 0$. For 0 < r < R we consider solutions $u \in C^1([0, R))$ of the problem

$$r^{-\lambda}(r^{\lambda}|u'|^{p-2}u')' = H(r,u),$$

$$u(0) \ge 0, \quad u'(0) \ge 0, \quad \lim_{r \to R} u(r) = \infty.$$
(1.1)

Here H satisfies the conditions

- (H1) $H: [0, R) \times [0, \infty) \to [0, \infty)$ is continuous,
- (H2) $H(\cdot, s)$ is non-decreasing,
- (H3) H(0,s) > 0 for all s > 0.

Further assumptions on H will be given as needed. In the literature, solutions of (1.1) are known as blow-up solutions, explosive solutions or large solutions.

These type of equations arise as radial solutions of the p-Laplace equation, as well as the Monge Ampére equation on balls. Radial solutions u of the p-Laplace equation

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = J(|x|, u),$$

in the ball $B := B(0, R) \subseteq \mathbb{R}^N$ satisfy the first equation of (1.1) with $\lambda = N - 1$, H(r, u) = J(r, u). Likewise radial solutions of the Monge Ampére equation

$$\det(D^2 u) = J(|x|, u),$$

in the ball B also satisfy the first equation of (1.1) with $\lambda = 0$, p = N + 1 and $H(r, u) = Nr^{N-1}J(r, u)$.

¹⁹⁹¹ Mathematics Subject Classification. 34C11, 34B15, 35J65.

Key words and phrases. Blow-up solution, Keller-Osserman condition, integrability. ©2004 Texas State University - San Marcos.

Submitted December 25, 2003. Published March 8, 2004.

Noting that u' is non-negative for any solution u of (1.1), we will find it convenient to rewrite equation (1.1) as

$$((u')^{p-1})' + \frac{\lambda}{r} (u')^{p-1} = H(r, u),$$

$$u(0) \ge 0, \quad u'(0) \ge 0, \quad u(R) = \infty.$$
(1.2)

A necessary and sufficient condition for the existence of a solution to problem (1.1) with u'(0) = 0, H(r, u) = f(u), and f(0) = 0, is the (generalized) Keller-Osserman condition (see [5, 9, 8]).

$$\int_{1}^{\infty} \frac{ds}{F(s)^{1/p}} < \infty, \quad F(s) = \int_{0}^{s} f(t)dt.$$
(1.3)

If a nonnegative, non-decreasing continuous function F defined on $[0, \infty)$ satisfies the Keller-Osserman condition (1.3) for some p > 1, we will indicate this by writing $F \in KO(p)$.

When H(r, s) = f(s), and $\lambda = N-1$, problem (1.1) has been studied extensively by several authors, (see [1, 2, 5, 6, 7, 8, 9] and the references therein). The questions of existence, uniqueness and asymptotic boundary estimates have received particular attention. The case when p = 2 and H(r, s) = g(r)f(s) with $g \in C([0, R])$, possibly vanishing on a set of positive measure, has been considered in [6]. In all these cases, the Keller-Osserman condition on f remains the key condition for the existence of solutions. However, if g is allowed to be unbounded the situation is completely different and existence and boundary behavior of a blow-up solution depends on how fast g is allowed to grow near R. For such cases we refer the reader to [10] or [12]. For a discussion on solutions of (1.1) for general non-linearity H, we refer the reader to the paper [13].

In this paper we are interested in studying the integrability property of blow-up solutions to (1.1) for $F \in KO(p)$. A blow-up solution may not have any integrability property at all, as the following example, taken from [11], shows.

Example 1.1. Let $u(r) = -1 + e^{(1-r)^{-1}}$. Then

$$\begin{split} u''(r) &= f(u), \quad 0 < r < 1, \\ u'(0) &\geq 0, \quad u(1) = \infty, \end{split}$$

where $f(s) = (s+1)[\log^4(s+1) + 2\log^3(s+1)]$, $s \ge 0$. Notice that $u \notin L^{\gamma}(0,1)$ for any $\gamma > 0$. The antiderivative F of f that vanishes at zero is given by $F(s) = ((s+1)^2 \log^4(s+1))/2$, and observe that $F \in KO(2)$, but $F \notin KO(\alpha)$ for any $\alpha > 2$.

On the other extreme any positive power of a blow-up solution could be integrable. This can be seen from the following example.

Example 1.2. We fix 0 < R < 1/2 and let

$$f(s) = e^s - 1, \quad s \in [0, \infty), \quad \text{and} \quad g(r) = \frac{1}{(r - R + 1)(R - r)}, \quad r \in [0, R)$$

Then $u(r) = -\log(R - r)$ is a solution of

$$u''(r) = g(r)f(u), \quad 0 < r < R,$$

$$u'(0) \ge 0, \quad u(r) \to \infty \quad \text{as } r \to R.$$

EJDE-2004/33

Note that $u \in L^{\gamma}(0, R)$ for all $\gamma > 0$. In this example the primitive F of f with F(0) = 0 satisfies $F \in KO(\alpha)$ for all $\alpha > 0$.

The outline of the paper is as follows. In Section 2 we compare solutions u of (1.2) with solutions of

$$((w')^{p-1})' + \frac{\lambda}{r} (w')^{p-1} = H(0, w),$$

$$w(0) \ge 0, \quad w'(0) = 0, \quad w(R) = \infty,$$
(1.4)

for 0 < r < R.

The main result of Section 2, Theorem 2.4, is used in Section 3 to prove the following integrability result for solutions of (1.2).

Theorem 1.3. Suppose in addition to (H1)-(H3), $H(r, \cdot)$ is non-decreasing on [0, R) and for f(s) = H(0, s), f(0) = 0 and $F \in KO(\alpha)$ for some $\alpha > p$. Then $u \in L^{(\alpha-p)/p}(0, R)$ for any solution u of (1.2).

In Section 3, we also show that for H(r,s) = g(r)f(s), the following result holds.

Theorem 1.4. Let H(r,s) = g(r)f(s) satisfy (H1)-(H3), with g(0) > 0 and g positive, non-decreasing near R. Suppose (1.2) has a blow-up solution u such that $u \in L^{(\alpha-p)/p}(0,R)$ for some $\alpha > p$. If $g \in L^{1/\sigma}(0,R)$ with $0 < \sigma < p(\alpha-p)/\alpha$, then $F \in KO(\gamma)$ for some $p < \gamma < \alpha$.

Remark 1.5. When H(r,s) = g(r)f(s), (H3) and the requirement that g(0) > 0 imply that f(s) > 0 for s > 0. Since f(s) > 0, it follows from (H1) that g is non-negative on [0, R).

Finally, we give some corollaries to Theorem 1.4.

2. A Comparison Result

We will need the following comparison lemma (see [13] for a proof). For notational convenience in stating the lemma and in this section, we let L denote the differential operator on the left hand side of equation (1.1) above. In this lemma, we use the following notation: u(a+) < w(a+) means there exists $\epsilon > 0$ such that u < w in $(a, a + \epsilon)$.

Lemma 2.1. Let $0 \le a < b$, and suppose $u, w \in C^1([a, b])$ with $(u')^{p-1}, (w')^{p-1} \in C^1((a, b])$ satisfy

$$Lu - G(r, u) \le Lw - G(r, w) \quad in \ (a, b]$$
$$u(a+) < w(a+), \quad u'(a) \le w'(a)$$

for some function G(r, s) which is non-decreasing in the second variable s. Then $u' \leq w'$ in [a, b], which implies u < w in (a, b].

Another result we will need is the following, which is a consequence of Lemma 2.1 in [4] via L'Hôpital's Rule.

Lemma 2.2. If $F \in KO(\alpha)$ for some $\alpha > 1$, then

$$\lim_{t \to \infty} \frac{t^{\alpha}}{F(t)} = 0.$$

We need the following lemma, which shows that solutions of (1.2) with initial slope zero have non-decreasing slope for $r \in [0, R)$.

Lemma 2.3. Suppose in addition to (H1)-(H3), $H(r, \cdot)$ is non-decreasing on [0, R). If for 0 < r < R, w is a solution of

$$((w')^{p-1})' + \frac{\lambda}{r}(w')^{p-1} = H(r, w), \ w(0) \ge 0, \ w'(0) = 0, \ w(R) = \infty,$$
(2.1)

then w' is non-decreasing on [0, R).

Proof. Let w be a solution of (2.1). Integrating the equation $(r^{\lambda}(w')^{p-1})' = r^{\lambda}H(r,w)$ over the interval (0,r) for any $r \in (0,R)$ and recalling that w' is non-negative, we obtain

$$(w')^{p-1} = r^{-\lambda} \int_0^r s^{\lambda} H(s, w(s)) \, ds$$
$$\leq r^{-\lambda} H(r, w(r)) \int_0^r s^{\lambda} \, ds$$
$$= \frac{r}{\lambda + 1} H(r, w)$$

Using this inequality back in the equation (2.1) we obtain

$$H(r,w) = ((w')^{p-1})' + \frac{\lambda}{r}(w')^{p-1}$$
$$\leq ((w')^{p-1})' + \frac{\lambda}{r} \cdot \frac{r}{\lambda+1}H(r,w)$$

so that

$$((w')^{p-1})' \ge \frac{1}{\lambda+1}H(r,w), \quad 0 < r < R.$$
 (2.2)

The fact that w' is non-decreasing on (0, R) is a consequence of (2.2) as follows. Let $0 < r_1 < r_2 < R$. Integrating (2.2) on (r_1, r_2) leads to

$$(w'(r_2))^{p-1} - (w'(r_1))^{p-1} \ge \frac{1}{\lambda+1} \int_{r_1}^{r_2} H(s, w(s)) \, ds \ge 0.$$

We are now ready to state and prove the main result of this section.

Theorem 2.4. Suppose in addition to (H1)-(H3), $H(r, \cdot)$ is non-decreasing on [0, R) and for f(s) = H(0, s), f(0) = 0 and $F \in KO(p)$. Then there is a solution w of (1.4) such that for any solution u of (1.2),

$$u(r) \le w(r), \quad 0 \le r < R.$$

Proof. For each positive integer k, with 1/k < R, let w_k be a solution, in (0, R - 1/k), of the problem

$$((w')^{p-1})' + \frac{\lambda}{r} (w')^{p-1} = H(0, w),$$

$$w(0) \ge 0, \quad w'(0) = 0, \quad w(R - 1/k) = \infty.$$
(2.3)

This is possible, since f(s) = H(0, s) satisfies the Keller-Osserman condition. Since $H(0, u) \le H(r, u)$ for all $0 \le r < R$, we first note that

 $Lw_k - H(0, w_k) \le Lu - H(0, u)$ on (0, R - 1/k).

Suppose that $w_k(0) < u(0)$. Then, since $0 = w'_k(0) \le u'(0)$, by Lemma 2.1 we conclude that $w_k < u$ on (0, R - 1/k). But this is obviously not possible since w_k

EJDE-2004/33

$$u(r) \le w_k(r)$$
, for all r with $0 \le r < R - \frac{1}{k}$.

Suppose to the contrary that $u(r) > w_k(r)$ for some 0 < r < R - 1/k. Since $u(0) \le w_k(0)$ the function $u - w_k$ takes on a positive maximum inside $[0, r_1]$ where r_1 is taken sufficiently close to R - 1/k. If r^* is such a maximum point, then we have

$$w_k(r^*) < u(r^*)$$
, and $w'_k(r^*) = u'(r^*)$.

By the comparison Lemma 2.1 we conclude that $w_k < u$ on $(r^*, R - 1/k)$, which is impossible. Thus we must have $u(r) \le w_k(r)$, $r \in (0, R - 1/k)$, as claimed.

By a similar argument as above, and using w_{k+1} instead of u, we also conclude that

$$w_{k+1}(r) \le w_k(r), \quad 0 \le r < R - \frac{1}{k}.$$

Using this and the fact that w_k and w_{k+1} satisfy equation (2.3) we obtain

$$(w'_{k+1}(r))^{p-1} = r^{-\lambda} \int_0^r s^{\lambda} H(0, w_{k+1}(s)) \, ds$$

$$\leq r^{-\lambda} \int_0^r s^{\lambda} H(0, w_k(s)) \, ds$$

$$= (w'_k(r))^{p-1}, \quad 0 < r < R - 1/k.$$

This shows that $w'_{k+1}(r) \leq w'_k(r), 0 \leq r < R - 1/k$. Therefore, we have

$$w'_n(r) \le w'_m(r), \quad 0 \le r < R - 1/m,$$
(2.4)

whenever $n \ge m > 1/R$.

For $t, r \in (0, R - 1/k)$, and n > k we have

$$|w_n(r) - w_n(t)| = \left| \int_t^r w'_n(s) \, ds \right| \le w'_n(\zeta) |r - t| \le w'_{k+1} (R - 1/k) |r - t|,$$

where $\zeta = \max\{r, t\}$. The fact that w'_{k+1} is non-decreasing, by Lemma 2.3, has been exploited in the last inequality.

Thus $\{w_n\}_{n=k+1}^{\infty}$ is a bounded equicontinuous family in C([0, R-1/k]), and hence has a uniformly convergent subsequence. Let w be the limit. For $r \in [0, R-1/k]$ and n > k the solution w_n satisfies the integral equation

$$w_n(r) = w_n(0) + \int_0^r \left(\int_0^t \left(\frac{s}{t}\right)^{\lambda} H(0, w_n(s)) \, ds\right)^{1/(p-1)} dt \, .$$

Letting $n \to \infty$ we see that w satisfies the same integral equation. Since k is arbitrary we conclude that w satisfies equation (1.4). Since $u \le w_n$ on (0, R-1/k) for each $n \ge k$ we conclude that $u \le w$ on (0, R).

3. Proofs of Main Results and Some Corollaries

Proof of Theorem 1.3. By Theorem 2.4 we take a solution w of (1.4) such that $u(r) \leq w(r)$ for $0 \leq r < R$. Using f(w) := H(0, w) in place of H(r, w) in inequality (2.2), we note that w satisfies

$$((w')^{p-1})' > \frac{1}{\lambda+1}f(w), \quad 0 < r < R.$$

Multiplying both sides of the above inequality by w' and integrating on (0, r), we find that for r close to R,

$$\frac{p-1}{p}(w'(r))^p \ge \frac{1}{\lambda+1}[F(w(r)) - F(w(0))]$$
$$= \frac{1}{\lambda+1}F(w(r))\left[1 - \frac{F(w(0))}{F(w(r))}\right].$$

Thus, for some positive constants C and τ , which may change in each line below, but depend only on the constants λ and the primitive F, we see that

$$\frac{p-1}{p} (w'(r))^p \ge CF(w(r)), \quad \tau < r < R,$$

or

$$F(w(r))^{1/p} \le Cw'(r), \quad \tau < r < R.$$
 (3.1)

From Lemma 2.2, it follows that

$$w(r) \le F(w(r))^{\frac{1}{\alpha}}, \quad \tau < r < R.$$
 (3.2)

Using (3.1) and (3.2), we obtain

$$\begin{split} \int_{\tau}^{R} w(r)^{\frac{\alpha-p}{p}} dr &\leq \int_{\tau}^{R} F(w(r))^{\frac{1}{p}-\frac{1}{\alpha}} dr \\ &\leq C \int_{\tau}^{R} \frac{w'(r)}{F(w(r))^{\frac{1}{\alpha}}} dr \\ &= C \int_{w(\tau)}^{\infty} \frac{1}{F(t)^{\frac{1}{\alpha}}} dt < \infty \end{split}$$

Thus, recalling that $u \leq w$ on (0, R) we get

$$\int_{\tau}^{R} u(r)^{\frac{\alpha-p}{p}} dr \le C \int_{w(\tau)}^{\infty} \frac{1}{F(t)^{\frac{1}{\alpha}}} dt < \infty,$$

giving the desired result.

Proof of Theorem 1.4. Suppose that g is positive and non-decreasing on (r_*, R) for some $0 < r_* < R$. Observe that from (1.2) we obtain

$$((u')^{p-1})' \le g(r)f(u),$$

and multiplying both sides of this by u' and integrating on (r_*, r) we find that

$$\frac{u'}{F(u)^{1/p}} \le (qg(r))^{1/p} \left[1 + \frac{u'(r_*)^p}{qg(r)F(u(r))} \right]^{1/p}, \quad r_* < r < R,$$

where q is the Hölder conjugate exponent of p. From this we conclude that, for some positive constants C and r_0 ,

$$\frac{u'}{F(u)^{1/p}} \le Cg(r)^{1/p}, \quad r_0 < r < R.$$
(3.3)

EJDE-2004/33

Let $\gamma = \alpha(1 - \sigma/p)$. The hypothesis $0 < \sigma < p(\alpha - p)/\alpha$ implies that $p < \gamma < \alpha$. Using (3.3) and Hölder's inequality, we obtain

$$\begin{split} &\int_{u(r_0)}^{\infty} \frac{1}{F(t)^{1/\gamma}} dt \\ &= \int_{u(r_0)}^{\infty} \frac{t^{(\alpha-p)/\alpha}}{F(t)^{1/\gamma}} \cdot \frac{1}{t^{(\alpha-p)/\alpha}} dt \\ &\leq \left(\int_{u(r_0)}^{\infty} \frac{t^{[(\alpha-p)/\alpha] \cdot [\gamma/p]}}{F(t)^{1/p}} dt\right)^{p/\gamma} \left(\int_{u(r_0)}^{\infty} \frac{1}{t^{[(\alpha-p)/\alpha] \cdot [\gamma/(\gamma-p)]}} dt\right)^{(\gamma-p)/\gamma} \\ &\leq C \left(\frac{\alpha}{p} \cdot \frac{\gamma-p}{\alpha-\gamma}\right)^{(\gamma-p)/\gamma} \left(\int_{r_0}^{R} \frac{u'(r)u(r)^{[(\alpha-p)/p] \cdot [\gamma/\alpha]}}{F(u(r))^{1/p}} dr\right)^{p/\gamma} \\ &\leq C \left(\frac{\alpha}{p} \cdot \frac{\gamma-p}{\alpha-\gamma}\right)^{(\gamma-p)/\gamma} \left(\int_{0}^{R} g(r)^{1/p}u(r)^{[(\alpha-p)/p] \cdot [\gamma/\alpha]} dr\right)^{p/\gamma} \\ &\leq C \left(\frac{\alpha}{p} \cdot \frac{\gamma-p}{\alpha-\gamma}\right)^{(\gamma-p)/\gamma} \left(\int_{0}^{R} g(r)^{1/p \cdot \alpha/(\alpha-\gamma)} dr\right)^{\frac{p}{\gamma} \cdot \frac{\alpha-\gamma}{\alpha}} \left(\int_{0}^{R} u(r)^{(\alpha-p)/p} dr\right)^{p/\alpha}. \end{split}$$

Recalling that $1/p \cdot \alpha/(\alpha - \gamma) = 1/\sigma$, by hypothesis the right hand side of the last inequality is finite and this proves the claim.

Note that if g is bounded on [0, R), but not necessarily non-decreasing near R, the right hand side of (3.3) can be replaced by a constant. The proof of Theorem 1.4 shows that $F \in KO(\gamma)$ for any $0 < \gamma < \alpha$. We record this as follows.

Corollary 3.1. Let H(r,s) = g(r)f(s) satisfy (H1)–(H3), with g(0) > 0. Suppose (1.2) has a blow-up solution that belongs to $L^{(\alpha-p)/p}(0,R)$ for some $\alpha > p$. If g is bounded, then $F \in KO(\gamma)$ for any $0 < \gamma < \alpha$.

Remark 3.2. The conclusion of Corollary 3.1 is false when g is unbounded near R as the following example shows.

The function $u(r) = (1 - r)^{-1}$ is a solution of

$$u''(r) = g(r)f(u),$$

 $u(0) \ge 0, \quad u'(0) \ge 0, \quad u(1) = \infty,$

where

$$g(r) := 2/(1-r)$$
, and $f(s) := s^2$.

Observe that $u \in L^{(\alpha-2)/2}(0,1)$ for $2 < \alpha < 4$. However note that $F \notin KO(3)$.

Corollary 3.3. Suppose H(r, s) = g(r)f(s) satisfies (H1)-(H3), with g(0) > 0, g non-decreasing on [0, R), and f(0) = 0. Further, let g be bounded on [0, R), and let $F \in KO(p)$. Then a blow up solution u of (1.1) belongs to $L^q(0, R)$ for some q > 0 if and only if $F \in KO(\gamma)$ for some $\gamma > p$.

Proof. Suppose $F \in KO(\gamma)$ for some $\gamma > p$. Then by Theorem 1.3, we see that $u \in L^q(0, R)$ for $q = (\gamma - p)/p$. For the converse, suppose that $u \in L^q(0, R)$ for some q > 0. Then for $\alpha = p(q+1)$ we see that $q = (\alpha - p)/p$ so that by the above corollary, $F \in KO(\gamma)$ for some $p < \gamma < p(q+1)$.

References

- C. Bandle, M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. d'Anal. Math., 58 (1992), 9-24.
- [2] C. Bandle, M. Marcus, Asymptotic behavour of solutions and their derivatives for semilinear elliptic problems with blow-up on the boundary, Ann. Inst. H. Poincare 12, (1995), 155-171.
- [3] C. Bandle, Y. Cheng, G. Porru, Boundary blow-up in semilinear elliptic problems with singular weights at the boundary, Institut Mitag-Leffler, Report No. 39, (1999/2000),1-14.
- [4] F. Gladiali, G. Porru, Estimates for explosive solutions to p-Laplace equations, Progress in Partial Differential Equations, (Pont-á-Mousson 1997), Vol. 1, Pitman Res. Notes Math. Series, Longman 383 (1998), 117-127.
- [5] J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
- [6] A. V. Lair, A Necessary and Sufficient Condition for Existence of Large Solutions to semilinear Elliptic Equations, J. Math. Anal. Appl. 240 (1999),205-218.
- [7] A.C. Lazer, P.J. McKenna, Asymptotic behaviour of solutions of boundary blow up problems, Differential and Integral Equations, 7 (1994), 1001-1019.
- [8] J. Matero, Quasilinear Elliptic Equations with Boundary Blow-up, J. d'Anal. Math., 69 (1996) 229-247
- [9] R. Osserman, On the inequality $\Delta u \ge f(u)$, Pacific J. Math. 7 (1957), 1641-1647.
- [10] A. Mohammed, Boundary behavior of blow-up solutions to some weighted non-linear differential equations, Electron. J. Diff. Eqns., 2002 (2002), No. 78, 1-15.
- [11] A. Mohammed, G. Porru, Boundary Behaviour and Integrability of Large solutions to p-Laplace equations, Mat. Contemp. 19 (2000), 31-40
- [12] A. Mohammed, G. Porcu, G. Porcu, Large solutions to some non-linear O.D.E. with singular coefficients, Non-linear Analysis, TMA. 47(1) (2001) 513-524
- [13] W. Reichel, W. Walter, Radial solutions of equations and inequalities involving the p-Laplacian, J. Ineq. Appl. 1 (1997), 47-71

MICHAEL KARLS

Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA E-mail address: mkarls@bsu.edu

Ahmed Mohammed

Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA $E\text{-}mail\ address:\ \texttt{amohammed@bsu.edu}$