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INTEGRABILITY OF BLOW-UP SOLUTIONS TO SOME
NON-LINEAR DIFFERENTIAL EQUATIONS

MICHAEL KARLS & AHMED MOHAMMED

Abstract. We investigate the integrability of solutions to the boundary blow-
up problem

r−λ
(
rλ(u′)p−1

)′
= H(r, u), u′(0) ≥ 0, u(R) =∞

under some appropriate conditions on the non-linearity H.

1. Introduction

Let λ ≥ 0, p > 1, R > 0. For 0 < r < R we consider solutions u ∈ C1([0, R)) of
the problem

r−λ(rλ|u′|p−2u′)′ = H(r, u),

u(0) ≥ 0, u′(0) ≥ 0, lim
r→R

u(r) = ∞.
(1.1)

Here H satisfies the conditions

(H1) H : [0, R)× [0,∞) → [0,∞) is continuous,
(H2) H(·, s) is non-decreasing,
(H3) H(0, s) > 0 for all s > 0.

Further assumptions on H will be given as needed. In the literature, solutions of
(1.1) are known as blow-up solutions, explosive solutions or large solutions.

These type of equations arise as radial solutions of the p-Laplace equation, as
well as the Monge Ampére equation on balls. Radial solutions u of the p-Laplace
equation

div(|∇u|p−2∇u) = J(|x|, u),

in the ball B := B(0, R) ⊆ RN satisfy the first equation of (1.1) with λ = N − 1,
H(r, u) = J(r, u). Likewise radial solutions of the Monge Ampére equation

det(D2u) = J(|x|, u),

in the ball B also satisfy the first equation of (1.1) with λ = 0, p = N + 1 and
H(r, u) = NrN−1J(r, u).
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Noting that u′ is non-negative for any solution u of (1.1), we will find it convenient
to rewrite equation (1.1) as(

(u′)p−1
)′ + λ

r
(u′)p−1 = H(r, u),

u(0) ≥ 0, u′(0) ≥ 0, u(R) = ∞.
(1.2)

A necessary and sufficient condition for the existence of a solution to problem (1.1)
with u′(0) = 0, H(r, u) = f(u), and f(0) = 0, is the (generalized) Keller-Osserman
condition (see [5, 9, 8]).∫ ∞

1

ds

F (s)1/p
< ∞, F (s) =

∫ s

0

f(t)dt. (1.3)

If a nonnegative, non-decreasing continuous function F defined on [0,∞) satisfies
the Keller-Osserman condition (1.3) for some p > 1, we will indicate this by writing
F ∈ KO(p).

When H(r, s) = f(s), and λ = N−1, problem (1.1) has been studied extensively
by several authors, (see [1, 2, 5, 6, 7, 8, 9] and the references therein). The questions
of existence, uniqueness and asymptotic boundary estimates have received partic-
ular attention. The case when p = 2 and H(r, s) = g(r)f(s) with g ∈ C([0, R]),
possibly vanishing on a set of positive measure, has been considered in [6]. In all
these cases, the Keller-Osserman condition on f remains the key condition for the
existence of solutions. However, if g is allowed to be unbounded the situation is
completely different and existence and boundary behavior of a blow-up solution
depends on how fast g is allowed to grow near R. For such cases we refer the reader
to [10] or [12]. For a discussion on solutions of (1.1) for general non-linearity H, we
refer the reader to the paper [13].

In this paper we are interested in studying the integrability property of blow-up
solutions to (1.1) for F ∈ KO(p). A blow-up solution may not have any integrability
property at all, as the following example, taken from [11], shows.

Example 1.1. Let u(r) = −1 + e(1−r)−1
. Then

u′′(r) = f(u), 0 < r < 1,

u′(0) ≥ 0, u(1) = ∞,

where f(s) = (s + 1)[log4(s + 1) + 2 log3(s + 1)], s ≥ 0. Notice that u /∈ Lγ(0, 1)
for any γ > 0. The antiderivative F of f that vanishes at zero is given by F (s) =
((s + 1)2 log4(s + 1))/2, and observe that F ∈ KO(2), but F /∈ KO(α) for any
α > 2.

On the other extreme any positive power of a blow-up solution could be inte-
grable. This can be seen from the following example.

Example 1.2. We fix 0 < R < 1/2 and let

f(s) = es − 1, s ∈ [0,∞), and g(r) =
1

(r −R + 1)(R− r)
, r ∈ [0, R)

Then u(r) = − log(R− r) is a solution of

u′′(r) = g(r)f(u), 0 < r < R,

u′(0) ≥ 0, u(r) →∞ as r → R.
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Note that u ∈ Lγ(0, R) for all γ > 0. In this example the primitive F of f with
F (0) = 0 satisfies F ∈ KO(α) for all α > 0.

The outline of the paper is as follows. In Section 2 we compare solutions u of
(1.2) with solutions of

((w′)p−1)′ +
λ

r
(w′)p−1 = H(0, w),

w(0) ≥ 0, w′(0) = 0, w(R) = ∞,
(1.4)

for 0 < r < R.
The main result of Section 2, Theorem 2.4, is used in Section 3 to prove the

following integrability result for solutions of (1.2).

Theorem 1.3. Suppose in addition to (H1)–(H3), H(r, ·) is non-decreasing on
[0, R) and for f(s) = H(0, s), f(0) = 0 and F ∈ KO(α) for some α > p. Then
u ∈ L(α−p)/p(0, R) for any solution u of (1.2).

In Section 3, we also show that for H(r, s) = g(r)f(s), the following result holds.

Theorem 1.4. Let H(r, s) = g(r)f(s) satisfy (H1)–(H3), with g(0) > 0 and g
positive, non-decreasing near R. Suppose (1.2) has a blow-up solution u such that
u ∈ L(α−p)/p(0, R) for some α > p. If g ∈ L1/σ(0, R) with 0 < σ < p(α − p)/α,
then F ∈ KO(γ) for some p < γ < α.

Remark 1.5. When H(r, s) = g(r)f(s), (H3) and the requirement that g(0) > 0
imply that f(s) > 0 for s > 0. Since f(s) > 0, it follows from (H1) that g is
non-negative on [0, R).

Finally, we give some corollaries to Theorem 1.4.

2. A Comparison Result

We will need the following comparison lemma (see [13] for a proof). For nota-
tional convenience in stating the lemma and in this section, we let L denote the
differential operator on the left hand side of equation (1.1) above. In this lemma,
we use the following notation: u(a+) < w(a+) means there exists ε > 0 such that
u < w in (a, a + ε).

Lemma 2.1. Let 0 ≤ a < b, and suppose u, w ∈ C1([a, b]) with (u′)p−1, (w′)p−1 ∈
C1((a, b]) satisfy

Lu−G(r, u) ≤ Lw −G(r, w) in (a, b]

u(a+) < w(a+), u′(a) ≤ w′(a)

for some function G(r, s) which is non-decreasing in the second variable s. Then
u′ ≤ w′ in [a, b], which implies u < w in (a, b].

Another result we will need is the following, which is a consequence of Lemma
2.1 in [4] via L’Hôpital’s Rule.

Lemma 2.2. If F ∈ KO(α) for some α > 1, then

lim
t→∞

tα

F (t)
= 0.

We need the following lemma, which shows that solutions of (1.2) with initial
slope zero have non-decreasing slope for r ∈ [0, R).
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Lemma 2.3. Suppose in addition to (H1)–(H3), H(r, ·) is non-decreasing on [0, R).
If for 0 < r < R, w is a solution of

((w′)p−1)′ +
λ

r
(w′)p−1 = H(r, w), w(0) ≥ 0, w′(0) = 0, w(R) = ∞, (2.1)

then w′ is non-decreasing on [0, R).

Proof. Let w be a solution of (2.1). Integrating the equation (rλ(w′)p−1)′ =
rλH(r, w) over the interval (0, r) for any r ∈ (0, R) and recalling that w′ is non-
negative, we obtain

(w′)p−1 = r−λ

∫ r

0

sλH(s, w(s)) ds

≤ r−λH(r, w(r))
∫ r

0

sλ ds

=
r

λ + 1
H(r, w)

Using this inequality back in the equation (2.1) we obtain

H(r, w) = ((w′)p−1)′ +
λ

r
(w′)p−1

≤ ((w′)p−1)′ +
λ

r
· r

λ + 1
H(r, w)

so that
((w′)p−1)′ ≥ 1

λ + 1
H(r, w), 0 < r < R. (2.2)

The fact that w′ is non-decreasing on (0, R) is a consequence of (2.2) as follows.
Let 0 < r1 < r2 < R. Integrating (2.2) on (r1, r2) leads to

(w′(r2))p−1 − (w′(r1))p−1 ≥ 1
λ + 1

∫ r2

r1

H(s, w(s)) ds ≥ 0.

�

We are now ready to state and prove the main result of this section.

Theorem 2.4. Suppose in addition to (H1)–(H3), H(r, ·) is non-decreasing on
[0, R) and for f(s) = H(0, s), f(0) = 0 and F ∈ KO(p). Then there is a solution
w of (1.4) such that for any solution u of (1.2),

u(r) ≤ w(r), 0 ≤ r < R .

Proof. For each positive integer k, with 1/k < R, let wk be a solution, in (0, R −
1/k), of the problem

((w′)p−1)′ +
λ

r
(w′)p−1 = H(0, w),

w(0) ≥ 0, w′(0) = 0, w(R− 1/k) = ∞.
(2.3)

This is possible, since f(s) = H(0, s) satisfies the Keller-Osserman condition.
Since H(0, u) ≤ H(r, u) for all 0 ≤ r < R, we first note that

Lwk −H(0, wk) ≤ Lu−H(0, u) on (0, R− 1/k).

Suppose that wk(0) < u(0). Then, since 0 = w′
k(0) ≤ u′(0), by Lemma 2.1 we

conclude that wk < u on (0, R − 1/k). But this is obviously not possible since wk
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blows up at R − 1/k and u does not. Thus we must have u(0) ≤ wk(0). Actually,
we claim that

u(r) ≤ wk(r), for all r with 0 ≤ r < R− 1
k

.

Suppose to the contrary that u(r) > wk(r) for some 0 < r < R − 1/k. Since
u(0) ≤ wk(0) the function u−wk takes on a positive maximum inside [0, r1] where
r1 is taken sufficiently close to R − 1/k. If r∗ is such a maximum point, then we
have

wk(r∗) < u(r∗), and w′
k(r∗) = u′(r∗) .

By the comparison Lemma 2.1 we conclude that wk < u on (r∗, R− 1/k), which is
impossible. Thus we must have u(r) ≤ wk(r), r ∈ (0, R− 1/k), as claimed.

By a similar argument as above, and using wk+1 instead of u, we also conclude
that

wk+1(r) ≤ wk(r), 0 ≤ r < R− 1
k

.

Using this and the fact that wk and wk+1 satisfy equation (2.3) we obtain

(w′
k+1(r))

p−1 = r−λ

∫ r

0

sλH(0, wk+1(s)) ds

≤ r−λ

∫ r

0

sλH(0, wk(s)) ds

= (w′
k(r))p−1, 0 < r < R− 1/k.

This shows that w′
k+1(r) ≤ w′

k(r), 0 ≤ r < R− 1/k. Therefore, we have

w′
n(r) ≤ w′

m(r), 0 ≤ r < R− 1/m, (2.4)

whenever n ≥ m > 1/R.
For t, r ∈ (0, R− 1/k), and n > k we have

|wn(r)− wn(t)| =
∣∣ ∫ r

t

w′
n(s) ds

∣∣ ≤ w′
n(ζ)|r − t| ≤ w′

k+1(R− 1/k)|r − t|,

where ζ = max{r, t}. The fact that w′
k+1 is non-decreasing, by Lemma 2.3, has

been exploited in the last inequality.
Thus {wn}∞n=k+1 is a bounded equicontinuous family in C([0, R−1/k]), and hence

has a uniformly convergent subsequence. Let w be the limit. For r ∈ [0, R − 1/k]
and n > k the solution wn satisfies the integral equation

wn(r) = wn(0) +
∫ r

0

( ∫ t

0

(s

t

)λ

H(0, wn(s)) ds
)1/(p−1)

dt .

Letting n → ∞ we see that w satisfies the same integral equation. Since k is
arbitrary we conclude that w satisfies equation (1.4). Since u ≤ wn on (0, R− 1/k)
for each n ≥ k we conclude that u ≤ w on (0, R). �

3. Proofs of Main Results and Some Corollaries

Proof of Theorem 1.3. By Theorem 2.4 we take a solution w of (1.4) such that
u(r) ≤ w(r) for 0 ≤ r < R. Using f(w) := H(0, w) in place of H(r, w) in inequality
(2.2), we note that w satisfies

((w′)p−1)′ >
1

λ + 1
f(w), 0 < r < R.
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Multiplying both sides of the above inequality by w′ and integrating on (0, r), we
find that for r close to R,

p− 1
p

(w′(r))p ≥ 1
λ + 1

[F (w(r))− F (w(0))]

=
1

λ + 1
F (w(r))

[
1− F (w(0))

F (w(r))
]
.

Thus, for some positive constants C and τ , which may change in each line below,
but depend only on the constants λ and the primitive F , we see that

p− 1
p

(w′(r))p ≥ CF (w(r)), τ < r < R,

or

F (w(r))1/p ≤ Cw′(r), τ < r < R. (3.1)

From Lemma 2.2, it follows that

w(r) ≤ F (w(r))
1
α , τ < r < R. (3.2)

Using (3.1) and (3.2), we obtain∫ R

τ

w(r)
α−p

p dr ≤
∫ R

τ

F (w(r))
1
p−

1
α dr

≤ C

∫ R

τ

w′(r)
F (w(r))

1
α

dr

= C

∫ ∞

w(τ)

1
F (t)

1
α

dt < ∞

Thus, recalling that u ≤ w on (0, R) we get∫ R

τ

u(r)
α−p

p dr ≤ C

∫ ∞

w(τ)

1
F (t)

1
α

dt < ∞,

giving the desired result. �

Proof of Theorem 1.4. Suppose that g is positive and non-decreasing on (r∗, R) for
some 0 < r∗ < R. Observe that from (1.2) we obtain

((u′)p−1)′ ≤ g(r)f(u),

and multiplying both sides of this by u′ and integrating on (r∗, r) we find that

u′

F (u)1/p
≤ (qg(r))1/p

[
1 +

u′(r∗)p

qg(r)F (u(r))
]1/p

, r∗ < r < R,

where q is the Hölder conjugate exponent of p. From this we conclude that, for
some positive constants C and r0,

u′

F (u)1/p
≤ Cg(r)1/p, r0 < r < R. (3.3)
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Let γ = α(1−σ/p). The hypothesis 0 < σ < p(α− p)/α implies that p < γ < α.
Using (3.3) and Hölder’s inequality, we obtain∫ ∞

u(r0)

1
F (t)1/γ

dt

=
∫ ∞

u(r0)

t(α−p)/α

F (t)1/γ
· 1
t(α−p)/α

dt

≤
( ∫ ∞

u(r0)

t[(α−p)/α]·[γ/p]

F (t)1/p
dt

)p/γ( ∫ ∞

u(r0)

1
t[(α−p)/α]·[γ/(γ−p)]

dt
)(γ−p)/γ

≤ C
(α

p
· γ − p

α− γ

)(γ−p)/γ( ∫ R

r0

u′(r)u(r)[(α−p)/p]·[γ/α]

F (u(r))1/p
dr

)p/γ

≤ C
(α

p
· γ − p

α− γ

)(γ−p)/γ
( ∫ R

0

g(r)1/pu(r)[(α−p)/p]·[γ/α] dr
)p/γ

≤ C
(α

p
· γ − p

α− γ

)(γ−p)/γ
( ∫ R

0

g(r)1/p·α/(α−γ) dr
) p

γ ·
α−γ

α
( ∫ R

0

u(r)(α−p)/p dr
)p/α

.

Recalling that 1/p · α/(α− γ) = 1/σ, by hypothesis the right hand side of the last
inequality is finite and this proves the claim. �

Note that if g is bounded on [0, R), but not necessarily non-decreasing near R,
the right hand side of (3.3) can be replaced by a constant. The proof of Theorem
1.4 shows that F ∈ KO(γ) for any 0 < γ < α. We record this as follows.

Corollary 3.1. Let H(r, s) = g(r)f(s) satisfy (H1)–(H3), with g(0) > 0. Suppose
(1.2) has a blow-up solution that belongs to L(α−p)/p(0, R) for some α > p. If g is
bounded, then F ∈ KO(γ) for any 0 < γ < α.

Remark 3.2. The conclusion of Corollary 3.1 is false when g is unbounded near
R as the following example shows.

The function u(r) = (1− r)−1 is a solution of

u′′(r) = g(r)f(u),

u(0) ≥ 0, u′(0) ≥ 0, u(1) = ∞,

where

g(r) := 2/(1− r), and f(s) := s2.

Observe that u ∈ L(α−2)/2(0, 1) for 2 < α < 4. However note that F /∈ KO(3).

Corollary 3.3. Suppose H(r, s) = g(r)f(s) satisfies (H1)–(H3), with g(0) > 0, g
non-decreasing on [0, R), and f(0) = 0. Further, let g be bounded on [0, R), and let
F ∈ KO(p). Then a blow up solution u of (1.1) belongs to Lq(0, R) for some q > 0
if and only if F ∈ KO(γ) for some γ > p.

Proof. Suppose F ∈ KO(γ) for some γ > p. Then by Theorem 1.3, we see that
u ∈ Lq(0, R) for q = (γ − p)/p. For the converse, suppose that u ∈ Lq(0, R) for
some q > 0. Then for α = p(q + 1) we see that q = (α− p)/p so that by the above
corollary, F ∈ KO(γ) for some p < γ < p(q + 1). �
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