Electronic Journal of Differential Equations, Vol. 2004(2004), No. 37, pp. 1-17. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

AN EXISTENCE RESULT FOR HEMIVARIATIONAL INEQUALITIES

ZSUZSÁNNA DÁLYAY \& CSABA VARGA

Abstract

We present a general method for obtaining solutions for an abstract class of hemivariational inequalities. This result extends many results to the nonsmooth case. Our proof is based on a nonsmooth version of the Mountain Pass Theorem with Palais-Smale or with Cerami compactness condition. We also use the Principle of Symmetric Criticality for locally Lipschitz functions.

1. Introduction

Let $(X,\|\cdot\|)$ be a real, separable, reflexive Banach space, and let $\left(X^{\star},\|\cdot\|_{\star}\right)$ be its dual. Also assume that the inclusion $X \hookrightarrow L^{l}\left(\mathbb{R}^{N}\right)$ is continuous with the embedding constants $C(l)$, where $l \in\left[p, p^{\star}\right]\left(p \geq 2, p^{\star}=\frac{N p}{N-p}\right)$. Let us denote by $\|\cdot\|_{l}$ the norm of $L^{l}\left(\mathbb{R}^{N}\right)$. Let $A: X \rightarrow X^{\star}$ be a potential operator with the potential $a: X \rightarrow \mathbb{R}$, i.e. a is Gâteaux differentiable and

$$
\lim _{t \rightarrow 0} \frac{a(u+t v)-a(u)}{t}=\langle A(u), v\rangle
$$

for every $u, v \in X$. Here $\langle\cdot, \cdot\rangle$ denotes the duality pairing between X^{\star} and X. For a potential we always assume that $a(0)=0$. We suppose that $A: X \rightarrow X^{\star}$ satisfies the following properties:

- A is hemicontinuous, i.e. A is continuous on line segments in X and X^{\star} equipped with the weak topology.
- A is homogeneous of degree $p-1$, i.e. for every $u \in X$ and $t>0$ we have $A(t u)=t^{p-1} A(u)$. Consequently, for a homogeneous hemicontinuous operator of degree $p-1$, we have $a(u)=\frac{1}{p}\langle A(u), u\rangle$.
- $A: X \rightarrow X^{\star}$ is a strongly monotone operator, i.e. there exists a function $\kappa:[0, \infty) \rightarrow[0, \infty)$ which is positive on $(0, \infty)$ and $\lim _{t \rightarrow \infty} \kappa(t)=\infty$ and such that for all $u, v \in X$,

$$
\langle A(u)-A(v), u-v\rangle \geq \kappa(\|u-v\|)\|u-v\| .
$$

[^0]In this paper we suppose that the operator $A: X \rightarrow X^{\star}$ is a potential, hemicontinuous, strongly monotone operator, homogeneous of degree $p-1$.

Let $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function which satisfies the following growth condition:
(F1) $|f(x, s)| \leq c\left(|s|^{p-1}+|s|^{r-1}\right)$, for a.e. $x \in \mathbb{R}^{N}$, for all $s \in \mathbb{R}$
(F1') The embedings $X \hookrightarrow L^{r}\left(\mathbb{R}^{n}\right)$ are compact $\left(p<r<p^{\star}\right)$.
Let $F: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
\begin{equation*}
F(x, u)=\int_{0}^{u} f(x, s) d s, \quad \text { for a.e. } x \in \mathbb{R}^{N}, \forall s \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

For a.e. $x \in \mathbb{R}^{N}$ and for every $u, v \in \mathbb{R}$, we have:

$$
\begin{equation*}
|F(x, u)-F(x, v)| \leq c_{1}|u-v|\left(|u|^{p-1}+|v|^{p-1}+|u|^{r-1}+|v|^{r-1}\right) \tag{1.2}
\end{equation*}
$$

where c_{1} is a constant which depends only of u and v. Therefore, the function $F(x, \cdot)$ is locally Lipschitz and we can define the partial Clarke derivative, i.e.

$$
\begin{equation*}
F_{2}^{0}(x, u ; w)=\limsup _{y \rightarrow u, t \rightarrow 0^{+}} \frac{F(x, y+t w)-F(x, y)}{t} \tag{1.3}
\end{equation*}
$$

for every $u, w \in \mathbb{R}$ and for a.e. $x \in \mathbb{R}$.
Now, we formulate the hemivariational inequality problem that will be studied in this paper:

Find $u \in X$ such that

$$
\begin{equation*}
\langle A u, v\rangle+\int_{\mathbb{R}^{N}} F_{2}^{0}(x, u(x) ;-v(x)) d x \geq 0, \quad \forall v \in X \tag{1.4}
\end{equation*}
$$

When the function $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, the problem (1.4) is reduced to the problem:

Find $u \in X$ such that

$$
\begin{equation*}
\langle A u, v\rangle=\int_{\mathbb{R}^{N}} f(x, u(x)) v(x) d x, \quad \forall v \in X \tag{1.5}
\end{equation*}
$$

Such problems have been studied by many authors, see [1, 3, 4, 5, 9, 10, 19, 20.
To study the existence of solutions of the problem we introduce the functional $\Psi: X \rightarrow \mathbb{R}$ defined by $\Psi(u)=a(u)-\Phi(u)$, where $a(u)=\frac{1}{p}\langle A(u), u\rangle$ and $\Phi(u)=\int_{\mathbb{R}^{N}} F(x, u(x)) d x$. From Proposition 5.1 we will see that the critical points of the functional Ψ are the solutions of the problem (1.4). Therefore it is enough to study the existence of critical points of the functional Ψ. Considering such a problem is motivated by the works of Clarke [8], D. Motreanu and P.D. Panagiotopoulos [22] and by the recent book of D. Motreanu and V. Rădulescu [23], where several applications are given.

To study the existence of the critical point of the function Ψ is necessary to impose some condition on function f :
(F2) There exists $\alpha>p, \lambda \in\left[0, \frac{\kappa(1)(\alpha-p)}{C^{p}(p)}\right.$ [and a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}_{+}$, such that for a.e. $x \in \mathbb{R}^{N}$ and for all $u \in \mathbb{R}$ we have

$$
\begin{equation*}
\alpha F(x, u)+F_{2}^{0}(x, u ;-u) \leq g(u) \tag{1.6}
\end{equation*}
$$

where $\lim _{|u| \rightarrow \infty} g(u) /|u|^{p}=\lambda$.
(F2') There exists $\alpha \in\left(\max \left\{p, p^{\star} \frac{r-p}{p^{\star}-p}\right\}, p^{\star}\right)$ and a constant $C>0$ such that for a.e. $x \in \mathbb{R}^{N}$ and for all $u \in \mathbb{R}$ we have

$$
\begin{equation*}
-C|u|^{\alpha} \geq F(x, u)+\frac{1}{p} F_{2}^{0}(x, u ;-u) \tag{1.7}
\end{equation*}
$$

Next, we impose further assumptions on f. First we define two functions by

$$
\begin{aligned}
& \underline{f}(x, s)=\lim _{\delta \rightarrow 0^{+}} \operatorname{essinf}\{f(x, t):|t-s|<\delta\} \\
& \bar{f}(x, s)=\lim _{\delta \rightarrow 0^{+}} \operatorname{esssup}\{f(x, t):|t-s|<\delta\}
\end{aligned}
$$

for every $s \in \mathbb{R}$ and for a.e. $x \in \mathbb{R}^{N}$. It is clear that the function $\underline{f}(x, \cdot)$ is lower semicontinuous and $\bar{f}(x, \cdot)$ is upper semicontinuous. The following hypothesis on f was introduced by Chang [7].
(F3) The functions \underline{f}, \bar{f} are N-measurable, i.e. for every measurable function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ the functions $x \mapsto \underline{f}(x, u(x)), x \mapsto \bar{f}(x, u(x))$ are measurable.
(F4) For every $\varepsilon>0$, there exists $c(\varepsilon)>0$ such that for a.e. $x \in \mathbb{R}^{N}$ and for every $s \in \mathbb{R}$ we have

$$
|f(x, s)| \leq \varepsilon|s|^{p-1}+c(\varepsilon)|s|^{r-1}
$$

(F5) For the $\alpha \in\left(p, p^{\star}\right)$ from condition (F2), there exists a $c^{\star}>0$ such that for a.e. $x \in \mathbb{R}^{N}$ and for all $s \in \mathbb{R}$ we have

$$
F(x, u) \geq c^{\star}\left(|u|^{\alpha}-|u|^{p}\right) .
$$

Remark 1.1. We observe that if we impose the following condition on f,
$\left(\mathrm{F} 4^{\prime}\right) \lim _{\varepsilon \rightarrow 0^{+}} \operatorname{esssup}\left\{\frac{|f(x, s)|}{|s|^{p}}:(x, s) \in \mathbb{R}^{N} \times(-\varepsilon, \varepsilon)\right\}=0$,
then this condition with (F1) imply (F4).
The main result of this paper can be formulated in the following manner.
Theorem 1.2. (1) If conditions (F1), (F1'), and (F2)-(F5) hold, then problem (1.4) has a nontrivial solution.
(2) If conditions (F1), (F1'), (F2'), (F3), and (F4) hold, then problem (1.4) has a nontrivial solution.

Let G be the compact topological group $O(N)$ or a subgroup of $O(N)$. We suppose that G acts continuously and linear isometric on the Banach space X. We denote by

$$
X^{G}=\{u \in H: g x=x \text { for all } g \in G\}
$$

the fixed point set of the action G on X. It is well known that X^{G} is a closed subspace of X. We suppose that the potential $a: X \rightarrow \mathbb{R}$ of the operator $A: X \rightarrow$ X^{\star} is G-invariant and the next condition for the function $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ holds:
(F6) For a.e. $x \in \mathbb{R}^{N}$ and for every $g \in G, s \in \mathbb{R}$ we have $f(g x, s)=f(x, s)$.
In several applications the condition (F^{\prime}) is replaced by the condition
(F1") The embeddings $X^{G} \hookrightarrow L^{r}\left(\mathbb{R}^{N}\right)$ are compact $\left(p<r<p^{\star}\right)$.
Now, using the Principle of Symmetric Criticality for locally Lipschitz functions, proved by Krawciewicz and Marzantovicz [14], from the above theorem we obtain the following corollary, which is very useful in the applications.
Corollary 1.3. We suppose that the potential $a: X \rightarrow \mathbb{R}$ is G-invariant and (F6) is satisfied. Then the following assertions hold.
(a) If (F1), (F1"), and (F2)-(F5) are fulfilled, then problem (1.4) has a nontrivial solution.
(b) If (F1), (F1'), (F2'), F3), and (F4) are fulfilled, then problem 1.4 has a nontrivial solution.

Next, we give an example of a discontinuous function f for which the problem (1.4) has a nontrivial solution.

Example. Let $\left(a_{n}\right) \subset \mathbb{R}$ be a sequence with $a_{0}=0, a_{n}>0, n \in \mathbb{N}^{\star}$ such that the series $\sum_{n=0}^{\infty} a_{n}$ is convergent and $\sum_{n=0}^{\infty} a_{n}>1$. We introduce the following notation

$$
A_{n}:=\sum_{k=0}^{n} a_{k}, A:=\sum_{k=0}^{\infty} a_{k} .
$$

With these notations we have $A>1$ and $A_{n}=A_{n-1}+a_{n}$ for every $n \in \mathbb{N}^{\star}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(s)=s|s|^{p-2}\left(|s|^{r-p}+A_{n}\right)$, for all $s \in(-n-1,-n] \cup[n, n+$ 1), $n \in \mathbb{N}$ and $r, s \in \mathbb{R}$ with $r>p>2$. The function f defined above satisfies the properties (F1), (F2'), (F3), and (F4). The discontinuity set of f is $\mathcal{D}_{f}=\mathbb{Z}^{\star}=$ $\mathbb{Z} \backslash\{0\}$. It is easy to see that the function f satisfies the conditions (F1) and (F4'), therefore (F4). Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $F(u)=\int_{0}^{u} f(s) d s$ with $u \in[n, n+1)$, when $n \geq 1$. Because $F(u)=F(-u)$, it is sufficient to consider the case $u>0$. We have $F(u)=\sum_{k=0}^{n-1} \int_{k}^{k+1} f(s) d s+\int_{n}^{u} f(s) d s$. Therefore, for $F(u)=\frac{1}{r} u^{r}+\frac{1}{p} A_{n} u^{p}-\frac{1}{p} \sum_{k=0}^{n} a_{k} k^{p}$, for every $u \in[n, n+1]$. It is easy to see that $F^{0}(u ;-u)=-u f(u)$ for every $u \in(n, n+1]$. i.e. $F^{0}(u,-u)=-u^{r}-A_{n} u^{p}$. Thus,

$$
F(u)+\frac{1}{p} F^{0}(u,-u)=-\left(\frac{1}{p}-\frac{1}{r}\right) u^{r}-\frac{1}{p} \sum_{k=0}^{n} a_{k} k^{p} \leq-\left(\frac{1}{p}-\frac{1}{r}\right) u^{r}
$$

If we choose $C=\frac{1}{p}-\frac{1}{r}, \alpha=r>2$, the condition (F2') is fulfilled.
This paper is organized as follows: In Section 2, some facts about locally Lipschitz functions are given; In Section 3 a key inequality is proved; in Section 4 the Palais-Smale and Cerami condition is verified for the function Ψ; in Section 5 we prove Theorem 2 and in the last section we give some concrete applications.

2. Preliminaries and preparatory results

Let $(X,\|\cdot\|)$ be a real Banach space and $\left(X^{\star},\|\cdot\|_{\star}\right)$ its dual. Let $U \subset X$ be an open set. A function $\Psi: U \rightarrow \mathbb{R}$ is called locally Lipschitz function if each point $u \in U$ possesses a neighborhood N_{u} of u and a constant $K>0$ which depends on N_{u} such that

$$
\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right| \leq K\left\|u_{1}-u_{2}\right\|, \quad \forall u_{1}, u_{2} \in N_{u}
$$

The generalized directional derivative of a locally Lipschitz function $\Psi: X \rightarrow \mathbb{R}$ in $u \in U$ in the direction $v \in X$ is defined by

$$
\Psi^{0}(u ; v)=\limsup _{w \rightarrow u t \backslash 0} \frac{1}{t}(\Psi(w+t v)-\Psi(w))
$$

It is easy to verify that $\Psi^{0}(u ;-v)=(-\Psi)^{0}(u ; v)$ for every $u \in U$ and $v \in X$.
The generalized gradient of Ψ in $u \in X$ is defined as being the subset of X^{\star} such that

$$
\partial \Psi(u)=\left\{z \in X^{*}:\langle z, v\rangle \leq \Psi^{0}(u ; v), \forall v \in X\right\}
$$

where $\langle\cdot, \cdot\rangle$ is the duality pairing between X^{\star} and X. The subset $\partial \Psi(u) \subset X^{\star}$ is nonempty, convex and w^{\star}-compact and we have

$$
\Psi^{0}(u ; v)=\max \{\langle z, v\rangle: z \in \partial \Psi(u)\}, \forall v \in X
$$

If $\Psi_{1}, \Psi_{2}: U \rightarrow \mathbb{R}$ are two locally Lipschitz functions, then

$$
\left(\Psi_{1}+\Psi_{2}\right)^{0}(u ; v) \leq \Psi_{1}^{0}(u ; v)+\Psi_{2}^{0}(u ; v)
$$

for every $u \in U$ and $v \in X$. We define the function $\lambda_{\Psi}(u)=\inf \left\{\left\|x^{\star}\right\|_{\star}: x^{\star} \in \Psi(u)\right\}$. This function is lower semicontinuous and this infimum is attained, because $\partial \Psi(u)$ is w^{\star}-compact. A point $u \in X$ is a critical point of Ψ, if $\lambda_{\Psi}(u)=0$, which is equivalent with $\Psi^{0}(u ; v) \geq 0$ for every $v \in X$. For a real number $c \in \mathbb{R}$ we denote by

$$
K_{c}=\left\{u \in X: \lambda_{\Psi}(u)=0, \Psi(u)=c\right\} .
$$

Remark 2.1. If $\Psi: X \rightarrow \mathbb{R}$ is locally Lipschitz and we take $u \in X$ and $\mu>0$, the next two assertions are equivalent:
(a) $\Psi^{0}(u, v)+\mu\|v\| \geq 0$, for all $v \in X$;
(b) $\lambda_{\Psi}(u) \leq \mu$.

Now, we define the following terms.
(i) Ψ satisfies the $(P S)$-condition at level c (in short, $(P S)_{c}$) if every sequence $\left\{x_{n}\right\} \subset X$ such that $\Psi\left(x_{n}\right) \rightarrow c$ and $\lambda_{\Psi}\left(x_{n}\right) \rightarrow 0$ has a convergent subsequence.
(ii) Ψ satisfies the $(C P S)$-condition at level c (in short, $(C P S)_{c}$) if every sequence $\left\{x_{n}\right\} \subset X$ such that $\Psi\left(x_{n}\right) \rightarrow c$ and $\left(1+\left\|x_{n}\right\|\right) \lambda_{\Psi}\left(x_{n}\right) \rightarrow 0$ has a convergent subsequence.
It is clear that $(P S)_{c}$ implies $(C P S)_{c}$.
Now, we consider a globally Lipschitz function $\varphi: X \rightarrow \mathbb{R}$ such that $\varphi(x) \geq 1$, for all $x \in X$ (or, generally, $\varphi(x) \geq \alpha, \alpha>0$). We say that
(iii) Ψ satisfies the $(\varphi-P S)$-condition at level c (in short, $\left.(\varphi-P S)_{c}\right)$ if every sequence $\left\{x_{n}\right\} \subset X$ such that $\Psi\left(x_{n}\right) \rightarrow c$ and $\varphi\left(x_{n}\right) \lambda_{\Psi}\left(x_{n}\right) \rightarrow 0$ has a convergent subsequence.
The compactness $(\varphi-P S)_{c}$-condition in (iii) contains the assertions (i) and (ii) in the sense that if $\varphi \equiv 1$ we get the $(P S)_{c}$-condition and if $\varphi(x)=1+\|x\|$ we have the $(C)_{c}$-condition.

In the next we use the following version of the Mountain Pass Theorem, see Kristály-Motreanu-Varga [17, which contains the classical result of Chang [7] and Kourogenis-Papageorgiu [16.

Proposition 2.2 (Mountain Pass Theorem). Let X be a Banach space, $\Psi: X \rightarrow R$ a locally Lipschitz function with $\Psi(0) \leq 0$ and $\varphi: X \rightarrow R$ a globally Lipschitz function such that $\varphi(x) \geq 1, \forall x \in X$. Suppose that there exists a point $x_{1} \in X$ and constants $\rho, \alpha>0$ such that
(i) $\Psi(x) \geq \alpha, \forall x \in X$ with $\|x\|=\rho$
(ii) $\left\|x_{1}\right\|>\rho$ and $\Psi\left(x_{1}\right)<\alpha$
(iii) The function Ψ satisfies the $(\varphi-P S)_{c}$-condition, where

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} \Psi(\gamma(t))
$$

with $\Gamma=\left\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=x_{1}\right\}$.

Then the minimax value c in (iii) is a critical value of Ψ, i.e. K_{c} is nonempty, and, in addition, $c \geq \alpha$.

Let G be a compact topological group which acts linear isometrically on the real Banach space X, i.e. the action $G \times X \rightarrow X$ is continuous and for every $g \in G, g: X \rightarrow X$ is a linear isometry. The action on X induces an action of the same type on the dual space X^{*} defined by $\left(g x^{*}\right)(x)=x^{*}(g x)$, for all $g \in G, x \in X$ and $x^{*} \in X^{*}$. Since

$$
\left\|g x^{*}\right\|_{\star}=\sup _{\|x\|=1}\left|\left(g x^{*}\right)(x)\right|=\sup _{\|x\|=1}\left|x^{*}(g x)\right|
$$

the isometry assumption for the action of G implies

$$
\left\|g x^{*}\right\|_{\star}=\sup _{\|x\|=1}\left|x^{*}(x)\right|=\left\|x^{*}\right\|_{\star}, \forall x^{*} \in X^{*}, g \in G
$$

We suppose that $\Psi: X \rightarrow \mathbb{R}$ is a locally Lipschitz and G-invariant function, i.e., $\Psi(g x)=\Psi(x)$ for every $g \in G$ and $x \in X$. From Krawcewicz-Marzantowicz [10] we have the relation

$$
g \partial \Psi(x)=\partial \Psi(g x)=\partial \Psi(x), \text { for every } g \in G \text { and } x \in X
$$

Therefore, the subset $\partial \Psi(x) \subset X^{*}$ is G-invariant, so the function $\lambda_{\Psi}(x)=\inf _{w \in \partial \Psi(x)}\|w\|_{\star}, x \in X$, is G-invariant. The fixed points set of the action G, i.e. $X^{G}=\{x \in X \mid g x=x \forall g \in G\}$ is a closed linear subspace of X.

We conclude this section with the Principle of Symmetric Criticality, first proved by Palais [24] for differentiable functions and for locally Lipschitz proved by Krawciewicz and Marzantovicz [14].

Theorem 2.3. Let $\Psi: X \rightarrow \mathbb{R}$ be a G-invariant locally Lipschitz function and $u \in X^{G}$ a fixed point. Then $u \in X^{G}$ is a critical point of Ψ if and only if u is a critical point of $\Psi^{G}=\left.\psi\right|_{X^{G}}: X^{G} \rightarrow \mathbb{R}$.

3. Some basic lemmas

Define the function $\Phi: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\Phi(u)=\int_{\mathbb{R}^{N}} F(x, u(x)) d x, \quad \forall u \in X \tag{3.1}
\end{equation*}
$$

where the function F is defined in 1.1.
Remark 3.1. The following two results are true for the general growth condition $\left(f_{1}\right)$, but it is sufficient to prove them in the case when the function f satisfies the growth condition $|f(x, s)| \leq c|u|^{p-1}$ for a.e. $x \in \mathbb{R}^{N}, \forall s \in \mathbb{R}$. For simplicity we denote $h(u)=c|u|^{p-1}$ and in the next two results we use only that the function h is monotone increasing, convex and $h(0)=0$.

Proposition 3.2. The function $\Phi: X \rightarrow \mathbb{R}$, defined by $\Phi(u)=\int_{\mathbb{R}^{N}} F(x, u(x)) d x$ is locally Lipschitz on bounded sets of X.

Proof. For every $u, v \in X$, with $\|u\|,\|v\|<r$, we have

$$
\begin{aligned}
& \|\Phi(u)-\Phi(v)\| \\
& \leq \int_{\mathbb{R}^{N}}|F(x, u(x))-F(x, v(x))| d x \\
& \leq c_{1} \int_{\mathbb{R}^{N}}|u(x)-v(x)|[h(|u(x)|)+h(|v(x)|)] \\
& \leq c_{2}\left(\int_{\mathbb{R}^{N}}|u(x)-v(x)|^{p}\right)^{1 / p}\left[\left(\int_{\mathbb{R}^{N}}\left(h(|u(x)|)^{p^{\prime}} d x\right)^{1 / p^{\prime}}+\left(\int_{\mathbb{R}^{N}}\left(h(|v(x)|)^{p^{\prime}} d x\right)^{1 / p^{\prime}}\right]\right.\right. \\
& \leq c_{2}\|u-v\|_{p}\left[\|h(|u|)\|_{p^{\prime}}+\|h(|v|)\|_{p^{\prime}}\right) \\
& \leq C(u, v)\|u-v\|
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and we used the Hölder inequality, the subadditivity of the norm $\|\cdot\|_{p^{\prime}}$ and the fact that the inclusion $X \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ is continuous. We observe that $\mathrm{C}(\mathrm{u}, \mathrm{v})$ is a constant which depends only of u and v.

Proposition 3.3. If condition (F1) holds, then for every $u, v \in X$, then

$$
\begin{equation*}
\Phi^{0}(u ; v) \leq \int_{\mathbb{R}^{N}} F_{2}^{0}(x, u(x) ; v(x)) d x \tag{3.2}
\end{equation*}
$$

Proof. It is sufficient to prove the proposition for the function f, which satisfies only the growth condition $|f(x, s)| \leq c|u|^{p-1}$ from Remark 3.1. Let us fix the elements $u, v \in X$. The function $F(x, \cdot)$ is locally Lipschitz and therefore continuous. Thus $F_{2}^{0}(x, u(x) ; v(x))$ can be expressed as the upper limit of $(F(x, y+t v(x))-F(x, y)) / t$, where $t \rightarrow 0^{+}$takes rational values and $y \rightarrow u(x)$ takes values in a countable subset of \mathbb{R}. Therefore, the map $x \rightarrow F_{2}^{0}(x, u(x) ; v(x))$ is measurable as the "countable limsup" of measurable functions in x. From condition (F1) we get that the function $x \rightarrow F_{2}^{0}(x, u(x) ; v(x))$ is from $L^{1}\left(\mathbb{R}^{N}\right)$.

Using the fact that the Banach space X is separable, there exists a sequence $w_{n} \in X$ with $\left\|w_{n}-u\right\| \rightarrow 0$ and a real number sequence $t_{n} \rightarrow 0^{+}$, such that

$$
\begin{equation*}
\Phi^{0}(u, v)=\lim _{n \rightarrow \infty} \frac{\Phi\left(w_{n}+t_{n} v\right)-\Phi\left(w_{n}\right)}{t_{n}} \tag{3.3}
\end{equation*}
$$

Since the inclusion $X \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ is continuous, we get $\left\|w_{n}-u\right\|_{p} \rightarrow 0$. Using [6, Theorem IV.9], there exists a subsequence of $\left(w_{n}\right)$ denoted in the same way, such that $w_{n}(x) \rightarrow u(x)$ a.e. $x \in \mathbb{R}^{N}$. Now, let $\varphi_{n}: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{+\infty\}$ be the function defined by

$$
\begin{aligned}
\varphi_{n}(x)= & -\frac{F\left(x, w_{n}(x)+t_{n} v(x)\right)-F\left(x, w_{n}(x)\right)}{t_{n}} \\
& +c_{1}|v(x)|\left[h\left(\left|w_{n}(x)+t_{n} v(x)\right|\right)+h\left(\left|w_{n}(x)\right|\right)\right]
\end{aligned}
$$

We see that the the functions φ_{n} are measurable and non-negative. If we apply Fatou's lemma, we get

$$
\int_{\mathbb{R}^{N}} \liminf _{n \rightarrow \infty} \varphi_{n}(x) d x \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \varphi_{n}(x) d x
$$

This inequality is equivalent to

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \limsup _{n \rightarrow \infty}\left[-\varphi_{n}(x)\right] d x \geq \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left[-\varphi_{n}(x)\right] d x \tag{3.4}
\end{equation*}
$$

For simplicity in the calculus we introduce the following notation:
(i) $\varphi_{n}^{1}(x)=\frac{F\left(x, w_{n}(x)+t_{n} v(x)\right)-F\left(x, w_{n}(x)\right)}{t_{n}}$;
(ii) $\varphi_{n}^{2}(x)=c_{1}|v(x)|\left[h\left(\left|w_{n}(x)+t_{n} v(x)\right|\right)+h\left(\left|w_{n}(x)\right|\right)\right]$.

With these notation, we have $\varphi_{n}(x)=-\varphi_{n}^{1}(x)+\varphi_{n}^{2}(x)$.
Now we prove the existence of limit $b=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \varphi_{n}^{2}(x) d x$. Using the facts that the inclusion $X \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ is continuous and $\left\|w_{n}-u\right\| \rightarrow 0$, we get $\| w_{n}-$ $u \|_{p} \rightarrow 0$. Using [6, Theorem IV.9], there exist a positive function $g \in L^{p}\left(\mathbb{R}^{N}\right)$, such that $\left|w_{n}(x)\right| \leq g(x)$ a.e. $x \in \mathbb{R}^{N}$. Considering that the function h is monotone increasing, we get

$$
\left|\varphi_{n}^{2}(x)\right| \leq c_{1}|v(x)|[h(g(x)+|v(x)|)+h(g(x))], \quad \text { a.e. } x \in \mathbb{R}^{N}
$$

Moreover, $\varphi_{n}^{2}(x) \rightarrow 2 c_{1}|v(x)| h(|u(x)|)$ for a.e. $x \in \mathbb{R}^{N}$. Thus, using the Lebesque dominated convergence theorem, we have

$$
\begin{equation*}
b=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \varphi_{n}^{2}(x) d x=\int_{\mathbb{R}^{N}} 2 c_{1}|v(x)| h(|u(x)|) d x \tag{3.5}
\end{equation*}
$$

If we denote by $I_{1}=\lim \sup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left[-\varphi_{n}(x)\right] d x$, then using 3.3 and 3.5 , we have

$$
\begin{equation*}
I_{1}=\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left[-\varphi_{n}(x)\right] d x=\Phi^{0}(u ; v)-b . \tag{3.6}
\end{equation*}
$$

Next we estimate the expression $I_{2}=\int_{\mathbb{R}^{N}} \lim \sup _{n \rightarrow \infty}\left[-\varphi_{n}(x)\right] d x$. We have the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \limsup _{n \rightarrow \infty}\left[\varphi_{n}^{1}(x)\right] d x-\int_{\mathbb{R}^{N}} \lim _{n \rightarrow \infty} \varphi_{n}^{2}(x) d x \geq I_{2} \tag{3.7}
\end{equation*}
$$

Using the fact that $w_{n}(x) \rightarrow u(x)$ a.e. $x \in \mathbb{R}^{N}$ and $t_{n} \rightarrow 0^{+}$, we get

$$
\int_{\mathbb{R}^{N}} \lim _{n \rightarrow \infty} \varphi_{n}^{2}(x) d x=2 c_{1} \int_{\mathbb{R}^{N}}|v(x)| h(|u(x)|) d x
$$

On the other hand,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \limsup _{n \rightarrow \infty} \varphi_{n}^{1}(x) d x & \leq \int_{\mathbb{R}^{N}} \limsup _{y \rightarrow u(x), t \rightarrow 0^{+}} \frac{F(x, y+t v(x))-F(x, y)}{t} d x \\
& =\int_{\mathbb{R}^{N}} F_{2}^{0}(x, u(x) ; v(x)) d x
\end{aligned}
$$

Using relations (3.4), (3.6), (3.7) and the above estimates, we obtain the desired result.

4. The Palais-Smale and Cerami compactness condition

In this section we study the situation when the function Ψ satisfies the $(P S)_{c}$ and $(C P S)_{c}$ conditions. We have the following result.

Proposition 4.1. Let $\left(u_{n}\right) \subset X$ be $a(P S)_{c}$ sequence for the function $\Psi: X \rightarrow \mathbb{R}$. If the conditions (F1) and (F2) are fulfilled, then the sequence $\left(u_{n}\right)$ is bounded in X.

Proof. Because $\left(u_{n}\right) \subset X$ is a $(P S)_{c}$ sequence for the function Ψ, we have $\Psi\left(u_{n}\right) \rightarrow$ c and $\lambda_{\Psi}\left(u_{n}\right) \rightarrow 0$. From the condition $\Psi\left(u_{n}\right) \rightarrow c$ we get $c+1 \geq \Psi\left(u_{n}\right)$ for sufficiently large $n \in \mathbb{N}$.

Because $\lambda_{\Psi}\left(u_{n}\right) \rightarrow 0,\left\|u_{n}\right\| \geq\left\|u_{n}\right\| \lambda_{\Psi}\left(u_{n}\right)$ for every sufficiently large $n \in \mathbb{N}$. From the definition of $\lambda_{\Psi}\left(u_{n}\right)$ results the existence of an element $z_{u_{n}}^{\star} \in \partial \Psi\left(u_{n}\right)$,
such that $\lambda_{\Psi}\left(u_{n}\right)=\left\|z_{u_{n}}^{\star}\right\|_{\star}$. For every $v \in X$, we have $\left|z_{u_{n}}^{\star}(v)\right| \leq\left\|z_{u_{n}}^{\star}\right\|_{\star}\|v\|$, therefore $\left\|z_{u_{n}}^{\star}\right\|_{\star}\|v\| \geq-z_{u_{n}}^{\star}(v)$. If we take $v=u_{n}$, then $\left\|z_{u_{n}}^{\star}\right\|_{\star}\left\|u_{n}\right\| \geq-z_{u_{n}}^{\star}\left(u_{n}\right)$.

Using the properties $\Psi^{0}(u, v)=\max \left\{z^{\star}(v): z^{\star} \in \partial \Psi(u)\right\}$ for every $v \in X$, we have $-z^{\star}(v) \geq-\Psi^{0}(u, v)$ for all $z^{\star} \in \partial \Psi(u)$ and $v \in X$. If we take $u=v=u_{n}$ and $z^{\star}=z_{u_{n}}^{\star}$, we get $-z_{u_{n}}^{\star}\left(u_{n}\right) \geq-\Psi^{0}\left(u_{n}, u_{n}\right)$. Therefore, for every $\alpha>0$, we have

$$
\frac{1}{\alpha}\left\|u_{n}\right\| \geq \frac{1}{\alpha}\left\|z_{u_{n}}^{\star}\right\|_{\star}\left\|u_{n}\right\| \geq-\frac{1}{\alpha} \Psi^{0}\left(u_{n}, u_{n}\right)
$$

When we add the above inequality with $c+1 \geq \Psi\left(u_{n}\right)$, we obtain

$$
c+1+\frac{1}{\alpha}\left\|u_{n}\right\| \geq \Psi\left(u_{n}\right)-\frac{1}{\alpha} \Psi^{0}\left(u_{n} ; u_{n}\right)
$$

Using the above inequality, $\Psi^{0}(u, v) \leq\langle A(u), v\rangle+\Phi^{0}(u,-v)$, and Proposition 3.3 we get

$$
\begin{aligned}
& c+1+\frac{1}{\alpha}\left\|u_{n}\right\| \\
& \geq \Psi\left(u_{n}\right)-\frac{1}{\alpha} \Psi^{0}\left(u_{n} ; u_{n}\right) \\
&=\frac{1}{p}\left\langle A\left(u_{n}\right), u_{n}\right\rangle-\Phi\left(u_{n}\right)-\frac{1}{\alpha}\left(\left\langle A\left(u_{n}\right), u_{n}\right\rangle+\Phi^{0}\left(u_{n} ;-u_{n}\right)\right) \\
& \geq\left(\frac{1}{p}-\frac{1}{\alpha}\right)\left\langle A\left(u_{n}\right), u_{n}\right\rangle-\int_{\mathbb{R}^{N}}\left[F\left(x, u_{n}(x)\right)+\frac{1}{\alpha} F_{2}^{0}\left(x, u_{n}(x) ;-u_{n}(x)\right)\right] d x \\
& \geq\left(\frac{1}{p}-\frac{1}{\alpha}\right)\left\langle A\left(u_{n}\right), u_{n}\right\rangle-\frac{1}{\alpha} \int_{\mathbb{R}^{N}} g\left(u_{n}(x)\right) d x
\end{aligned}
$$

The relation $\lim _{|u| \rightarrow \infty} \frac{g(u)}{|u|^{p}}=\lambda$ assures the existence of a constant M, such that $\int_{\mathbb{R}^{N}} g\left(u_{n}(x)\right) d x \leq M+\lambda \int_{\mathbb{R}^{N}}\left|u_{n}(x)\right|^{p} d x$. We use again that the inclusion $X \hookrightarrow$ $L^{p}\left(\mathbb{R}^{N}\right)$ is continuous, that $a(u)=\frac{1}{p}\langle A(u), u\rangle$ and that

$$
a(u)=\|u\|^{p}\left\langle A\left(\frac{u}{\|u\|}\right), \frac{u}{\|u\|}\right\rangle \geq \kappa(1)\|u\|^{p}
$$

to obtain

$$
\begin{aligned}
c+1+\left\|u_{n}\right\| & \geq\left(\frac{1}{p}-\frac{1}{\alpha}\right)\left\langle A\left(u_{n}\right), u_{n}\right\rangle-\frac{\lambda C^{p}(p)}{\alpha}\left\|u_{n}\right\|^{p}-\frac{M}{\alpha} \\
& \geq \frac{\kappa(1)(\alpha-p)-\lambda C^{p}(p)}{\alpha}\left\|u_{n}\right\|^{p}-\frac{M}{\alpha} .
\end{aligned}
$$

From the above inequality, it results that the sequence $\left(u_{n}\right)$ is bounded.
Proposition 4.2. If conditions (F1), (F2') and (F4) hold, then every $(C P S)_{c}(c>$ $0)$ sequence $\left(u_{n}\right) \subset X$ for the function $\Psi: X \rightarrow \mathbb{R}$ is bounded in X.
Proof. Let $\left(u_{n}\right) \subset X$ be a $(C P S)_{c}(c>0)$ sequence for the function Ψ, i.e. $\Psi\left(u_{n}\right) \rightarrow$ c and $\left(1+\left\|u_{n}\right\|\right) \lambda_{\Psi}\left(u_{n}\right) \rightarrow 0$. From $\left(1+\left\|u_{n}\right\|\right) \lambda_{\Psi}\left(u_{n}\right) \rightarrow 0$, we get $\left\|u_{n}\right\| \lambda_{\Psi}\left(u_{n}\right) \rightarrow 0$ and $\lambda_{\Psi}\left(u_{n}\right) \rightarrow 0$. As in Proposition 4.1, there exists $z_{u_{n}}^{\star} \in \partial \Psi\left(u_{n}\right)$ such that

$$
\frac{1}{p}\left\|z_{u_{n}}^{\star}\right\|_{\star}\left\|u_{n}\right\| \geq-\Psi^{0}\left(u_{n} ; \frac{1}{p} u_{n}\right)
$$

From this inequality, Proposition 3.3, condition (F2') and the property $\Psi^{0}(u ; v) \leq$ $\langle A u, v\rangle+\Phi^{0}(u ;-v)$ we get

$$
\begin{aligned}
c+1 & \geq \Psi\left(u_{n}\right)-\frac{1}{p} \Psi^{0}\left(u_{n} ; u_{n}\right) \\
& \geq a\left(u_{n}\right)-\Phi\left(u_{n}\right)-\frac{1}{p}\left[\left\langle A u_{n}, u_{n}\right\rangle+\Phi^{0}\left(u_{n} ;-u_{n}\right)\right] \\
& \geq-\int_{\mathbb{R}^{N}}\left[F\left(x, u_{n}(x)\right)+\frac{1}{p} F_{2}^{0}\left(x, u_{n}(x) ;-u_{n}(x)\right)\right] d x \\
& \geq C\left\|u_{n}\right\|_{\alpha}^{\alpha} .
\end{aligned}
$$

Therefore, the sequence $\left(u_{n}\right)$ is bounded in $L^{\alpha}\left(\mathbb{R}^{N}\right)$. From the condition (F4) follows that, for every $\varepsilon>0$, there exists $c(\varepsilon)>0$, such that for a.e. $x \in \mathbb{R}^{N}$,

$$
F(x, u(x)) \leq \frac{\varepsilon}{p}|u(x)|^{p}+\frac{c(\varepsilon)}{r}|u(x)|^{r} .
$$

After integration, we obtain

$$
\Phi(u) \leq \frac{\varepsilon}{p}\|u\|_{p}^{p}+\frac{c(\varepsilon)}{r}\|u\|_{r}^{r}
$$

Using the above inequality, the expression of Ψ, and $\|u\|_{p} \leq C(p)\|u\|$, we obtain

$$
\frac{\kappa(1)-\varepsilon C^{p}(p)}{p}\|u\|^{p} \leq \Psi(u)+\frac{c(\varepsilon)}{r}\|u\|_{r}^{r} \leq c+1+\|u\|_{r}^{r}
$$

Now, we study the behaviour of the sequence $\left(\left\|u_{n}\right\|_{r}\right)$. We have the following two cases:
(i) If $r=\alpha$, then it is easy to see that the sequence $\left(\left\|u_{n}\right\|_{r}\right)$ is bounded in \mathbb{R}.
(ii) If $r \in\left(\alpha, p^{\star}\right)$ and $\alpha>p^{\star} \frac{r-p}{p^{\star}-p}$, then we have

$$
\|u\|_{r}^{r} \leq\|u\|_{\alpha}^{(1-s) \alpha} \cdot\|u\|_{p^{\star}}^{s p^{\star}}
$$

where $r=(1-s) \alpha+s p^{\star}, s \in(0,1)$.
Using the inequality $\|u\|_{p^{\star}}^{s p^{\star}} \leq C^{s p^{\star}}(p)\|u\|^{s p^{\star}}$, we obtain

$$
\begin{equation*}
\frac{\kappa(1)-\varepsilon C^{p}(p)}{p}\|u\|^{p} \leq c+1+\frac{c(\varepsilon)}{r}\|u\|_{\alpha}^{(1-s) \alpha}\|u\|^{s p^{\star}} \tag{4.1}
\end{equation*}
$$

When in the inequality 4.1 we take $\varepsilon \in\left(0, \frac{\kappa(1)}{C^{p}(p)}\right)$ and use b), we obtain that the sequence $\left(u_{n}\right)$ is bounded in X.

The main result of this section is as follows.
Theorem 4.3. (1) If conditions (F1), (F1'), and (F2)-(F4) hold, then Ψ satisfies the $(P S)_{c}$ condition for every $c \in \mathbb{R}$.
(2) If conditions (F1), (F1'), (F2'), (F3), and (F4) hold, then Ψ satisfies the $(C P S)_{c}$ condition for every $c>0$.

Proof. Let $\left(u_{n}\right) \subset X$ be a $(P S)_{c}(c \in \mathbb{R})$ or a $(C P S)_{c}(c>0)$ sequence for the function $\Psi\left(u_{n}\right)$. Using Propositions 4.1 4.2 it follows that $\left(u_{n}\right)$ is a bounded sequence in X. As X is reflexive Banach space, the existence of an element $u \in X$ results, such that $u_{n} \rightharpoonup u$ weakly in X. Because the inclusions $X \hookrightarrow L^{r}\left(\mathbb{R}^{N}\right)$ is compact, we have that $u_{n} \rightarrow u$ strongly in $L^{r}\left(\mathbb{R}^{N}\right)$.

Next we estimate the expressions $I_{n}^{1}=\Psi^{0}\left(u_{n} ; u_{n}-u\right)$ and $I_{n}^{2}=\Psi^{0}\left(u ; u-u_{n}\right)$. First we estimate the expression $I_{n}^{2}=\Psi^{0}\left(u ; u-u_{n}\right)$. We know that $\Psi^{0}(u ; v)=$ $\max \left\{z^{\star}(v): z^{\star} \in \partial \Psi(u)\right\}, \forall v \in X$. Therefore, there exists $z_{u}^{\star} \in \partial \Psi(u)$, such that $\Psi^{0}(u ; v)=z_{u}^{\star}(v)$ for all $v \in X$. From the above relation and from the fact that $u_{n} \rightharpoonup u$ weakly in X, we get $\Psi^{0}\left(u ; u-u_{n}\right)=z_{u}^{\star}\left(u-u_{n}\right) \rightarrow 0$.

Now, we estimate the expression $I_{n}^{1}=\Psi^{0}\left(u_{n} ; u_{n}-u\right)$. From $\lambda_{\Psi}\left(u_{n}\right) \rightarrow 0$ follows the existence of a positive real numbers sequence $\mu_{n} \rightarrow 0$, such that $\lambda_{\Psi}\left(u_{n}\right) \leq \mu_{n}$. If we use the Remark 2.1, we get $\Psi^{0}\left(u_{n}, u_{n}-u\right)+\mu_{n}\left\|u_{n}-u\right\| \geq 0$.

Now, we estimate the expression $I_{n}=\Phi^{0}\left(u_{n} ; u-u_{n}\right)+\Phi\left(u ; u-u_{n}\right)$. For the simplicity in calculus we introduce the notations $h_{1}(s)=|s|^{p-1}$ and $h_{2}(s)=|s|^{r}$. For this we observe that if we use the continuity of the functions h_{1} and h_{2}, the condition (F4) implies that for every $\varepsilon>0$, there exists a $c(\varepsilon)>0$ such that

$$
\begin{equation*}
\max \{|\underline{f}(x, s)|,|\bar{f}(x, s)|\} \leq \varepsilon h_{1}(s)+c(\varepsilon) h_{2}(s) \tag{4.2}
\end{equation*}
$$

for a.e. $x \in \mathbb{R}^{N}$ and for all $s \in \mathbb{R}$. Using this relation and Proposition 3.3, we have

$$
\begin{aligned}
I_{n}= & \Phi^{0}\left(u_{n} ; u-u_{n}\right)+\Phi\left(u ; u-u_{n}\right) \\
\leq & \int_{\mathbb{R}^{N}}\left[F_{2}^{0}\left(x, u_{n}(x) ; u_{n}(x)-u(x)\right)+F_{2}^{0}\left(x, u(x) ; u(x)-u_{n}(x)\right)\right] d x \\
\leq & \int_{\mathbb{R}^{N}}\left[f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right)+\bar{f}(x, u(x))\left(u(x)-u_{n}(x)\right)\right] d x \\
\leq & 2 \varepsilon \int_{\mathbb{R}^{N}}\left[h_{1}(u(x))+h_{1}\left(u_{n}(x)\right)\right]\left|u_{n}(x)-u(x)\right| d x \\
& +2 c_{\varepsilon} \int_{\mathbb{R}^{N}}\left[\left(h_{2}(u(x))+h_{2}\left(u_{n}(x)\right)\right]\left|u_{n}(x)-u(x)\right| d x .\right.
\end{aligned}
$$

Using Hölder inequality and that the inclusion $X \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ is continuous, we get

$$
\begin{aligned}
I_{n} \leq & 2 \varepsilon C(p)\left\|u_{n}-u\right\|\left(\left\|h_{1}(u)\right\|_{p^{\prime}}+\left\|h_{1}\left(u_{n}\right)\right\|_{p^{\prime}}\right) \\
& +2 c(\varepsilon)\left\|u_{n}-u\right\|_{r}\left(\left\|h_{2}(u)\right\|_{r^{\prime}}+\left\|h_{2}\left(u_{n}\right)\right\|_{r^{\prime}}\right)
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $\frac{1}{r}+\frac{1}{r^{\prime}}=1$. Using the fact that the inclusion $X \hookrightarrow L^{r}\left(\mathbb{R}^{N}\right)$ is compact, we get that $\left\|u_{n}-u\right\|_{r} \rightarrow 0$ as $n \rightarrow \infty$. For $\varepsilon \rightarrow 0^{+}$and $n \rightarrow \infty$ we obtain that $I_{n} \rightarrow 0$.

Finally, we use the inequality $\Psi^{0}(u ; v) \leq\langle A(u), v\rangle+\Phi^{0}(u ;-v)$. If we replace v with $-v$, we get $\Psi^{0}(u,-v) \leq-\langle A(u), v\rangle+\Phi^{0}(u ; v)$, therefore $\langle A(u), v\rangle \leq \Phi^{0}(u ; v)-$ $\Psi^{0}(u,-v)$.

In the above inequality we replace u and v by $u=u_{n}, v=u-u_{n}$ then $u=u, v=$ $u_{n}-u$ and we get

$$
\begin{gathered}
\left\langle A\left(u_{n}\right), u-u_{n}\right\rangle \leq \Phi^{0}\left(u_{n}, u-u_{n}\right)-\Psi^{0}\left(u_{n} ; u_{n}-u\right) \\
\left\langle A(u), u_{n}-u\right\rangle \leq \Phi^{0}\left(u, u_{n}-u\right)-\Psi^{0}\left(u, u-u_{n}\right)
\end{gathered}
$$

Adding these relations, we have the following key inequality:

$$
\begin{aligned}
& \left\|u_{n}-u\right\| \kappa\left(u_{n}-u\right) \\
& \leq\left\langle A\left(u_{n}-u\right), u_{n}-u\right\rangle \\
& \leq\left[\Phi^{0}\left(u_{n} ; u-u_{n}\right)+\Phi\left(u ; u-u_{n}\right)\right]-\Psi^{0}\left(u_{n} ; u_{n}-u\right)-\Psi^{0}\left(u ; u-u_{n}\right) \\
& =I_{n}-I_{n}^{1}-I_{n}^{2} .
\end{aligned}
$$

Using the above relation and the estimations of I_{n}, I_{n}^{1} and I_{n}^{2}, we obtain

$$
\left\|u_{n}-u\right\| \kappa\left(u_{n}-u\right) \leq I_{n}+\mu_{n}\left\|u_{n}-u\right\|-z_{u}^{\star}\left(u_{n}-u\right)
$$

If $n \rightarrow \infty$, from the above inequality we obtain the assertion of the theorem.
Remark 4.4. It is important to observe then the above results remain true if we replace the Banach space X with every closed subspace Y of X.

5. Proof of Theorem 1.2

In this section we prove the main result of this paper, whihc is a result of Mountain Pass type. First we prove that the critical points of the function $\Psi: X \rightarrow \mathbb{R}$ defined by $\Psi(u)=a(u)-\Phi(u)$ are solutions of problem (1.4).

Proposition 5.1. If $0 \in \partial \Psi(u)$, then u solves the problem (1.4).
Proof. Because $0 \in \partial \Psi(u)$, we have $\Psi^{0}(u ; v) \geq 0$ for every $v \in X$. Using the Proposition 3.3 and a property of Clarke derivative we obtain

$$
\begin{aligned}
0 \leq \Psi^{0}(u ; v) & \leq\langle u, v\rangle+(-\Phi)^{0}(u ; v) \\
& =\langle A(u), v\rangle+\Phi^{0}(u ;-v) \\
& \leq\langle A(u), v\rangle+\int_{\mathbb{R}^{N}} F_{2}^{0}(x, u(x),-v(x)) d x
\end{aligned}
$$

for every $v \in X$.
Proof of Theorem 1.2. Using (1) in Theorem 4.3, and conditions (F1)-(F4), it follows that the functional $\Psi(u)=\frac{1}{p}\langle A(u), u\rangle-\Phi(u)$ satisfies the $(P S)_{c}$ condition for every $c \in \mathbb{R}$. From Proposition 2.2 we verify the following geometric hypotheses:

$$
\begin{align*}
& \exists \alpha, \rho>0, \quad \text { such that } \Psi(u) \geq \beta \text { on } B_{\rho}(0)=\{u \in X:\|u\|=\rho\} \tag{5.1}\\
& \quad \Psi(0)=0 \quad \text { and there exists } v \in H \backslash B_{\rho}(0) \text { such that } \Psi(v) \leq 0 \tag{5.2}
\end{align*}
$$

For the proof of relation (5.1), we use the relation (F4), i.e. $|f(x, s)| \leq \varepsilon|s|^{p-1}+$ $c(\varepsilon)|s|^{r-1}$. Integrating this inequality and using that the inclusions $X \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$, $X \hookrightarrow L^{r}\left(\mathbb{R}^{N}\right)$ are continuous, we get that

$$
\begin{aligned}
\Psi(u) & \geq \frac{\kappa(1)-\varepsilon C(p)}{p}\langle A(u), u\rangle-\frac{1}{r} c(\varepsilon) C(r)\|u\|_{r}^{r} \\
& \geq \frac{\kappa(1)-\varepsilon C(p)}{p}\|u\|^{p}-\frac{1}{r} c(\varepsilon) C(r)\|u\|^{r}
\end{aligned}
$$

The right member of the inequality is a function $\chi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ of the form $\chi(t)=$ $A t^{p}-B t^{r}$, where $A=\frac{\kappa(1)-\varepsilon C(p)}{p}, B=\frac{1}{r} c(\varepsilon) C(r)$. The function χ attains its global maximum in the point $t_{M}=\left(\frac{p A}{r B}\right)^{\frac{1}{r-p}}$. When we take $\rho=t_{M}$ and $\left.\left.\beta \in\right] 0, \chi\left(t_{M}\right)\right]$, it is easy to see that the condition (5.1) is fulfilled.

From (F5) we have $\Psi(u) \leq \frac{1}{p}\langle\overline{A(u)}, u\rangle+c^{\star}\|u\|_{p}^{p}-c^{\star}\|u\|_{\alpha}^{\alpha}$. If we fix an element $v \in H \backslash\{0\}$ and in place of u we put $t v$, then we have

$$
\Psi(t v) \leq\left(\frac{1}{p}\langle A(v), v\rangle+c^{\star}\|v\|_{p}^{p}\right) t^{p}-c^{\star} t^{\alpha}\|v\|_{\alpha}^{\alpha}
$$

From this we see that if t is large enough, $t v \notin B_{\rho}(0)$ and $\Psi(t v)<0$. So, the condition 5.2 is satisfied and Proposition 2.2 assures the existence of a nontrivial critical point of Ψ.

Now when we use (2) in Theorem 4.3, from conditions (F1), (F2'), (F3), and (F4), we get that the function Ψ satisfies the condition $(C P S)_{c}$ for every $c>0$. We use again the Proposition 2.2, which assures the existence of a nontrivial critical point for the function Ψ. It is sufficient to prove only the relation 5.2 , because (5.1) is proved in the same way.

To prove the relation (5.2) we fix an element $u \in X$ and we define the function $h:(0,+\infty) \rightarrow \mathbb{R}$ by $h(t)=\frac{1}{t} F\left(x, t^{1 / p} u\right)-C \frac{p}{\alpha-p} t^{\frac{\alpha}{p}-1}|u|^{\alpha}$. The function h is locally Lipschitz. We fix a number $t>1$, and from the Lebourg's main value theorem follows the existence of an element $\tau \in(1, t)$ such that

$$
h(t)-h(1) \in \partial_{t} h(\tau)(t-1)
$$

where ∂_{t} denotes the generalized gradient of Clarke with respect to $t \in \mathbb{R}$. From the Chain Rules we have

$$
\partial_{t} F\left(x, t^{1 / p} u\right) \subset \frac{1}{p} \partial F\left(x, t^{1 / p} u\right) t^{\frac{1}{p}-1} u
$$

Also we have

$$
\partial_{t} h(t) \subset-\frac{1}{t^{2}} F\left(x, t^{1 / p} u\right)+\frac{1}{t} \partial F\left(x, t^{1 / p} u\right) t^{\frac{1}{p}-1} u-C t^{\frac{\alpha}{p}-2}|u|^{\alpha}
$$

Therefore,

$$
\begin{aligned}
h(t)-h(1) & \subset \partial_{t} h(\tau)(t-1) \\
& \subset-\frac{1}{t^{2}}\left[F\left(x, t^{1 / p} u\right)-t^{1 / p} u \partial F\left(x, t^{1 / p} u\right)+C\left|t^{1 / p} u\right|^{\alpha}\right](t-1)
\end{aligned}
$$

Using the relation (F2'), we obtain that $h(t) \geq h(1)$; therefore,

$$
\frac{1}{t} F\left(x, t^{1 / p} u\right)-C \frac{p}{\alpha-p} t^{\frac{\alpha}{p}-1}|u|^{\alpha} \geq F(x, u)-C \frac{p}{\alpha-p}|u|^{\alpha} .
$$

From this inequality, we get

$$
\begin{equation*}
F\left(x, t^{1 / p}\right) \geq t F(x, u)+C \frac{p}{\alpha-p}\left[t^{\alpha / p}-t\right]|u|^{\alpha} \tag{5.3}
\end{equation*}
$$

for every $t>1$ and $u \in \mathbb{R}$. Let us fix an element $u_{0} \in X \backslash\{0\}$; then for every $t>1$, we have

$$
\begin{aligned}
\Psi\left(t^{1 / p} u_{0}\right)= & \frac{1}{p}\left\langle A\left(t^{1 / p} u_{0}\right), t^{1 / p} u_{0}\right\rangle-\int_{\mathbb{R}^{N}} F\left(x, t^{1 / p} u_{0}(x)\right) d x \\
& \leq \frac{t}{p}\left\langle A u_{0}, u_{0}\right\rangle-t \int_{\mathbb{R}^{N}} F\left(x, u_{0}(x)\right) d x-C \frac{p}{\alpha-p}\left[t^{\alpha / p}-t\right]\left\|u_{0}\right\|_{\alpha}^{\alpha}
\end{aligned}
$$

If t is sufficiently large, then for $v_{0}=t^{1 / p} u_{0}$ we have $\Psi\left(v_{0}\right) \leq 0$. This completes the proof.

6. Applications

In the first two examples we suppose that X is a Hilbert space with the inner product $\langle\cdot, \cdot\rangle$.

Let $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function as in the introduction of this paper.

Application 6.1. We consider the function $V \in \mathcal{C}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ which satisfies the following conditions:
(a) $V(x)>0$ for all $x \in \mathbb{R}^{N}$
(b) $V(x) \rightarrow+\infty$ as $|x| \rightarrow+\infty$.

Let X be the Hilbert space defined by

$$
X=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): \int\left(|\nabla u(x)|^{2}+V(x)|u(x)|^{2}\right) d x<\infty\right\}
$$

with the inner product

$$
\langle u, v\rangle=\int(\nabla u \nabla v+V(x) u v) d x
$$

It is well known that if the conditions (a) and (b) are fulfilled then the inclusion $X \hookrightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is compact [11], therefore the condition (F1') is satisfied.

Now we formulate the problem.
Find a positive $u \in X$ such that for every $v \in X$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}(\nabla u \nabla v+V(x) u v) d x+\int_{\mathbb{R}^{N}} F_{2}^{0}(x, u(x) ;-v(x)) d x \geq 0 \tag{6.1}
\end{equation*}
$$

We have the following result.
Corollary 6.2. If conditions (F1), (F2'), (F3), (F4), and (a), (b) hold, the problem 6.1 has a nontrivial positive solution.

Proof. We replace the function f by $f_{+}: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{+}(x, u)= \begin{cases}f(x, u) & \text { if } u \geq 0 \tag{6.2}\\ 0, & \text { if } u<0\end{cases}
$$

and use (2) in Theorem 1.2
Remark 6.3. The above result improves a result in Gazolla-Rădulescu [10].
Application 6.4. Now, we consider $A u:=-\triangle u+|x|^{2} u$ for $u \in D(A)$, where

$$
D(A):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): A u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

Here $|\cdot|$ denotes the Euclidian norm of \mathbb{R}^{N}. In this case the Hilbert space X is defined by

$$
X=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+|x|^{2} u^{2}\right) d x<\infty\right\}
$$

with the inner product

$$
\langle u, v\rangle=\int_{\mathbb{R}^{N}}\left(\nabla u \nabla v+|x|^{2} u v\right) d x
$$

The inclusion $X \hookrightarrow L^{s}\left(\mathbb{R}^{N}\right)$ is compact for $s \in\left[2, \frac{2 N}{N-2}\right)$, see Kavian [12, Exercise 20, pp. 278]. Therefore, the condition (F1') is satisfied.

Now, we formulate the next problem.
Find a positive $u \in X$ such that for every $v \in X$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\nabla u \nabla v+|x|^{2} u v\right) d x+\int_{\mathbb{R}^{N}} F_{2}^{0}(x, u(x) ;-v(x)) d x \geq 0 \tag{6.3}
\end{equation*}
$$

Corollary 6.5. If (F1), (F2), (F3), and (F4) hold, then problem 6.3 has a positive solution.

The proof of this corollary is similar to that of Corollary 6.2

Remark 6.6. This result improves a result from Varga [28], where the condition (F5) was used.

Application 6.7. In this example we suppose that G is a subgroup of the group $O(N)$. Let Ω be an unbounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$, and the elements of G leave Ω invariant, i.e. $g(\Omega)=\Omega$ for every $g \in G$. We suppose that Ω is compatible with G, see the book of Willem 29] Definition 1.22. The action of G on $X=W_{0}^{1, p}$ is defined by

$$
g u(x):=u\left(g^{-1} x\right)
$$

The subspace of invariant function X^{G} is defined by

$$
X^{G}:=\{u \in X: g u=u, \forall g \in G\} .
$$

The norm on X is defined by

$$
\|u\|=\left(\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x\right)^{1 / p}
$$

If Ω is compatible with G, then the embeddings $X \hookrightarrow L^{s}(\Omega)$, with $p<s<p^{\star}$ are compact, see the paper of Kobayashi and Otani [13]. Therefore the condition (F2") is satisfied.

We consider the potential $a: X \rightarrow \mathbb{R}$ defined by $a(u)=\frac{1}{p}\|u\|^{p}$. This function is G-invariant because the action of G is isometric on X. The Gateaux differential $A: X \rightarrow X^{\star}$ of the function $a: X \rightarrow \mathbb{R}$ is given by

$$
\langle A u, v\rangle=\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla v+|u|^{p-2} u v\right) d x
$$

The operator A is homogeneous of degree $p-1$ and strongly monotone, because $p \geq 2$.

Now, we formulate the following problem.
Find $u \in X \backslash\{0\}$ such that for every $v \in X$ we have

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla v+|u|^{p-2} u v\right) d x+\int_{\Omega} F_{2}^{0}(x, u(x) ;-v(x)) d x \geq 0 \tag{6.4}
\end{equation*}
$$

We have the following result.
Corollary 6.8. If we suppose that the condition (F6) is true, then the following assertions hold.
(a) If conditions (F1)-(F5) are fulfilled, then problem (1.4) has a nontrivial solution.
(b) If conditions (F1), (F2'), (F3), and (F4) are fulfilled, then problem 1.4) has a nontrivial symmetric solution.

Remark 6.9. The result (a) from Corollary 6.8 is similar to the a result obtained by Kobayashi, Ôtani [13, but the difference is that in the paper [13] the "Principle of Symmetric Criticality" was used for Szulkin type functional, see [27].
Application 6.10. In this case we consider $\Omega=\tilde{\Omega} \times \mathbb{R}^{N}, N-m \geq 2, \tilde{\Omega} \subset \mathbb{R}^{m}(m \geq$ 1) is open bounded and $2 \leq p \leq N$. We consider the Banach space $X=W_{0}^{1, p}(\Omega)$ with the norm $\|u\|=\left(\int_{\Omega}|\nabla u|^{p}\right)^{1 / p}$. Let G be a subgroup of $O(N)$ defined by $G=i d^{m} \times O(N-m)$. The action of G on X is defined by $g u\left(x_{1}, x_{2}\right)=u\left(x_{1}, g_{1} x_{2}\right)$
for every $\left(x_{1}, x_{2}\right) \in \tilde{\Omega} \times \mathbb{R}^{N-m}$ and $g=i d^{m} \times g_{1} \in G$. The subspace of invariant function is defined by

$$
X^{G}=W_{0, G}^{1, p}=\{u \in X: g u=u, \forall g \in G\}
$$

The action of G on X is isometric, that is

$$
\|g u\|=\|u\|, \forall g \in G
$$

If $2 \leq p \leq N$, from a result of Lions [18] follows that the embeddings $X \hookrightarrow$ $L^{s}(\Omega), p<s<p^{\star}$ are compact. Therefore the condition $\left(f_{2}^{\prime \prime}\right)$ is true. In this case condition (F6) will be replaced by
(F6') $f\left(x, y_{1}, u\right)=f\left(x, y_{2}, u\right)$ for every $y_{1}, y_{2} \in \mathbb{R}^{N-m}(N-m \geq 2),\left|y_{1}\right|=\left|y_{2}\right|$; i.e., the function $f(x, \cdot, u)$ is spherically symmetric on \mathbb{R}^{N-m}.

We consider the potential $a: X \rightarrow \mathbb{R}$ defined by $a(u)=\frac{1}{p}\|u\|^{p}$. This functional is G-invariant because the action of G is isometric on X. The Gateaux differential $A: X \rightarrow X^{\star}$ of the functional $a: X \rightarrow \mathbb{R}$ is given by

$$
\langle A u, v\rangle=\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x
$$

The operator A is homogeneous of degree $p-1$ and strongly monotone, because $p \geq 2$.

Now, we formulate the following problem.
Find $u \in X \backslash\{0\}$ such that for every $v \in X$ we have

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x+\int_{\Omega} F_{2}^{0}(x, u(x) ;-v(x)) d x \geq 0 \tag{6.5}
\end{equation*}
$$

We have the following result.
Corollary 6.11. (a) If conditions (F1)-(F5), and (F6) hold, then problem (6.5) has a nontrivial solution.
(b) If conditions (F1), (F2'), (F3), (F4), and (F6') hold, then problem 6.5) has a nontrivial solution.
Acknowledgments. The authors want to express their gratitude to Dr. Alexandru Kristály for his helpful discussions.

References

[1] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problems, Nonlinear Analisys, TMA 20(1993), 1205-1216.
[2] T. Bartsch, Topological Methods for Variational with Symmetries, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[3] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems in \mathbb{R}^{N}, Communications of Partial Differential Equations 20(1995), 1725-1741.
[4] T. Bartsch and M. Willem, Infinitely many non-radial solutions of an Euclidian scalar field equation, J. Func. Anal. 117(1993), 447-460.
[5] T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear problem in \mathbb{R}^{N}, Arch. Rat. Mech. Anal. 124(1993), 261-276.
[6] H. Brezis, Analyse Fonctionelle, Masson, Paris (1983).
[7] K.-C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl.80(1981). 102-129.
[8] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley\&Sons, New York, 1983.
[9] X.L. Fan, Y.Z. Zhao, Linking and Multiplicity results for the p-Laplacian on Unbounded Cylinder, Journal of Math. Anal. and Appl., 260(2001), 479-489.
[10] F. Gazolla and V. Rădulescu, A nonsmooth critical point approach to some noninear elliptic equations in \mathbb{R}^{N}, Diff. Integral Equations, 13(2000), no.1-3, 47-60.
[11] M.R. Grossinho, S.A. Tersian, An Introduction to Minimax Theorems and Their Applications to Differential Equations, Kluwer Academic Publishers, Dodrecht, Boston, London, 2001.
[12] O. Kavian, Introduction à la Théorie des Point Critique et Applications aux Proble'emes Elliptique, Springer Verlag, 1995.
[13] J. Kobayashi, M. Ôtani, The Principle of Symmetric Criticality for Non-Differentiable Mappings, preprint.
[14] W. Krawciewicz and W. Marzantovicz, Some remarks on the Lusternik-Schnirelmann method for non-differentiable functionals invariant with respect to a finite group action, Rocky Mountain J. of Math. 20(1990), 1041-1049.
[15] A. Kristály, Infinitely Many Radial and Non-radial Solutions for a class of hemivariational inequalities, Rocky Math. Journal, in press
[16] N.-C. Kourogenis and N.-S. Papageorgiu, Nonsmooth critical point theory and nonlinear elliptic equations at resonenace, Kodai Math. J. 23(2000), 108-135.
[17] A. Kristály, V.V. Motreanu and Cs. Varga, A minimax principle with a general Palais-Smale condition, submitted.
[18] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49(1982), 312-334.
[19] H. Megrez, A nonlinear elliptic eigenvalue problem in unbounded domains, Rostock Math. Kolloq, No. 56 (2002), 39-48.
[20] E. Montefusco, V. Rădulescu, Nonlinear eigenvalue problems for quasilinear operators on unbounded domain, Differential Equations Appl. 8(2001), no. 4, 481-497.
[21] D. Motreanu and Cs. Varga, A nonsmooth mimimax equivariant principle, Comm. Appl. Anal. 3(1999), 115-130.
[22] D. Motreanu and P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dodrecht, Boston, London, 1999.
[23] D. Motreanu, V. Rădulescu, Variational and non-variational methods in nonlinear analysis and boundary value problems, Kluwer Academic Publishers, Boston-Dordrecht- London 2003.
[24] R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69(1979), 19-30.
[25] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg, Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986.
[26] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. angev. Math. Phys. 43(1992), 270-291. 62.
[27] A. Szulkin, Minimax methods for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré 3,(1986), 77-109.
[28] Cs. Varga, Existence and infinitely many solutions for an abstract class of hemivariational inequality, Archives of Inequalities and Applications, in press
[29] M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.
[30] Y. Zhou, Y. Huang, Existence of solutions for a class of elliptic variational inequality, Journal Math. Anal. Appl.250(2000), No.1, 187-195.

ZsuzsÁnna DÁlyay
University of Szeged, Juhász Gyula Teacher Training Faculty, Department of Mathematics 6721, Szeged, Boldogasszony Sgt. 6. Hungary

E-mail address: dalyay@jgytf.u-szeged.hu
Csaba Varga
"Babeş- Bolyai" University, Department of Mathematics, Str. M KogĂlniceanu, Nr.1, Cluj-Napoca, Romania

E-mail address: csvarga@cs.ubbcluj.ro

[^0]: 1991 Mathematics Subject Classification. 35A15, 35J60, 35H30.
 Key words and phrases. Variational methods, discontinuous nonlinearities, principle of symmetric criticality.
 (C)2004 Texas State University - San Marcos.

 Submitted November 17, 2003. Published March 16, 2004.
 Z. Dályai was partially supported by contract HPRN-CT-1999-00118 from the EU.
 C. Varga was partially supported by contract HPRN-CT-1999-00118 from the EU, and by the Research Center of Sapientia Foundation.

