Electronic Journal of Differential Equations, Vol. 2004(2004), No. 39, pp. 1–14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

STRUCTURE OF GROUP INVARIANTS OF A QUASIPERIODIC FLOW

LENNARD F. BAKKER

ABSTRACT. It is shown that the multiplier representation of the generalized symmetry group of a quasiperiodic flow induces a semidirect product structure on certain group invariants (including the generalized symmetry group) of the flow's smooth conjugacy class.

1. INTRODUCTION

The generalized symmetry group, S_{ϕ} , of a smooth flow $\phi : \mathbb{R} \times T^n \to T^n$ is the collection of all diffeomorphisms of T^n that map the generating vector field of ϕ to a uniformly scaled copy of itself (see next section for definitions). The multiplier representation of S_{ϕ} is the one-dimensional linear representation

$$o_{\phi}: S_{\phi} \to \mathbb{R}^* \equiv \mathrm{GL}(\mathbb{R})$$

that takes a generalized symmetry $R \in S_{\phi}$ to its unique multiplier $\rho_{\phi}(R)$ (Theorem 2.8 in [5]), the multiplier being the scalar by which the generating vector field of ϕ is uniformly scaled by R. For each subgroup Λ of the multiplier group $\rho_{\phi}(S_{\phi})$, the multiplier representation induces the short exact sequence of groups,

$$\operatorname{id}_{T^n} \to \ker \rho_\phi \to \rho_\phi^{-1}(\Lambda) \xrightarrow{\mathfrak{I}\Lambda} \Lambda \to 1,$$

in which id_{T^n} is the identity diffeomorphism of T^n , $\operatorname{ker} \rho_{\phi} \to \rho_{\phi}^{-1}(\Lambda)$ is the canonical monomorphism, and $j_{\Lambda} : \rho_{\phi}^{-1}(\Lambda) \to \Lambda \cong \rho_{\phi}^{-1}(\Lambda)/\operatorname{ker} \rho_{\phi}$ is $\rho_{\phi}|\rho_{\phi}^{-1}(\Lambda)$. This short exact sequence indicates that $\rho_{\phi}^{-1}(\Lambda)$ is a group extension of $\operatorname{ker} \rho_{\phi}$ by the Abelian group Λ . When ϕ is a quasiperiodic flow on T^n , it will be shown that

- (i) every element of $\rho_{\phi}(S_{\phi})$ is a real algebraic integer of degree at most n (Corollary 4.4),
- (ii) ker $\rho_{\phi} \cong T^n$ (Corollary 4.7),
- (iii) every $R \in S_{\phi}$ with $\rho_{\phi}(R) = -1$ is an involution (Corollary 4.8),
- (iv) $\rho_{\phi}(S_{\phi})$ is isomorphic to an Abelian subgroup of $\operatorname{GL}(n,\mathbb{Z})$ (Theorem 5.3), and
- (v) for each subgroup $\Lambda < \rho_{\phi}(S_{\phi})$ there is a splitting map $h_{\Lambda} : \Lambda \to \rho_{\phi}^{-1}(\Lambda)$ for the extension (Theorem 5.4).

²⁰⁰⁰ Mathematics Subject Classification. 37C55, 37C80, 20E34, 11R04.

Key words and phrases. Generalized symmetry, quasiperiodic flow, semidirect product. ©2004 Texas State University - San Marcos.

Submitted July 02 2002. Published March 22, 2004.

The main result (Theorem 5.5) is that

$$\rho_{\phi}^{-1}(\Lambda) = \ker \rho_{\phi} \rtimes_{\Gamma} h_{\Lambda}(\Lambda)$$

for every $\Lambda < \rho_{\phi}(S_{\phi})$; that is, $\rho_{\phi}^{-1}(\Lambda)$ is the semidirect product of ker ρ_{ϕ} by $h_{\Lambda}(\Lambda)$ corresponding to the conjugating homomorphism $\Gamma : h_{\Lambda}(\Lambda) \to \operatorname{Aut}(\ker \rho_{\phi})$.

2. Multipliers and Quasiperiodic Flows

A generalized symmetry of a (smooth, i.e. C^{∞}) flow ϕ on the *n*-torus T^n $(n \ge 2)$ is an $R \in \text{Diff}(T^n)$ (the group of smooth diffeomorphisms on T^n) for which there exists an $\alpha \in \mathbb{R}^*$ such that

$$R\phi(t,\theta) = \phi(\alpha t, R(\theta))$$
 for all $t \in \mathbb{R}$ and all $\theta \in T^n$.

This condition is $R\phi_t = \phi_{\alpha t}R$ for all $t \in \mathbb{R}$, where ϕ_t is the diffeomorphism of T^n defined by $\phi_t(\theta) = \phi(t, \theta)$. A generalized symmetry of ϕ is characterized by its action on the generating vector field X of ϕ , which vector field is defined by

$$X(\theta) = \frac{d}{dt}\phi_t(\theta)\Big|_{t=0}, \quad \theta \in T^n.$$

(In what follows, **T** is the tangent functor, and $R_*X = \mathbf{T}RXR^{-1}$ is the push-forward of X by R.)

Theorem 2.1. An $R \in \text{Diff}(T^n)$ is a generalized symmetry of a flow ϕ on T^n if and only if there exists a unique $\alpha \in \mathbb{R}^*$ such that $R_*X = \alpha X$.

For the proof of this theorem, see Proposition 1.4 and Lemma 2.7 in [5].

The generalized symmetry group, S_{ϕ} , of a flow ϕ on T^n is the collection of all the generalized symmetries of ϕ . The Abelian group $F_{\phi} = \{\phi_t : t \in \mathbb{R}\} \subset \text{Diff}(T^n)$ generated by ϕ is a subgroup of the normal subgroup ker ρ_{ϕ} of S_{ϕ} . On the other hand, S_{ϕ} is the group theoretic normalizer of F_{ϕ} in $\text{Diff}(T^n)$ (Theorem 2.5 [5]).

The unique α attached to an $R \in S_{\phi}$ in Theorem 2.1 is $\rho_{\phi}(R)$, the multiplier of R. An $R \in S_{\phi}$ with $\rho_{\phi}(R) = 1$ is known as a (classical) symmetry of ϕ (p.8 [10]); the symmetry group of ϕ is ker $\rho_{\phi} = \rho_{\phi}^{-1}(\{1\})$. An $R \in S_{\phi}$ with $\rho_{\phi}(R) = -1$ is called a reversing symmetry (p.4 [10]); if $R^2 = \operatorname{id}_{T^n}$, then R is a reversing involution or a classical time-reversing symmetry of ϕ ; the reversing symmetry group of ϕ is $\rho_{\phi}^{-1}(\{1, -1\})$ (p.8 [10]). An $R \in S_{\phi}$ with $\rho_{\phi}(R) \neq \pm 1$, if it exists, is another type of symmetry of ϕ . Two flows ϕ and ψ are smoothly conjugate if and only if there is a $V \in \operatorname{Diff}(T^n)$ such that $V\phi_t = \psi_t V$ for all $t \in \mathbb{R}$. (This is equivalent to $V_*X = Y$ where X is the generating vector field for ϕ , and Y is the generating vector field for ψ .) A flow ϕ on T^n with generating vector field X is quasiperiodic if and only if there exists a $V \in \operatorname{Diff}(T^n)$ such that $V_{\varphi} = 0$ (see pp.79-80 [7]). (Recall that real numbers a_1, a_2, \ldots, a_n are independent over \mathbb{Q} if for $m = (m_1, m_2, \ldots, m_n) \in \mathbb{Z}^n$, the equation $\sum_{j=1}^n m_j a_j = 0$ implies that $m_j = 0$ for all $j = 1, 2, \ldots, n$.) The frequencies of a quasiperiodic flow ϕ generated by a constant vector field X are the components of X.

Example 2.2. Identify T^3 with $S^1 \times S^1 \times S^1$ where $S^1 = \mathbb{R}/\mathbb{Z}$. Let $\theta = (\theta_1, \theta_2, \theta_3)$ be global coordinates on T^3 . The quasiperiodic flow ϕ on T^3 generated by vector field

$$X = \frac{\partial}{\partial \theta_1} + 7^{1/3} \frac{\partial}{\partial \theta_2} + 7^{2/3} \frac{\partial}{\partial \theta_3}$$

is

$$\phi_t(\theta) = \phi(t, \theta_1, \theta_2, \theta_3) = \left(\theta_1 + t, \theta_2 + 7^{1/3}t, \theta_3 + 7^{2/3}t\right),$$

where the addition in the components of ϕ is mod 1. For each $c = (c_1, c_2, c_3) \in T^3$, the translation

$$R_c(\theta_1, \theta_2, \theta_3) = (\theta_1 + c_1, \theta_2 + c_2, \theta_3 + c_3)$$

of T^3 is a symmetry of ϕ because

$$\begin{split} R_c\phi(t,\theta_1,\theta_2,\theta_3) &= \left(\theta_1 + c_1 + t, \theta_2 + c_2 + 7^{1/3}t, \theta_3 + c_3 + 7^{2/3}t\right) = \theta(t,R_c(\theta_1,\theta_2,\theta_3)). \end{split}$$
The involution $N(\theta_1,\theta_2,\theta_3) = (-\theta_1,\theta_2,\theta_3)$ of T^3 is a reversing symmetry of ϕ because

$$N\phi(t,\theta_1,\theta_2,\theta_3) = (-\theta_1 - t, -\theta_2 - 7^{1/3}t, -\theta_3 - 7^{2/3}t) = \phi(-t, N(\theta_1, \theta_2, \theta_3)).$$

Theorem 2.3. If ϕ is a quasiperiodic, then $\{1, -1\} < \rho_{\phi}(S_{\phi})$.

Proof. Suppose ϕ is quasiperiodic. Then there is a $V \in \text{Diff}(T^n)$ such that $Y = V_*X$ is a constant vector field. Let ψ be the flow generated by Y. For any $t \in \mathbb{R}$, the diffeomorphism ψ_t satisfies $(\psi_t)_*Y = Y$, so that $1 \in \rho_{\psi}(S_{\psi})$. On the other hand, the map $N : T^n \to T^n$ defined by $N(\theta) = -\theta$ satisfies $N_*Y = -Y$, so that $-1 \in \rho_{\psi}(S_{\psi})$. The flows ϕ and ψ are smoothly conjugate because $Y = V_*X$. This implies that $\rho_{\phi}(S_{\phi}) = \rho_{\psi}(S_{\psi})$ (Theorem 4.2 [5]), and so $\{1, -1\} < \rho_{\phi}(S_{\phi})$.

Theorem 2.4. If ϕ is quasiperiodic and Λ is a nontrivial subgroup of $\rho_{\phi}(S_{\phi})$, then $\rho_{\phi}^{-1}(\Lambda)$ is non-Abelian, and hence the generalized symmetry group of ϕ and the reversing symmetry group of ϕ are non-Abelian.

Proof. Suppose ϕ is quasiperiodic and Λ is a nontrivial subgroup of $\rho_{\phi}(S_{\phi})$. Then there is an $R \in S_{\phi}$ such that $\alpha = \rho_{\phi}(R) \neq 1$. Thus $R\phi_1 = \phi_{\alpha}R$. If $\phi_1 = \phi_{\alpha}$, then ϕ would be periodic. Thus, $\rho_{\phi}^{-1}(\Lambda)$ is non-Abelian. By Theorem 2.3, both $\rho_{\phi}(S_{\phi})$ and $\rho_{\phi}(\rho_{\phi}^{-1}(\{1, -1\}))$ contain -1, so that $S_{\phi} = \rho_{\phi}^{-1}(\rho_{\phi}(S_{\phi}))$ and $\rho_{\phi}^{-1}(\{1, -1\})$ are both non-Abelian.

For any $\Lambda < \rho_{\phi}(S_{\phi}), \rho_{\phi}^{-1}(\Lambda)$ is an invariant of the smooth conjugacy class of ϕ in the sense that if ϕ and ψ are smoothly conjugate, then $\rho_{\phi}^{-1}(\Lambda)$ and $\rho_{\psi}^{-1}(\Lambda)$ are conjugate subgroups of Diff (T^n) (Theorem 4.3 [5]). Because a quasiperiodic flow ϕ is smoothly conjugate to a quasiperiodic flow ψ generated by a constant vector field, the group structure of $\mathrm{id}_{T_n} \to \ker \rho_{\phi} \to \rho_{\phi}^{-1}(\Lambda) \to \Lambda \to 1$ is determined by that of $\mathrm{id}_{T^n} \to \ker \rho_{\psi} \to \rho_{\psi}^{-1}(\Lambda) \to \Lambda \to 1$. Attention is therefore restricted to a quasiperiodic flow ϕ generated by a constant vector field X.

3. LIFTING THE GENERALIZED SYMMETRY EQUATION

The generalized symmetry equation of a flow ϕ on T^n is the equation $R_*X = \alpha X$ that appears in Theorem 2.1. Lifting it from $\mathbf{T}T^n$ to $\mathbf{T}\mathbb{R}^n$, the universal cover of $\mathbf{T}T^n$, requires lifting the diffeomorphism R of T^n to a diffeomorphism of \mathbb{R}^n , and lifting the vector field X on T^n to a vector field on \mathbb{R}^n . The covering map $\pi : \mathbb{R}^n \to T^n$ is a local diffeomorphism for which

$$\pi(x+m) = \pi(x)$$

for any $x \in \mathbb{R}^n$ and any $m \in \mathbb{Z}^n$. Let $R: T^n \to T^n$ be a continuous map. A *lift* of $R\pi: \mathbb{R}^n \to T^n$ is a continuous map $Q: \mathbb{R}^n \to \mathbb{R}^n$ for which $R\pi = \pi Q$. Since π

is a fixed map, Q is also said to be a lift of R. Any two lifts of R differ by a deck transformation of π , which is a translation of \mathbb{R}^n by an $m \in \mathbb{Z}^n$.

Theorem 3.1. Let $R : T^n \to T^n$ and $Q : \mathbb{R}^n \to \mathbb{R}^n$. Then Q is a lift of a diffeomorphism R of T^n if and only if Q is a diffeomorphism of \mathbb{R}^n such that a) for any $m \in \mathbb{Z}^n$, Q(x+m) - Q(x) is independent of $x \in \mathbb{R}^n$, and b) the map $l_Q(m) = Q(x+m) - Q(x)$ is an isomorphism of \mathbb{Z}^n .

The proof of this theorem uses standard arguments in topology, we omit it.

The canonical projections $\tau_{\mathbb{R}^n} : \mathbf{T}\mathbb{R}^n \to \mathbb{R}^n$ and $\tau_{T^n} : \mathbf{T}T^n \to T^n$ are smooth. The former is a lift of the latter,

$$\tau_{T^n} \mathbf{T} \pi = \pi \tau_{\mathbb{R}^n},$$

which lift sends $w \in \mathbf{T}_x \mathbb{R}^n$ to $x \in \mathbb{R}^n$. The covering map $\mathbf{T}\pi : \mathbf{T}\mathbb{R}^n \to \mathbf{T}T^n$ is a local diffeomorphism. A vector field on T^n is a smooth map $Y : T^n \to \mathbf{T}T^n$ such that $\tau_{T^n}Y = \mathrm{id}_{T^n}$. A vector field on \mathbb{R}^n is a smooth map $Z : \mathbb{R}^n \to \mathbf{T}\mathbb{R}^n$ such that $\tau_{\mathbb{R}^n}Z = \mathrm{id}_{\mathbb{R}^n}$.

Lemma 3.2. If Y is a vector field on T^n , then there is only one lift of Y that is a vector field on \mathbb{R}^n .

Proof. Let $x_0 \in \mathbb{R}^n$, $\theta_0 \in T^n$ be such that $Y\pi(x_0) = Y(\theta_0)$. Let $w_{x_0} \in \mathbf{T}_{x_0}\mathbb{R}^n$ be the only vector such that $\mathbf{T}\pi(w_{x_0}) = Y(\theta_0)$. By the Lifting Theorem (Theorem 4.1, p.143 [6]), there exists a unique lift $Z : \mathbb{R}^n \to \mathbf{T}\mathbb{R}^n$ such that $Y\pi = \mathbf{T}\pi Z$ and $Z(x_0) = w_{x_0}$. It needs only be checked that this Z is a vector field. Because Y is a vector field on T^n , Z is a lift of $Y\pi$, and $\tau_{\mathbb{R}^n}$ is a lift of τ_{T^n} , it follows that

$$\pi(x) = \tau_{T_n} Y \pi(x) = \tau_{T^n} \mathbf{T} \pi Z(x) = \pi \tau_{\mathbb{R}^n} Z(x).$$

So the difference $x - \tau_{\mathbb{R}^n} Z(x)$ is a discrete valued map. Because \mathbb{R}^n is connected, this difference is a constant (see Proposition 4.5, p.10 [6]). This constant is zero because $\tau_{\mathbb{R}^n} Z(x_0) = x_0$, and so $\tau_{\mathbb{R}^n} Z = \mathrm{id}_{\mathbb{R}^n}$. The equation $Y\pi = \mathbf{T}\pi Z$ implies that Z is smooth because π and $\mathbf{T}\pi$ are local diffeomorphisms and because Y is smooth. The choice of the only vector $w \in \mathbf{T}_{x_0+m}\mathbb{R}^n$ for any $0 \neq m \in \mathbb{Z}^n$ such that $\mathbf{T}\pi(w) = Y(\theta_0)$ would lead to a lift Z_m of Y that is not a vector field on \mathbb{R}^n because $\tau_{\mathbb{R}^n} Z_m(x) = x + m$. The collection $\{Z_m : m \in \mathbb{Z}\}$, with $Z_0 = Z$, accounts for all the lifts of Y by the uniqueness of the lift and the uniqueness of the vector w. Therefore Z is the only lift of Y that is a vector field on \mathbb{R}^n . \Box

For a vector field X on T^n , let \hat{X} denote the only lift of X that is a vector field on \mathbb{R}^n as described in Lemma 3.2; \hat{X} satisfies $X\pi = \mathbf{T}\pi\hat{X}$. For a diffeomorphism R of T^n , let \hat{R} be a lift of R; the lift \hat{R} is a diffeomorphism of \mathbb{R}^n (by Theorem 3.1) for which $R\pi = \pi\hat{R}$.

Lemma 3.3. The only lift of the vector field R_*X on T^n that is a vector field on \mathbb{R}^n is $\hat{R}_*\hat{X}$.

Proof. A lift of R_*X is $\hat{R}_*\hat{X}$ because

$$\begin{aligned} \mathbf{T}\pi \hat{R}_* \hat{X} &= \mathbf{T}\pi \mathbf{T}\hat{R}\hat{X}\hat{R}^{-1} = \mathbf{T}(\pi \hat{R})\hat{X}\hat{R}^{-1} = \mathbf{T}(R\pi)\hat{X}\hat{R}^{-1} \\ &= \mathbf{T}R\mathbf{T}\pi \hat{X}\hat{R}^{-1} = \mathbf{T}RX\pi \hat{R}^{-1} = \mathbf{T}RXR^{-1}\pi = R_*X\pi \end{aligned}$$

By definition, $\hat{R}_* \hat{X}$ is a vector field on \mathbb{R}^n . By Lemma 3.2, it is the only lift of $R_* X$ that is a vector field on \mathbb{R}^n .

Lemma 3.4. For any $\alpha \in \mathbb{R}^*$, the only lift of the vector field αX on T^n that is a vector field on \mathbb{R}^n is $\alpha \hat{X}$.

Proof. A lift of αX is $\alpha \hat{X}$ because $\mathbf{T}\pi(\alpha \hat{X}) = \alpha \mathbf{T}\pi \hat{X} = \alpha X\pi$. Only one lift of αX is a vector field (Lemma 3.2), and $\alpha \hat{X}$ is this lift.

Theorem 3.5. Let X be a vector field on T^n , \hat{X} the lift of X that is a vector field on \mathbb{R}^n , R a diffeomorphism of T^n , \hat{R} a lift of R, and α a nonzero real number. Then $R_*X = \alpha X$ if and only if $\hat{R}_*\hat{X} = \alpha \hat{X}$.

Proof. Suppose that $R_*X = \alpha X$. By Lemma 3.3, $\hat{R}_*\hat{X}$ is a lift of R_*X : $\mathbf{T}\pi\hat{R}_*\hat{X} = R_*X\pi$. By Lemma 3.4, $\alpha\hat{X}$ is a lift of αX : $\mathbf{T}\pi(\alpha\hat{X}) = \alpha X\pi$. Then

$$\mathbf{T}\pi(\hat{R}_*\hat{X} - \alpha\hat{X}) = (R_*X - \alpha X)\pi = \mathbf{0}_{T^n}\pi,$$

where $\mathbf{0}_{T^n}$ is the zero vector field on T^n . So $\hat{R}_* \hat{X} - \alpha \hat{X}$ is a lift of $\mathbf{0}_{T^n}$. The only lift of $\mathbf{0}_{T^n}$ that is a vector field on \mathbb{R}^n is $\mathbf{0}_{\mathbb{R}^n}$, the zero vector field on \mathbb{R}^n . By Lemma 3.3 and Lemma 3.4, the difference $\hat{R}_* \hat{X} - \alpha \hat{X}$ is a vector field on \mathbb{R}^n . By Lemma 3.2, $\hat{R}_* \hat{X} - \alpha \hat{X} = \mathbf{0}_{\mathbb{R}^n}$. Thus, $\hat{R}_* \hat{X} = \alpha \hat{X}$. Suppose that $\hat{R}_* \hat{X} = \alpha \hat{X}$. Then

$$R_*X\pi = \mathbf{T}RXR^{-1}\pi = \mathbf{T}RX\pi\hat{R}^{-1} = \mathbf{T}R\mathbf{T}\pi\hat{X}\hat{R}^{-1}$$
$$= \mathbf{T}(R\pi)\hat{X}\hat{R}^{-1} = \mathbf{T}(\pi\hat{R})\hat{X}\hat{R}^{-1} = \mathbf{T}\pi\mathbf{T}\hat{R}\hat{X}\hat{R}^{-1}$$
$$= \mathbf{T}\pi\hat{R}_*\hat{X} = \mathbf{T}\pi(\alpha\hat{X}) = \alpha\mathbf{T}\pi\hat{X} = \alpha X\pi.$$

The surjectivity of π implies that $R_*X = \alpha X$.

4. Solving the Lifted Generalized Symmetry Equation

The lift of $R_*X = \alpha X$ is an equation on $\mathbb{T}\mathbb{R}^n$ of the form $Q_*\hat{X} = \alpha \hat{X}$ for $Q \in \text{Diff}(\mathbb{R}^n)$. With global coordinates $x = (x_1, x_2, \ldots, x_n)$ on \mathbb{R}^n , the diffeomorphism Q has the form

$$Q(x_1, x_2, \dots, x_n) = (f_1(x_1, x_2, \dots, x_n), \dots, f_n(x_1, x_2, \dots, x_n))$$

for smooth functions $f_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., n. Let $\theta = (\theta_1, \theta_2, ..., \theta_n)$ be global coordinates on T^n such that $\theta_i = x_i \mod 1$, i = 1, 2, ..., n. If

$$X(\theta) = a_1 \frac{\partial}{\partial \theta_1} + a_2 \frac{\partial}{\partial \theta_2} + \dots + a_n \frac{\partial}{\partial \theta_n}$$

for constants $a_i \in \mathbb{R}, i = 1, \ldots, n$, then

$$\hat{X}(x) = a_1 \frac{\partial}{\partial x_1} + a_2 \frac{\partial}{\partial x_2} + \dots + a_n \frac{\partial}{\partial x_n},$$

so that $Q_*\hat{X} = \alpha \hat{X}$ has the form

$$\sum_{j=1}^{n} a_j \frac{\partial f_i}{\partial x_j} = \alpha a_i, \ i = 1, \dots, n.$$

This is an uncoupled system of linear, first order equations which is readily solved for its general solution.

Lemma 4.1. For real numbers a_1, a_2, \ldots, a_n and α with $a_n \neq 0$, the general solution of the system of n linear partial differential equations

$$\sum_{j=1}^{n} a_j \frac{\partial f_i}{\partial x_j} = \alpha a_i, \ i = 1, \dots, n$$

is

$$f_i(x) = \alpha \frac{a_i}{a_n} x_n + h_i \Big(x_1 - \frac{a_1}{a_n} x_n, x_2 - \frac{a_2}{a_n} x_n, \dots, x_{n-1} - \frac{a_{n-1}}{a_n} x_n \Big),$$

for arbitrary smooth functions $h_i : \mathbb{R}^{n-1} \to \mathbb{R}, i = 1, \dots, n$.

Proof. For each i = 1, ..., n, consider the initial value problem

$$\sum_{j=1}^{n} a_j \frac{\partial f_i}{\partial x_j} = \alpha a_i$$
$$x_j(0, s_1, s_2, \dots, s_{n-1}) = s_j \text{ for } j = 1, \dots, n-1$$
$$x_n(0, s_1, s_2, \dots, s_{n-1}) = 0$$
$$f_i(0, s_1, s_2, \dots, s_{n-1}) = h_i(s_1, s_2, \dots, s_{n-1})$$

for parameters $(s_1, s_2, \ldots, s_{n-1}) \in \mathbb{R}^{n-1}$ and initial data $h_i : \mathbb{R}^{n-1} \to \mathbb{R}$. Using the method of characteristics (see [9] for example), the solution of the initial value problem in parametric form is

$$x_j(t, s_1, s_2, \dots, s_{n-1}) = a_j t + s_j \text{ for } j = 1, \dots, n-1$$
$$x_n(t, s_1, s_2, \dots, s_{n-1}) = a_n t$$
$$f_i(t, s_1, s_2, \dots, s_{n-1}) = \alpha a_i t + h_i(s_1, s_2, \dots, s_{n-1}).$$

The coordinates (x_1, x_2, \ldots, x_n) and the parameters $(t, s_1, s_2, \ldots, s_{n-1})$ are related by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} a_1 & 1 & 0 & 0 & \dots & 0 \\ a_2 & 0 & 1 & 0 & \dots & 0 \\ a_3 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & 0 & 0 & 0 & \dots & 1 \\ a_n & 0 & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} t \\ s_1 \\ s_2 \\ \vdots \\ s_{n-2} \\ s_{n-1} \end{bmatrix}$$

The determinant of the $n \times n$ matrix is $(-1)^n a_n$, which is nonzero by hypothesis. Inverting the matrix equation gives

$$\begin{bmatrix} t \\ s_1 \\ s_2 \\ \vdots \\ s_{n-2} \\ s_{n-1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \dots & 0 & 0 & 1/a_n \\ 1 & 0 & \dots & 0 & 0 & -a_1/a_n \\ 0 & 1 & \dots & 0 & 0 & -a_2/a_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & -a_{n-2}/a_n \\ 0 & 0 & \dots & 0 & 1 & -a_{n-1}/a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}$$

Substitution of the expressions for t and the s_i 's in terms of the x_i 's into

$$f_i(x_1, x_2, \dots, x_n) = \alpha a_i t + h_i(s_1, s_2, \dots, s_{n-1})$$

gives the desired form of the general solution.

Lemma 4.2. If a_1, a_2, \ldots, a_n are independent over \mathbb{Q} , then

$$J = \left\{ \left(m_1 - \frac{a_1}{a_n} m_n, \dots, m_{n-1} - \frac{a_{n-1}}{a_n} m_n \right) : m_1, dots, m_n \in \mathbb{Z} \right\}$$

is a dense subset of \mathbb{R}^{n-1} .

$$\psi_t(\theta_1,\ldots,\theta_{n-1},\theta_n) = (\theta_1 - (a_1/a_n)t,\ldots,\theta_{n-1} - (a_{n-1}/a_n)t,\theta_n - t)$$

on T^n which is generated by the vector field

$$Y = -\frac{a_1}{a_n}\frac{\partial}{\partial\theta_1} - \frac{a_2}{a_n}\frac{\partial}{\partial\theta_2} - \dots - \frac{a_{n-1}}{a_n}\frac{\partial}{\partial\theta_{n-1}} - \frac{\partial}{\partial\theta_n}.$$

The coefficients of Y are independent over \mathbb{Q} because a_1, a_2, \ldots, a_n are independent over \mathbb{Q} and

$$m_1a_1 + \dots + m_na_n = 0 \Leftrightarrow -m_1\frac{a_1}{a_n} - \dots - m_{n-1}\frac{a_{n-1}}{a_n} - m_n = 0.$$

So the orbit of ψ through any point $\theta_0 \in T^n$,

$$\gamma_{\psi}(\theta_0) = \{\psi_t(\theta_0) : t \in \mathbb{R}\},\$$

is dense in T^n (Corollary 1, p. 287 [2]). The submanifold

$$P = \{(\theta_1, \dots, \theta_{n-1}, \theta_n) : \theta_n = 0\}$$

of T^n , which is diffeomorphic to T^{n-1} , is a global Poincaré section for ψ because $X(\theta) \notin \mathbf{T}_{\theta} P$ for every $\theta \in P$ and because $\gamma_{\psi}(\theta_0) \cap P \neq \emptyset$ for every $\theta_0 \in T^n$. Define the projection $\wp: T^n \to T^{n-1}$ by

$$\wp(\theta_1, \theta_2, \dots, \theta_{n-1}, \theta_n) = (\theta_1, \theta_2, \dots, \theta_{n-1})$$

and the injection $i: T^{n-1} \to T^n$ by

$$a(\theta_1, \theta_2, \dots, \theta_{n-1}) = (\theta_1, \theta_2, \dots, \theta_{n-1}, 0).$$

The Poincaré map induced on $\wp(P)$ by ψ is given by $\bar{\psi} = \wp\psi_1 \imath$ because $\psi_1(\theta_0) \in P$ when $\theta_0 \in P$. For any $\kappa \in \mathbb{Z}$, $\bar{\psi}^{\kappa} = \wp\psi_{\kappa} \imath$. So, for instance, with $0 = (0, 0, \dots, 0) \in T^n$ and $\bar{0} = \wp(0)$,

$$\wp(\gamma_{\psi}(0)\cap P) = \{\bar{\psi}^{\kappa}(\bar{0}): \kappa \in \mathbb{Z}\} = \Big\{\Big(-\frac{a_1}{a_n}\kappa, -\frac{a_2}{a_n}\kappa, \dots, -\frac{a_{n-1}}{a_n}\kappa\Big): \kappa \in \mathbb{Z}\Big\},\$$

where for each i = 1, ..., n - 1, the quantity $-(a_i/a_n)\kappa$ is taken mod 1. With $\bar{\pi} : \mathbb{R}^{n-1} \to T^{n-1}$ as the covering map,

$$J = \bar{\pi}^{-1} \big(\wp(\gamma_{\psi}(0) \cap P) \big).$$

If $\wp(\gamma_{\psi}(0) \cap P)$ were dense in $\wp(P)$, then J would be dense in \mathbb{R}^{n-1} because $\bar{\pi}$ is a covering map. (That is, if $\wp(\gamma_{\psi}(0) \cap P) \cap [0,1)^{n-1}$ is dense in the fundamental domain $[0,1)^{n-1}$ of the covering map $\bar{\pi}$, then by translation, it is dense in \mathbb{R}^{n-1} .)Define $\chi : \mathbb{R} \times T^{n-1} \to T^n$ by

$$\chi(t,\theta_1,\theta_2,\ldots,\theta_{n-1})=\psi(t,\iota(\theta_1,\theta_2,\ldots,\theta_{n-1})).$$

The map χ is a local diffeomorphism by the Inverse Function Theorem because

$$\mathbf{T}\chi = \begin{bmatrix} -a_1/a_n & 1 & 0 & \dots & 0\\ -a_2/a_n & 0 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -a_{n-1}/a_n & 0 & 0 & \dots & 1\\ -1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

has determinant of $(-1)^{n+1}$. Let O be a small open subset of $\wp(P)$. For $\epsilon > 0$, the set $O_{\epsilon} = (-\epsilon, \epsilon) \times O$ is an open subset in the domain of χ . For ϵ small enough, the

image $\chi(O_{\epsilon})$ is open in T^n because χ is a local diffeomorphism. By the denseness of $\gamma_{\psi}(0)$ in T^n , there is a point θ_0 in $\chi(O_{\epsilon}) \cap \gamma_{\psi}(0)$. By the definition of $\chi(O_{\epsilon})$, there is an $\bar{\epsilon} \in (-\epsilon, \epsilon)$ and a $\bar{\theta}_0 \in O$ such that $\chi(\bar{\epsilon}, \bar{\theta}_0) = \theta_0$. Thus $\iota(\bar{\theta}_0) \in \gamma_{\psi}(0)$, and so $\wp(\gamma_{\psi}(0) \cap P)$ intersects O at $\bar{\theta}_0$. Since O is any small open subset of $\wp(P)$, the set $\wp(\gamma_{\psi}(0) \cap P)$ is dense in $\wp(P)$.

Theorem 4.3. If $\alpha \in \mathbb{R}^*$ and the coefficients of $X = \sum_{i=1}^n a_i \partial / \partial \theta_i$ are independent over \mathbb{Q} , then for each $R \in \text{Diff}(T^n)$ that satisfies $R_*X = \alpha X$ there exist $B = (b_{ij}) \in \text{GL}(n,\mathbb{Z})$ and $c \in \mathbb{R}^n$ such that

$$\ddot{R}(x) = Bx + c$$

for $x = (x_1, x_2, ..., x_n)$, in which

$$b_{in} = \alpha \frac{a_i}{a_n} - \sum_{j=1}^{n-1} b_{ij} \frac{a_j}{a_n}, \ i = 1, \dots, n.$$

Proof. Suppose that the a_1, a_2, \ldots, a_n are independent over \mathbb{Q} . For $\alpha \in \mathbb{R}^*$, suppose that $R \in \text{Diff}(T^n)$ is a solution of $R_*X = \alpha X$. A lift \hat{R} of R is a diffeomorphism of \mathbb{R}^n by Theorem 3.1. The lift of X that is a vector field on \mathbb{R}^n is $\hat{X} = \sum_{i=1}^n a_i(\partial/\partial x_i)$. By Theorem 3.5, \hat{R} is a solution of $\hat{R}_*\hat{X} = \alpha \hat{X}$. With global coordinates (x_1, x_2, \ldots, x_n) on \mathbb{R}^n write

$$\hat{R}(x) = (f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n)).$$

In terms of this coordinate description, the equation $\hat{R}_* \hat{X} = \alpha X$ written out is

$$\sum_{j=1}^{n} a_j \frac{\partial f_i}{\partial x_j} = \alpha a_i, \ i = 1, \dots, n.$$

The independence of the coefficients of \hat{X} over \mathbb{Q} implies that $a_n \neq 0$. By Lemma 4.1, there are smooth functions $h_i : \mathbb{R}^{n-1} \to \mathbb{R}, i = 1, \ldots, n$, such that

$$f_i(x_1,\ldots,x_n) = \alpha \frac{a_i}{a_n} x_n + h_i(s_1,s_2,\ldots,s_{n-1})$$

where

$$s_i = x_i - \frac{a_i}{a_n} x_n, \ i = 1, \dots, n-1.$$

By Theorem 3.1, $\hat{R}(x+m) - \hat{R}(x)$ is independent of x for each $m \in \mathbb{R}^n$. This implies for each i = 1, ..., n that

$$f_i(x+m) - f_i(x)$$

= $f_i(x_1+m_1, x_2+m_2, \dots, x_n+m_n) - f_i(x_1, x_2, \dots, x_n)$
= $\alpha \frac{a_i}{a_n} m_n + h_i (s_1+m_1 - \frac{a_1}{a_n} m_n, \dots, s_{n-1} + m_{n-1} - \frac{a_{n-1}}{a_n} m_n) - h_i(s_1, \dots, s_{n-1})$

is independent of x for every $m = (m_1, m_2, \ldots, m_n) \in \mathbb{Z}^n$. This independence means that $f_i(x+m) - f_i(x)$ is a function of m only. So for each $j = 1, \ldots, n-1$,

$$0 = \frac{\partial}{\partial x_j} \left[f_i(x_1 + m_1, x_2 + m_2, \dots, x_n + m_n) - f_i(x_1, x_2, \dots, x_n) \right] \\ = \frac{\partial h_i}{\partial s_j} \left(s_1 + m_1 - \frac{a_1}{a_n} m_n, \dots, s_{n-1} + m_{n-1} - \frac{a_{n-1}}{a_n} m_n \right) - \frac{\partial h_i}{\partial s_j} \left(s_1, \dots, s_{n-1} \right).$$

So, in particular

$$\frac{\partial h_i}{\partial s_j} \left(m_1 - \frac{a_1}{a_n} m_n, \dots, m_{n-1} - \frac{a_{n-1}}{a_n} m_n \right) = \frac{\partial h_i}{\partial s_j} (0, \dots, 0)$$

for all $(m_1, \ldots, m_n) \in \mathbb{Z}^n$. By Lemma 4.2, the set

$$\left\{\left(m_1 - \frac{a_1}{a_n}m_n, \dots, m_{n-1} - \frac{a_{n-1}}{a_n}m_n\right) : m_1, \dots, m_n \in \mathbb{Z}\right\}$$

is dense in \mathbb{R}^{n-1} , which together with the smoothness of h_i implies that $\partial h_i / \partial s_j$ is a constant. Let this constant be b_{ij} for i = 1, ..., n, j = 1, ..., n-1. By Taylor's Theorem,

$$h_i(s_1, \dots, s_{n-1}) = c_i + \sum_{j=1}^{n-1} b_{ij} s_j$$

for constants $c_i \in \mathbb{R}$. Thus,

$$f_i(x_1, \dots, x_n) = c_i + \alpha \frac{a_i}{a_n} x_n + \sum_{j=1}^{n-1} b_{ij} \left(x_j - \frac{a_j}{a_n} x_n \right)$$
$$= c_i + \sum_{j=1}^{n-1} b_{ij} x_j + \left(\alpha \frac{a_i}{a_n} - \sum_{j=1}^{n-1} b_{ij} \frac{a_j}{a_n} \right) x_n.$$

For each $i = 1, 2, \ldots, n$, set

$$b_{in} = \alpha \frac{a_i}{a_n} - \sum_{j=1}^{n-1} b_{ij} \frac{a_j}{a_n}$$

Then for each $i = 1, 2, \ldots, n$,

$$f_i(x_1, x_2, \dots, x_n) = c_i + \sum_{j=1}^n b_{ij} x_j.$$

So \hat{R} has the form $\hat{R}(x) = Bx + c$ where $B = (b_{ij})$ is an $n \times n$ matrix, and $c \in \mathbb{R}^n$. By Theorem 3.1, the map $l_{\hat{R}}(m) = \hat{R}(x+m) - \hat{R}(x)$ is an isomorphism of \mathbb{Z}^n . By the formula for f_i derived above,

$$f_i(x_1 + m_1, \dots, x_n + m_n) - f_i(x_1, x_2, \dots, x_m) = \sum_{j=1}^n b_{ij}m_j$$

for each i = 1, 2, ..., n. This implies that $l_{\hat{R}}(m) = Bm$. Since $l_{\hat{R}}$ is an isomorphism of \mathbb{Z}^n , it follows that $B \in GL(n, \mathbb{Z})$.

Theorem 4.3 restricts the search for lifts of generalized symmetries of a quasiperiodic flow on T^n to affine maps on \mathbb{R}^n of the form Q(x) = Bx + c for $B \in GL(n, \mathbb{Z})$ and $c \in \mathbb{R}^n$. For an affine map of this form, the difference

$$Q(x+m) - Q(x) = B(x+m) + c - (Bx+c) = Bm$$

is independent of x, and the map $l_Q(m) = Q(x + m) - Q(x)$ is an isomorphism of \mathbb{Z}^n , so that Q is a lift of a diffeomorphism R on T^n by Theorem 3.1. If Q is a solution of $Q_*\hat{X} = \alpha \hat{X}$, then by Theorem 3.5, R is a solution of $R_*X = \alpha X$, so that by Theorem 2.1, $R \in S_{\phi}$. The following two corollaries of Theorem 4.3 restrict the possibilities for the multipliers of the generalized symmetries of a quasiperiodic flow on T^n . One restriction employs the notion of an *algebraic integer*, which is a complex number that is a root of a monic polynomial in the polynomial ring $\mathbb{Z}[z]$. If m is the smallest degree of a monic polynomial in $\mathbb{Z}[z]$ for which an algebraic integer is a root, then m is the *degree* of that algebraic integer (Definition 1.1, p.1 [11]).

Corollary 4.4. If ϕ is a quasiperiodic flow on T^n with generating vector field $X = \sum_{i=1}^{n} a_i \partial/\partial \theta_i$, then each $\alpha \in \rho_{\phi}(S_{\phi})$ is a real algebraic integer of degree at most n, and $\rho_{\phi}(S_{\phi}) \cap \mathbb{Q} = \{1, -1\}$.

Proof. For each $\alpha \in \rho_{\phi}(S_{\phi})$ (which is real) there is an $R \in S_{\phi}$ such that $\rho_{\phi}(R) = \alpha$. By Theorem 4.3 there is a $B \in \operatorname{GL}(n, \mathbb{Z})$ such that $\mathbf{T}\hat{R} = B$. Then by Theorem 2.1 and Theorem 3.5,

$$B\hat{X} = \hat{R}_*\hat{X} = \alpha\hat{X}$$

So, α is an eigenvalue of B (and \hat{X} is an eigenvector of B.) The characteristic polynomial of B is an n-degree monic polynomial in $\mathbb{Z}[z]$:

$$z^n + d_{n-1}z^{n-1} + \dots + d_1z + d_0.$$

Thus α is a real algebraic integer of degree at most n. The value of d_0 is det(B), which is a unit in \mathbb{Z} (Theorem 3.5, p.351 [8]). The only units in \mathbb{Z} are ± 1 . So the only possible rational roots of the characteristic polynomial of B are ± 1 (Proposition 6.8, p.160 [8]). This means that $\rho_{\phi}(S_{\phi}) \cap \mathbb{Q} \subset \{1, -1\}$. But $\rho_{\phi}(S_{\phi}) \cap \mathbb{Q} \supset \{1, -1\}$ by Theorem 2.3. Thus, $\rho_{\phi}(S_{\phi}) \cap \mathbb{Q} = \{1, -1\}$.

The other restriction on the possibilities for the multipliers of any generalized symmetries of ϕ employs linear combinations over \mathbb{Z} of pair wise ratios of the entries of the "eigenvector" \hat{X} (which entries are the frequencies of ϕ).

Corollary 4.5. If ϕ is a quasiperiodic flow on T^n with generating vector field $X = \sum_{i=1}^n a_i \partial/\partial \theta_i$, then for any $\alpha \in \rho_{\phi}(S_{\phi})$ there exists a $B = (b_{ij}) \in \operatorname{GL}(n, \mathbb{Z})$ such that

$$\alpha = \sum_{j=1}^{n} b_{ij} \frac{a_j}{a_i}, \quad i = 1, \dots, n.$$

Proof. Suppose that $\alpha \in \rho_{\phi}(S_{\phi})$. Then there is an $R \in S_{\phi}$ such that $\alpha = \rho_{\phi}(R)$. By Theorem 4.3, there is a $B = (b_{ij}) \in GL(n, \mathbb{Z})$ such that $\mathbf{T}\hat{R} = B$ with

$$b_{in} = \alpha \frac{a_i}{a_n} - \sum_{j=1}^{n-1} b_{ij} \frac{a_j}{a_n}, \quad i = 1, \dots, n.$$

Solving this equation for α gives

$$\alpha = \sum_{j=1}^{n} b_{ij} \frac{a_j}{a_i}, \quad i = 1, \dots, n.$$

The multiplier group of any quasiperiodic flow ϕ always contains $\{1, -1\}$ as stated in Theorem 2.3. For each $t \in \mathbb{R}$, the diffeomorphism ϕ_t is in S_{ϕ} by definition. A lift of ϕ_t is $\hat{\phi}_t(x) = Ix + t\hat{X}$, where $I = \delta_{ij}$ is the $n \times n$ identity matrix, so that by Corollary 4.5,

$$\alpha = \sum_{j=1}^{n} \delta_{ij} \frac{a_j}{a_i} = \frac{a_i}{a_i} = 1$$

$$\alpha = -\sum_{j=1}^n \delta_{ij} \frac{a_j}{a_i} = -\frac{a_i}{a_i} = -1$$

for each i = 1, ..., n. Corollary 4.5 enables a complete description of all symmetries and reversing symmetries of ϕ .

Theorem 4.6. Suppose that ϕ is a quasiperiodic flow on T^n with generating vector field $X = \sum_{i=1}^n a_i \partial / \partial \theta_i$. If $\rho_{\phi}(R) = \pm 1$ for an $R \in S_{\phi}$, then there is $c \in \mathbb{R}^n$ such that $\hat{R}(x) = \rho_{\phi}(R)Ix + c$.

Proof. Let $R \in S_{\phi}$. By Theorem 4.3 there exists a $B = (b_{ij}) \in \operatorname{GL}(n, \mathbb{Z})$ and a $c \in \mathbb{R}^n$ such that $\hat{R}(x) = Bx + c$. By Corollary 4.5, the entries of B satisfy

$$\rho_{\phi}(R) = \sum_{j=1}^{n} b_{ij} \frac{a_j}{a_i}$$

for each i = 1, 2, ..., n. By hypothesis, $\rho_{\phi}(R) = \pm 1$. Then for each i = 1, 2, ..., n,

 $b_{i1}a_1 + \dots + (b_{ii} \mp 1)a_i + \dots + b_{in}a_n = 0.$

By the independence of a_1, a_2, \ldots, a_n over \mathbb{Q} , $b_{ij} = 0$ when $i \neq j$ and $b_{ii} = \rho_{\phi}(R)$ for all $i = 1, 2, \ldots, n$. Therefore, $\hat{R}(x) = \rho_{\phi}(R)Ix + c$.

Corollary 4.7. If ϕ is a quasiperiodic flow on T^n , then ker $\rho_{\phi} \cong T^n$.

Proof. Let $R \in S_{\phi}$ such that $\rho_{\phi}(R) = 1$. By Theorem 4.6, $\hat{R}(x) = Ix + c$ for some $c \in \mathbb{R}^n$. Now, for any $c \in \mathbb{R}^n$, the $Q \in \text{Diff}(T^n)$ induced by $\hat{Q}(x) = Ix + c$ satisfies $Q_*X = X$ by Theorem 3.5 because $\hat{Q}_*\hat{X} = \hat{X}$. So, by Theorem 2.1, $Q \in \ker \rho_{\phi}$. Since c is arbitrary, $Q\pi = \pi \hat{Q}$, and $\pi(\mathbb{R}^n) = T^n$, it follows that $\ker \rho_{\phi} \cong T^n$. \Box

Corollary 4.8. If ϕ is a quasiperiodic flow on T^n , then every reversing symmetry of ϕ is an involution.

Proof. Suppose $R \in S_{\phi}$ is a reversing symmetry. By Theorem 4.6, $\hat{R}(x) = -Ix + c$ for some $c \in \mathbb{R}^n$, and so $\hat{R}^2(x) = Ix$. This implies that $R^2 = \mathrm{id}_{T^n}$.

Example 4.9. Recall the quasiperiodic flow ϕ on T^3 and its generating vector field

$$X = \frac{\partial}{\partial \theta_1} + 7^{1/3} \frac{\partial}{\partial \theta_2} + 7^{2/3} \frac{\partial}{\partial \theta_3}$$

from Example 2.2. By Corollary 4.7, the symmetry group of ϕ is exactly the group of translations $\{R_c : c \in T^n\}$ on T^n , where $R_c(\theta) = \theta + c$. By Corollary 4.8, every reversing symmetry of ϕ is an involution. In particular, this implies that the reversing symmetry group of ϕ is a semidirect product of the symmetry group of ϕ by the \mathbb{Z}_2 subgroup generated by reversing involution $N(\theta) = -\theta$ (see p.8 in [10]). Are there symmetries of ϕ with multipliers other than ± 1 ? The GL(3, \mathbb{Z}) matrix

$$B = (b_{ij}) = \begin{bmatrix} -2 & 1 & 0\\ 0 & -2 & 1\\ 7 & 0 & -2 \end{bmatrix}$$

induces a $Q \in \text{Diff}(T^3)$ by Theorem 3.1. Since

$$\hat{Q}_* \hat{X} = \mathbf{T} \hat{Q} \hat{X} = B \hat{X} = (-2 + 7^{1/3}) \hat{X},$$

Theorem 3.5 implies that $Q_*X = (-2 + 7^{1/3})X$. Hence, by Theorem 2.1, $Q \in S_{\phi}$. The number $-2+7^{1/3}$ is $\rho_{\phi}(Q)$, the multiplier of Q, is an algebraic integer of degree at most 3 by Corollary 4.4, and satisfies

$$-2 + 7^{1/3} = \sum_{j=1}^{3} b_{ij} \frac{a_j}{a_i}, \quad i = 1, 2, 3,$$

by Corollary 4.5. (The matrix B was found by using Theorem 3.1 in [3], a result which characterizes the matrices in $\operatorname{GL}(3,\mathbb{Z})$ inducing generalized symmetries of a quasiperiodic flow generated by a vector field of a certain type, of which X above is.) Since S_{ϕ} is a group and $\rho_{\phi}: S_{\phi} \to \mathbb{R}^*$ is a homomorphism, it follows for each $k \in \mathbb{Z}$ that $Q^k \in S_{\phi}$ with $\rho_{\phi}(Q^k) = (\rho_{\phi}(Q))^k = (-2 + 7^{1/3})^k$, and that $NQ^k \in S_{\phi}$ with $\rho_{\phi}(NQ^k) = -(-2 + 7^{1/3})^k$.

5. A Splitting Map for the Extension

For a quasiperiodic flow ϕ on T^n , Theorem 4.3 implies that $\mathbf{T}R \in \mathrm{GL}(n,\mathbb{Z})$ for every $R \in S_{\phi}$. Set

$$\Pi_{\phi} = \{ B \in \mathrm{GL}(n, \mathbb{Z}) : \text{ there is } R \in S_{\phi} \text{ for which } B = \mathbf{T}\hat{R} \}.$$

and define a map $\nu_{\phi}: \Pi_{\phi} \to \rho_{\phi}(S_{\phi})$ by $\nu_{\phi}(B) = \rho_{\phi}(R)$ where $R \in S_{\phi}$ with $\mathbf{T}\hat{R} = B$.

Lemma 5.1. If ϕ is a quasiperiodic flow on T^n with generating vector field X, then ν_{ϕ} is well-defined.

Proof. Let $B \in \Pi_{\phi}$, and suppose there are $R, Q \in S_{\phi}$ with $\mathbf{T}\hat{R} = B = \mathbf{T}\hat{Q}$. Then $RQ^{-1} \in S_{\phi}$ and $\hat{R}\hat{Q}^{-1}$ is a lift of RQ^{-1} for which $\mathbf{T}(\hat{R}\hat{Q}^{-1}) = BB^{-1} = I$. Hence $\hat{R}\hat{Q}^{-1}(x) = Ix + c$ for some $c \in \mathbb{R}^n$. This implies that $(\hat{R}\hat{Q}^{-1})_*\hat{X} = \hat{X}$, so that by Theorem 3.5, $(RQ^{-1})_*X = X$. By Theorem 2.1, $\rho_{\phi}(RQ^{-1}) = 1$. Because ρ_{ϕ} is a homomorphism, $\rho_{\phi}(R) = \rho_{\phi}(Q)$.

Lemma 5.2. If ϕ is a quasiperiodic flow on T^n with generating vector field X, then Π_{ϕ} is a subgroup of $\operatorname{GL}(n,\mathbb{Z})$.

Proof. Let $B, C \in \Pi_{\phi}$. Then there are $R, Q \in S_{\phi}$ such that $\mathbf{T}\hat{R} = B$ and $\mathbf{T}\hat{Q} = C$. The latter implies that $\mathbf{T}\hat{Q}^{-1} = (\mathbf{T}\hat{Q})^{-1} = C^{-1}$. Then $BC^{-1} = \mathbf{T}\hat{R}\mathbf{T}\hat{Q}^{-1} = \mathbf{T}(\hat{R}\hat{Q}^{-1})$. The diffeomorphism $x \to \hat{R}\hat{Q}^{-1}x$ of \mathbb{R}^n satisfies conditions a) and b) of Theorem 3.1, and so is a lift of a diffeomorphism V of T^n . Let $\alpha = \rho_{\phi}(R)$ and $\beta = \rho_{\phi}(Q)$. Then $\rho_{\phi}(Q^{-1}) = \beta^{-1}$ because ρ_{ϕ} is a homomorphism, and so $(\hat{Q}^{-1})_*\hat{X} = \beta^{-1}\hat{X}$. Thus, $\mathbf{T}(\hat{R}\hat{Q}^{-1})\hat{X} = (\hat{R}\hat{Q}^{-1})_*\hat{X} = \alpha\beta^{-1}\hat{X}$. By Theorem 3.5, $V_*X = \alpha\beta^{-1}X$, so that by Theorem 2.1, $V \in S_{\phi}$. The lifts $\hat{R}\hat{Q}^{-1}$ and \hat{V} of V differ by a deck transformation of π , so that $BC^{-1} = \mathbf{T}(\hat{R}\hat{Q}^{-1}) = \mathbf{T}\hat{V}$. Therefore, $BC^{-1} \in \Pi_{\phi}$.

Theorem 5.3. If ϕ is a quasiperiodic flow on T^n with generating vector field X, then ν_{ϕ} is an isomorphism and Π_{ϕ} is an Abelian subgroup of $\operatorname{GL}(n, \mathbb{Z})$.

Proof. Let $B, C \in \Pi_{\phi}$. Then there are $R, Q \in S_{\phi}$ such that $\mathbf{T}\hat{R} = B$ and $\mathbf{T}\hat{Q} = C$. Let $\alpha = \rho_{\phi}(R)$ and $\beta = \rho_{\phi}(Q)$. By Theorem 2.1 and Theorem 3.5, $\mathbf{T}\hat{R}\hat{X} = \alpha\hat{X}$ and $\mathbf{T}\hat{Q}\hat{X} = \beta\hat{X}$. By Lemma 5.2, $BC \in \Pi_{\phi}$, so that there is a $V \in S_{\phi}$ such that $\mathbf{T}\hat{V} = BC$. Hence, $\hat{V}_*\hat{X} = \mathbf{T}\hat{V}\hat{X} = BC\hat{X} = \alpha\beta\hat{X}$. By Theorem 3.5 and Theorem 2.1, $\rho_{\phi}(V) = \alpha\beta$. Thus, $\nu_{\phi}(BC) = \alpha\beta = \nu_{\phi}(B)\nu_{\phi}(C)$. By definition, ν_{ϕ} is surjective, and by Theorem 4.6, ker $\nu_{\phi} = \{I\}$. Therefore, ν_{ϕ} is an isomorphism. The multiplier group $\rho_{\phi}(S_{\phi})$ is Abelian because it is a subgroup of the Abelian group \mathbb{R}^* . Thus Π_{ϕ} is Abelian.

A splitting map for the short exact sequence,

$$\operatorname{id}_{T^n} \to \ker \rho_\phi \to \rho_\phi^{-1}(\Lambda) \xrightarrow{j_\Lambda} \Lambda \to 1,$$

is a homomorphism $h_{\Lambda} : \Lambda \to \rho_{\phi}^{-1}(\Lambda)$ such that $j_{\Lambda}h_{\Lambda}$ is the identity isomorphism on Λ . Take for h_{Λ} the map where for each $\alpha \in \Lambda$, the image $h_{\Lambda}(\alpha)$ is the diffeomorphism in $\rho_{\phi}^{-1}(\Lambda)$ induced by the $\operatorname{GL}(n,\mathbb{Z})$ matrix $\nu_{\phi}^{-1}(\alpha)$.

Theorem 5.4. If ϕ is a quasiperiodic flow on T^n , then h_{Λ} is a splitting map for the extension $\operatorname{id}_{T^n} \to \ker \rho_{\phi} \to \rho_{\phi}^{-1}(\Lambda) \to \Lambda \to 1$ for each $\Lambda < \rho_{\phi}(S_{\phi})$.

Proof. For arbitrary $\alpha, \beta \in \Lambda$, set $R = h_{\Lambda}(\alpha)$, $Q = h_{\Lambda}(\beta)$, and $V = h_{\Lambda}(\alpha\beta)$. Then $\hat{R}(x) = \nu_{\phi}^{-1}(\alpha)x$, $\hat{Q}(x) = \nu_{\phi}^{-1}(\beta)x$, and $\hat{V}(x) = \nu_{\phi}^{-1}(\alpha\beta)x$. By Theorem 5.3, ν_{ϕ}^{-1} is an isomorphism, so that $\hat{V}(x) = \nu_{\phi}^{-1}(\alpha)\nu_{\phi}^{-1}(\beta)x$. Because

$$h_{\Lambda}(\alpha)h_{\Lambda}(\beta)\pi(x) = RQ\pi(x) = \pi \hat{RQ}(x) = \pi \nu_{\phi}^{-1}(\alpha)\nu_{\phi}^{-1}(\beta)x$$
$$= \pi \nu_{\phi}^{-1}(\alpha\beta)x = \pi \hat{V}(x) = V\pi(x) = h_{\Lambda}(\alpha\beta)\pi(x),$$

and because π is surjective, $h_{\Lambda}(\alpha)h_{\Lambda}(\beta) = h_{\Lambda}(\alpha\beta)$. Let $B = \mathbf{T}\hat{R} = \nu_{\phi}^{-1}(\alpha)$. Then $\nu_{\phi}(B) = \rho_{\phi}(R)$, so that

$$j_{\Lambda}h_{\Lambda}(\alpha) = j_{\Lambda}(R) = \rho_{\phi}(R) = \nu_{\phi}(B) = \nu_{\phi}(\nu_{\phi}^{-1}(\alpha)) = \alpha.$$

Therefore, h_{Λ} is a splitting map for the extension.

Theorem 5.5. If ϕ is a quasiperiodic flow on T^n , then

$$\rho_{\phi}^{-1}(\Lambda) = \ker \rho_{\phi} \rtimes_{\Gamma} h_{\Lambda}(\Lambda)$$

for each $\Lambda < \rho_{\phi}(S_{\phi})$, where $\Gamma : h_{\Lambda}(\Lambda) \to \operatorname{Aut}(\ker \rho_{\phi})$ is the conjugating homomorphism. Moreover, if Λ is a nontrivial subgroup of $\rho_{\phi}(S_{\phi})$, then Γ is nontrivial.

Proof. By Theorem 5.4, h_{Λ} is a splitting map for the extension

$$\operatorname{id}_{T^n} \to \ker \rho_\phi \to \rho_\phi^{-1}(\Lambda) \xrightarrow{j_\Lambda} \Lambda \to 1.$$

Thus, $\rho_{\phi}^{-1}(\Lambda) = (\ker \rho_{\phi})(h_{\Lambda}(\Lambda))$ and $\ker \rho_{\phi} \cap h_{\Lambda}(\Lambda) = \operatorname{id}_{T^n}$ (Theorem 9.5.1, p.240 [12]). Since $\ker \rho_{\phi}$ is a normal subgroup of $\rho_{\phi}^{-1}(\Lambda)$, then $\rho_{\phi}^{-1}(\Lambda) = \ker \rho_{\phi} \rtimes_{\Gamma} h_{\Lambda}(\Lambda)$ where $\Gamma : h_{\Lambda}(\Lambda) \to \operatorname{Aut}(\ker \rho_{\phi})$ is the conjugating homomorphism (see p.21 in [1]). If Γ is the trivial homomorphism, then $\rho_{\phi}^{-1}(\Lambda)$ is Abelian since $\ker \rho_{\phi}$ is Abelian by Corollary 4.7 and $h_{\Lambda}(\Lambda)$ is Abelian by Theorem 5.3 (see p.21 in [1]). But $\rho_{\phi}^{-1}(\Lambda)$ is non-Abelian by Theorem 2.4 whenever Λ is a nontrivial subgroup of $\rho_{\phi}(S_{\phi})$. \Box

Example 5.6. For the quasiperiodic flow ϕ on T^3 with frequencies 1, $7^{1/3}$, and $7^{2/3}$, it was shown in Example 4.9 that $\alpha = -2 + 7^{1/3} \in \rho_{\phi}(S_{\phi})$. The set

$$\Lambda = \{ (-1)^{j} \alpha^{k} : j \in \{0, 1\}, k \in \mathbb{Z} \}$$

is a nontrivial subgroup of $\rho_{\phi}(S_{\phi})$ that is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}$. By Theorem 5.5 and Corollary 4.7,

$$\rho_{\phi}^{-1}(\Lambda) \cong T^3 \rtimes_{\Gamma} (\mathbb{Z}_2 \times \mathbb{Z}),$$

where Γ is the (nontrivial) conjugating homomorphism. In particular, every element of $\rho_{\phi}^{-1}(\Lambda)$ can be written uniquely as $R_c N^j Q^k$ where $R_c \in \ker \rho_{\phi}$ is a translation by c on T^n (as defined in Example 2.2), N is the reversing involution (as defined Example 2.2), and Q is the generalized symmetry of ϕ whose multiplier is α (as defined in Example 4.9). Thus

$$\rho_{\phi}^{-1}(\Lambda) = \{ R_c N^j Q^k : c \in T^n, j \in \{0, 1\}, k \in \mathbb{Z} \}.$$

References

- J.L. Alperin and R.B. Bell, Groups and Representations, Graduate Texts in Mathematics Vol. 162, Springer-Verlag, New York, 1995.
- [2] V.I. Arnold, Mathematical Methods of Classical Mechanics, Second Edition, Graduate Texts in Mathematics Vol. 60, Springer-Verlag, New York, 1989.
- [3] L. F. Bakker, A Reducible Representation of the Generalized Symmetry Group of a Quasiperiodic Flow, in "Dynamical Systems and Differential Equations," (eds. W. Feng, S. Hu, and X. Lu), AIMS Press (2003).
- [4] L. F. Bakker, Quasiperiodic Flows and Algebraic Number Fields, submitted to the Proceedings of the Fourth International Conference on Dynamic Systems and Applications, June 2003; listed on arxiv.org as preprint math.DS/0307389.
- [5] L. F. Bakker and G. Conner, A Class of Generalized Symmetries of Smooth Flows, to appear in Communications on Pure and Applied Analysis.
- [6] G. E. Bredon, *Topology and Geometry*, Graduate Texts in Mathematics Vol. 139, Springer-Verlag, New York, 1993.
- [7] H.W. Broer, A family of quasiperiodic attractors, in Structures in Dynamics, Finite Dimensional Deterministic Studies, Studies in Mathematical Physics Vol. 2, North-Holland, Elsevier Science Publishers B.V., New York, 1991.
- [8] T. W. Hungerford, Algebra, Graduate Texts in Mathematics Vol. 73, Springer-Verlag, New York, 1974.
- [9] F. John, Partial Differential Equations, Fourth Edition, Applied Mathematical Sciences Vol. 1, Springer-Verlag, New York, 1982.
- [10] J. S. W. Lamb and J. A. G. Roberts, *Time-reversal symmetry in dynamical systems: A survey*, Physica D 112 (1998), 1-39.
- [11] R. A. Mollin, Algebraic Number Theory, Chapman and Hall/CRC, Boca Raton, 1999.
- [12] W. R. Scott, Group Theory, Dover Publications, Inc., New York, 1987.

Department of Mathematics, Brigham Young University, 292 TMCB, Provo, UT 84602 USA

E-mail address: bakker@math.byu.edu