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EXISTENCE OF TRIVIAL AND NONTRIVIAL SOLUTIONS OF
A FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATION

TIHOMIR GYULOV & STEPAN TERSIAN

Abstract. We study the multiplicity of nontrivial solutions for a semilin-
ear fourth-order ordinary differential equation arising in spatial patterns for

bistable systems. In the proof of our results, we use minimization theorems
and Brezis–Nirenberg’s linking theorem. We obtain also estimates on the min-

imizers of the corresponding functionals.

1. Introduction

In this paper, we study existence and multiplicity of solutions to the boundary-
value problem for the fourth-order ordinary differential equation

uiv + Au′′ + Bu + f(x, u) = 0,

u(0) = u(L) = u′′(0) = u′′(L) = 0,
(1.1)

where A and B are constants and f(x, u) is a continuous function, defined in R2,
whose potential F (x, u) =

∫ u

0
f(x, t)dt satisfies suitable assumptions. The problem

is motivated by the study of formation of spatial periodic patterns in bistable
systems. In the study of spatial patterns an important role is played by a model
equation, which is simpler than full equations describing the process. Recently,
interest has turned to fourth-order parabolic differential equation, involving bistable
dynamics, such as the extended Fisher-Kolmogorov (EFK) equation proposed by
Coullet, Elphick & Repaux in 1987 and Dee & VanSaarlos in 1988. Another well
known equation of this type is the Swift-Hohenberg (SH) equation proposed in 1977.
With appropriate changes of variables, stationary solutions of these equations lead
to the equation

uiv − pu′′ − u + u3 = 0, (1.2)
in which p > 0 corresponds to EFK equation and p < 0 to the SH equation. Solu-
tions of Eq. (1.2) which are bounded on the real line have been recently studied by
a variety of methods such as topological shooting method and variational methods
[1, 3, 4, 7, 8, 9, 10].

When f is an even 2L periodic function with respect to x, and odd with respect
to u, the 2L periodic extension ū of the odd extension of the solution u of the
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problem (1.1) to the interval [−L,L] yields a 2L periodic solution of (1.1). The
solvability of (1.1) for some extension of (1.2) was studied in [3, 4, 7, 8, 10] by
variational methods.

We suppose that f(x, 0) = 0, ∀x ∈ R and the potential

F (x, u) =
∫ u

0

f(x, s) ds

satisfies following assumptions:
(H1) There is a number p > 2 and for each bounded interval I there is a constant

c > 0 such that

F (x, u) ≥ c|u|p, ∀x ∈ I,∀u ∈ R

(H2) F (x, u) = o(u2) as u → 0, uniformly with respect to x in bounded intervals.
A typical function that satisfies (H1) and (H2) is

f(x, u) = b(x)u|u|p−2, p > 2,

where b(x) is a continuous, positive function.
Problem (1.1) has a variational structure and its solutions can be found as critical

points of the functional

I(u;L) :=
1
2

∫ L

0

(u′′2 −Au′2 + Bu2)dx +
∫ L

0

F (x, u)dx (1.3)

in the Sobolev space
X(L) := H2(0, L) ∩H1

0 (0, L).

In this work we obtain nontrivial critical points of the functional I using Brezis-
Nirenberg’s linking theorem [2, 5]. Recall its statement. Let E be a Banach space
with a direct sum decomposition E = X ⊕ Y . The functional J ∈ C1(E, R) has a
local linking at 0 if, for some r > 0

J(x) ≤ 0, x ∈ X, ‖x‖ ≤ r ,

J(y) ≥ 0, y ∈ Y, ‖y‖ ≤ r .

Theorem 1.1 (Brezis and Nirenberg [2]). Suppose that J ∈ C1(E, R) satisfies the
(PS) condition and has a local linking at 0. Assume that J is bounded below and
infE J < 0. Then J has at least two nontrivial critical points.

It is easy to see that if 4B ≥ A2 and f(x, u)u > 0 for x ≥ 0 and u 6= 0 the
problem (1.1) has only the trivial solution. We shall assume 4B < A2 and study
separately the cases A ≤ 0 (EFK equation) and A > 0 (SH equation). Our main
results are as follows.

Theorem 1.2 (Nontrivial solutions). Let the function F (x, u) satisfy (H1) and
(H2).

(i) Let 4B < A2, A ≤ 0, B < 0 and set L1 := π
√

2/
√

A +
√

A2 − 4B. If
L > L1, then problem (1.1) has at least two nontrivial solutions.

(ii) Let 4B < A2, A > 0, and set L1 := π
√

2/
√

A +
√

A2 − 4B. Then, problem
(1.1) has at least two nontrivial solutions if either
(a) B ≤ 0 and L > L1, or
(b) B > 0, and L ∈]nL1, nM1[, where M1 := π

√
2/

√
A−

√
A2 − 4B.
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Theorem 1.3 (trivial solutions). Let the continuous function f(x, u) satisfy the
assumption f(x, 0) = 0 and f(x, u)u > 0, u 6= 0 for x ∈ [0, L].

(i) Let 4B < A2, A ≤ 0,, set L1 := π
√

2/
√

A +
√

A2 − 4B for B < 0. Then
problem (1.1) has only the trivial solution provided that one of the following
holds: (a) B ≥ 0, or (b) B < 0 and 0 < L ≤ L1.

(ii) Let 4B < A2, A > 0, set L1 := π
√

2/
√

A +
√

A2 − 4B and

hn =
( (n2 + n)A
2n2 + 2n + 1

)2
,

n ∈ N∪ {0}. Then problem (1.1) has only the trivial solution provided that
one of the following holds: (a) B ≤ 0 and 0 < L < L1, or (b) hn < B ≤
hn+1 and L ∈ Tn+1, where Tn+1 is a finite union of bounded intervals.

Next, we consider the problem

uiv + Au′′ + Bu + u3 = 0, 0 < x < L,

u(0) = u(L) = u′′(0) = u′′(L) = 0,
(1.4)

which is related to stationary the EFK equation or to stationary the SH equation.
The corresponding energy functional is

J(u;L) =
1
L

{1
2

∫ L

0

(u′′2 −Au′2 + Bu2)dx +
1
4

∫ L

0

u4dx
}
.

By Theorem 1.2 for 4B < A2, problem (1.4) has at least two nontrivial solutions if
L belongs to infinite interval ]L1,+∞[ if A ≤ 0,or to a bounded interval ]nL1, nM1[,
if A > 0, where L1 and M1 are depended on A and B. One of these nontrivial
solutions is a nontrivial minimizer u0 of the functional J . In this section we will
estimate the average of L2-norm of the minimizer u0.

Let for u ∈ X(L), let

|u|2 :=
1
L

∫ L

0

u2(x)dx.

Let P (ξ) = ξ4−Aξ2 +B be the symbol of the linear operator Lu = uiv +Au′′+Bu.
By the proof of Theorem 1.2, if L ∈ ∆n, where ∆n is an interval which is the set
of solutions of the inequality Pn(L) < 0, (1.4) has at least two nontrivial solutions.
Moreover if L ∈ ∆n, there exist natural numbers m,m+1, . . . ,m+k, m ≥ 1, k ≥ 0
depending on L such that Pj(L) < 0 if and only if j ∈ S = {m,m + 1, . . . ,m + k}
and Pj(L) ≥ 0 if and only if j /∈ S. Let Ek+1(L) be the finite dimensional subspace
of X(L)

Ek+1(L) = span
{

sin(
mπx

L
), . . . , sin(

(m + k)πx

L
)
}
,

and for u ∈ X(L), u = u+ ũ, u ∈ Ek+1, ũ ∈ E⊥k+1 be the orthogonal decomposition
of u.

Theorem 1.4. Let for a fixed n ∈ N, let ∆n be the set of solutions of the inequality
Pn(L) < 0. For L ∈ ∆n let

Pj(L) < 0 if j ∈ S = {m,m + 1, . . . ,m + k},

and
pn = Pmn

(L) = min{Pj(L) : j ∈ S} < 0.
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Then, if L ∈ ∆n, problem (1.4) has a nontrivial solution u0, which is a minimizer
of the functional J , and the following estimates hold:

(i) − 1
4p2

n ≤ J(u0;L) ≤ −1
6p2

n

(ii) 2
3 |pn| ≤ |u0|2 ≤ |u0|2 ≤ |pn|

(iii) |ũ0|2 ≤ (− 2
3 +

√
2
3 )|pn|

(iv) J1(ũ0;L) ≤ 2
9p2

n.

This paper is organized as follows: In Section 2 we prove some auxiliary lemmas.
In Section 3 we prove Theorem 1.2, and Theorem 1.3. In Section 3 we prove
Theorem 1.4.

2. Preliminaries

We study the nonautonomous fourth-order ordinary differential equation

uiv + Au′′ + Bu + f(x, u) = 0, 0 < x < L,

where A ∈ R, B ∈ R are constants and f(x, u) is a continuous function, whose po-
tential F (x, u) =

∫ u

0
f(x, t)dt is a nonnegative function which satisfies assumptions

(H1) and (H2).
Let X(L) be the Sobolev space

X(L) := {H2(0, L) : u(0) = u(L) = 0}.

A weak solution of the problem (1.1) is a function u ∈ X(L), such that∫ L

0

(u′′v′′ −Au′v′ + Buv + f(x, u)v)dx = 0, ∀v ∈ X(L).

One can prove that a weak solution of (1.1) is a classical solution of (1.1) (see
[10, Proposition 1]. Weak Solutions of (1.1) are critical points of the functional
I : X(L) → R,

I(u;L) :=
1
2

∫ L

0

(u′′2 −Au′2 + Bu2)dx +
∫ L

0

F (x, u)dx. (2.1)

The following technical lemmata play an important role in further considerations.

Lemma 2.1. We have the following: For u ∈ X(L),∫ L

0

u2dx ≤ L2k

π2k

∫ L

0

(u(k))2dx, k = 1, 2 . (2.2)

The scalar product

〈u, v〉 =
∫ L

0

u′′v′′dx, u ∈ X(L), v ∈ X(L)

induces an equivalent norm in X(L). The set of functions {sin(nπx
L ) : n ∈ N} is a

complete orthogonal basis in X(L).

Proof. The Poincáre type inequality (2.2) is proved in [6]. For u ∈ X(L), we have∫ L

0

u′2dx =
∫ L

0

u′du = −
∫ L

0

uu′′dx ≤ 1
2

∫ L

0

(u2 +u′′2)dx ≤ 1
2
(L4

π4
+1

) ∫ L

0

u′′2dx,
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which shows that [u] = 〈u, u〉1/2 is an equivalent norm in X(L). The set of functions
{sin nπx

L : n ∈ N} is clearly orthogonal in X(L) with respect to the scalar product
〈·, ·〉. It is a complete orthogonal basis in X(L). Indeed, let v ∈ X(L) be such that

〈v, sin
nπx

L
〉 = 0, ∀n ∈ N.

Then

0 =
∫ L

0

v′′(sin
nπx

L
)′′dx =

∫ L

0

v(sin
nπx

L
)(4)dx = (

nπ

L
)4

∫ L

0

v sin
nπx

L
dx,

and ∫ L

0

v sin
nπx

L
dx = 0, ∀n ∈ N.

Since X(L) ⊂ L2(0, L) and {sin nπx
L : n ∈ N} is an orthogonal basis in L2(0, L)

it follows that v = 0, which means that the set {sin nπx
L : n ∈ N} is a complete

orthogonal basis in X(L). �

Lemma 2.2. Let A, B be constants and f(x, u) be a continuous function such that
(H1) holds. Then the functional I is bounded from below and it satisfies the (PS)
condition.

Proof. Using Fourier series arguments and the previous lemma, we obtain that for
u ∈ X(L),

u =
∞∑

k=1

ck sin
kπx

L
,

I(u;L) =
L

4

∞∑
k=1

c2
kP (

kπ

L
) +

∫ L

0

F (x, u)dx,

(2.3)

where P (ξ) = ξ4 −Aξ2 + B is the symbol of the linear differential operator

L(u) := u(4) + Au′′ + Bu.

Observe that P (ξ) is bounded from below for any A and B

P (ξ) ≥ B − A2

4
.

It follows from (2.3) and (H1) that I(u;L) ≥ 0 if 4B ≥ A2. If 4B < A2 we have

I(u;L) >
1
2
(
B − A2

4
)
‖u‖2L2 + C1(L)‖u‖p

L2 . (2.4)

From the elementary inequality

−ax2 + bxp ≥ −a
p− 2

p
(
2a

pb
)

2
p−2

for a > 0, b > 0, x > 0 and p > 2, it follows that the right hand side of (2.4) is
bounded from below by a negative constant.

Suppose now that (un)n is a (PS) sequence, i.e. there exists c1 > 0 such that

c1 > |I(un;L)| and I ′(un;L) → 0. (2.5)

In what follows cj will denote various positive constants. We have

I(u;L) =
1
4

∫ L

0

u′′2dx +
1
2
Ī(u;L),
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where

Ī(u;L) =
1
2

∫ L

0

(u′′2 − 2Au′2 + 2Bu2)dx + 2
∫ L

0

F (x, u)dx.

As before the functional Ī is bounded from below and we have

c1 ≥
1
4

∫ L

0

u′′n
2dx− c2.

The sequence (un)n is a bounded sequence in X(L) in view of Lemma 2.1. There
exists a subsequence still denoted by (un)n and a function u0 ∈ X(L) such that

un ⇀ u0 in X(L), (2.6)

and by Sobolev’s embedding theorem

un → u0 in C1[0, L],

un → u0 in L2(0, L).
(2.7)

Since f(x, u) is continuous and {|un(x)|} uniformly bounded in [0, L], and letting
n →∞ in

(I ′(un;L), u0) =
∫ L

0

(u′′nu′′0 −Au′nu′0 + Bunu0 + f(x, un)u0)dx

we obtain ∫ L

0

(u′′0
2 −Au′20 + Bu2

0 + f(x, u0)u0)dx = 0. (2.8)

From the boundedness of (un)n in X(L) and (2.8) it follows (I ′(un;L), un) → 0
and ∫ L

0

u′′n
2dx = (I ′(un), un) +

∫ L

0

(Au′2n −Bu2
n − f(x, un)un)dx

→
∫ L

0

(Au′20 −Bu2
0 − f(x, u0)u0)dx =

∫ L

0

u′′0
2dx,

which implies that ‖un‖ → ‖u0‖ and then ‖un − u0‖ → 0, which completes the
proof of Lemma 2.2. �

3. Existence results

The polynomial
p(ξ) = ξ4 −Aξ2

and the real functions
pn(L) = p(

nπ

L
)

play an important role in the sequel.
Let A ≤ 0. The polynomial p(ξ) is a positive increasing and convex function for

ξ > 0. The functions pn(L) are positive decreasing functions for every n ∈ N and

pn(L) → +∞, as L → 0,

pn(L) → 0, as L → +∞.

These functions are ordered as

0 < p1(L) < p2(L) < . . . < pn(L) < . . .

for every L > 0, and some of their graphs are showm in Figure 1.
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Figure 1. Graphs of functions pn(L) = (nπ
L )4 + (nπ

L )2, n = 1, 2, 3, 4

Let B < 0. Then the equation pn(L) + B = 0 has the unique solution

Ln = nL1, L1 :=
π
√

2√
A +

√
A2 − 4B

(3.1)

and

pn(L) + B ≥ 0 if L ≤ nL1, (3.2)

pn(L) + B < 0 if L > nL1. (3.3)

Let A > 0. Then the polynomial p(ξ) = ξ4 − Aξ2 is positive for ξ >
√

A and
it has a negative minimum p0 = −A2/4 at ξ0 =

√
A/2. The functions pn(L) are

decreasing if 0 < L < nπ
√

2/A and increasing if L > nπ
√

2/A, pn(L) > 0 if
0 < L < nπ/

√
A and pn(L) < 0 if L > nπ/

√
A. The graphs of functions pn(L)

with A = 1 and n = 1, 2, 3, 4 are presented on Figure 2.

Lemma 3.1. Let ln := π√
A

√
2n2 + 2n + 1 and L1 := π

√
2/

√
A +

√
A2 − 4B. Then

we have the following results:
(a)

pn(L) = pn+1(L) ⇔ L = ln,

pn(L) < pn+1(L) ⇔ L < ln,

pn(L) > pn+1(L) ⇔ L > ln,

(3.4)

and

q(L) = inf{pn(L) : n ∈ N} =

{
p1(L), 0 < L ≤ l1,

pn+1(L), ln < L ≤ ln+1.

(3.5)

(b) Let B ≤ 0. Then pn(L) + B < 0 if and only if L > nL1.
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Figure 2. Graphs of functions pn(L) = (nπ
L )4 − (nπ

L )2, n = 1, 2, 3, 4

(c) Let B > 0 and M1 := π
√

2/
√

A−
√

A2 − 4B. Then pn(L) + B < 0 if and
only if nL1 < L < nM1.

Proof. (a) The equation pn(L) = pn+1(L) is equivalent to (nx)4 −A(nx)2 = ((n +
1)x)4−A((n+1)x)2, where x = π/L. A direct calculation shows that it is satisfied
for x2 = A/(2n2 + 2n + 1), i.e. for L = ln = π√

A

√
2n2 + 2n + 1. We have

pn(ln) = −
( (n2 + n)A
2n2 + 2n + 1

)2 = −hn

and (3.4) holds. From (3.4) it follows (3.5).
(b) To solve the inequality pn(L) + B < 0 we set x = π/L, and assuming that
B ≤ 0 we are led to

(nx)2 ∈
]
0,

A +
√

A2 − 4B

2
[
,

equivalent to L > nL1.
(c) To solve the same inequality in the case B > 0 we compute

(nx)2 ∈
]A−

√
A2 − 4B

2
,
A +

√
A2 − 4B

2
[

which is equivalent to nL1 < L < nM1. �

Proof of Theorem 1.2. Case (i). Let L > L1. There exists a natural number n such
that nL1 < L ≤ (n + 1)L1. Let ϕn ∈ En = span{sin πx

L , . . . , sin nπx
L } such that

ϕn(x) =
n∑

k=1

ck sin(
kπx

L
),

and set c2
1 + . . . + c2

n = ρ2. By (3.3) we have that

αn = max{pk(L) + B : k = 1, . . . , n} < 0.



EJDE-2004/41 EXISTENCE OF TRIVIAL AND NONTRIVIAL SOLUTIONS 9

Let us take a small constant ε, such that 0 < ε < −αn/2.
By assumption (H2), there exists δ > 0 such that if |u| ≤ δ then F (x, u) ≤ ε|u|2,

x ∈ [0, L]. Let us take ρ, 0 < ρ ≤ δ/
√

n. Then by

|ϕn(x)| ≤
n∑

k=1

|ck| ≤
√

n(
n∑

k=1

c2
k)1/2 =

√
nρ ≤ δ

it follows that F (x, ϕn(x)) ≤ ε|ϕn(x)|2 and∫ L

0

F (x, ϕn(x))dx ≤ ε

∫ L

0

|ϕn(x)|2dx

= ε

∫ L

0

n∑
k=1

c2
k sin2(

kπx

L
)dx

= ε
L

2

n∑
k=1

c2
k = ε

L

2
ρ2.

We have

I(ϕn;L) =
L

4

n∑
k=1

(pk(L) + B)c2
k +

∫ L

0

F (x, ϕn(x))dx

≤ L

4
αnρ2 + ε

L

2
ρ2

=
L

2
ρ2(

1
2
αn + ε) < 0,

(3.6)

if 0 < ρ ≤ δ/
√

n. The functional I has a local linking at 0. Indeed, by (3.6), for
sufficiently small ρ > 0 we have

I(u;L) ≤ 0, u ∈ En, ‖u‖ < ρ.

Let u ∈ E⊥n and ‖u‖ ≤ ρ. It follows that pn+1(L) + B ≥ 0 if nL1 < L ≤ (n + 1)L1

by (3.2). Since pn+1(L) < pn+2(L) < . . . ,by assumption (H1) there exists C(L) > 0
such that

I(u;L) ≥ 1
2

min((pk(L) + B) : k ≥ n + 1)‖u‖2L2 + C(L)‖u‖p
L2(0,L)

≥ 1
2
(pn+1(L) + B)‖u‖2L2 + C(L)‖u‖p

L2(0,L) ≥ 0,

if u ∈ E⊥n . The functional I satisfies the (PS) condition. In view of Theorem 1.1,
for L > L1 the functional I has at least two nontrivial critical points.
(ii). By Lemma 3.1, (b) pk(L)+B < 0 iff L > kL1. If L > L1 there exists a natural
number n such that nL1 < L ≤ (n + 1)L1 and

pk(L) + B < 0, k = 1, . . . , n

pk(L) + B ≥ 0, k ≥ n + 1.

In this case the proof is finished exactly as in the proof in the Case (i).
Step 1. Nontrivial solutions in the case B > 0. Let ∆n =]nL1, nM1[. Observe

that for a fixed L ∈ ∆n there exist finite number of intervals ∆j numbered as
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∆m,∆m+1, . . . ,∆m+k such that L ∈ ∆j ∪ ∆n if and only if j ∈ S := {m,m +
1, . . . ,m + k} and

pj(L) + B < 0, j ∈ S,

pj(L) + B ≥ 0, j /∈ S.

Let

Ek+1 := span
{

sin
(mπx

L

)
, sin

( (m + 1)πx

L

)
, . . . , sin

( (m + k)πx

L

)}
.

With a computation similar to the one in the proof of Theorem 1.3 we observe that

I(u, L) < 0, u ∈ Ek+1, 0 < ‖u‖ ≤ r,

if r is sufficiently small and

I(u, L) ≥ 0, u ∈ E⊥k+1,

which implies that I has a local linking at 0. Then I has at least two nontrivial
critical points. �

Proof of Theorem 1.3. By Lemma 2.1, for u ∈ X(L) we have:

u =
∞∑

k=1

ck sin
kπx

L
,

I(u;L) =
L

4

∞∑
k=1

c2
kP (

kπ

L
) +

∫ L

0

F (x, u)dx,

B(u, u) := 〈I ′(u;L), u〉 =
L

2

∞∑
k=1

c2
kP (

kπ

L
) +

∫ L

0

f(x, u)u dx,

where P (ξ) = ξ4 − Aξ2 + B = p(ξ) + B is the symbol of the linear differential
operator

L(u) := uiv + Au′′ + Bu.

Case (i). Let B < 0 and 0 < L ≤ L1. We have seen that p1(L) + B ≥ 0. As
P (kπ

L ) ≥ p1(L) + B ≥ 0 we infer that B(u, u) > 0 if u 6= 0 which means that the
functional I has only the trivial critical point. If B ≥ 0 the same argument applies
for every L > 0.
Case (ii). We consider the solvability of the inequality

q(L) + B ≥ 0, (3.7)

where q(L) = inf{pn(L) : n ∈ N}. Let 0 < B ≤ ( 4
25 )A2 = h1 and

T1 :=

{
]0, L1], B < h1

]0, L1] ∪ {l1}, B = h1.
(3.8)

By Lemma 3.1, (c) if B ≤ h1, inequality (3.7) holds if and only if L ∈ T1. Let
l0 = 0, hn < B < hn+1 and

Dn+1 =]0, L1] ∪ [M1, 2L1] ∪ · · · ∪ [nM1, (n + 1)L1].

Let

Tn+1 :=

{
Dn+1, hn < B < hn+1,

Dn+1 ∪ {ln+1}, B = hn+1.
(3.9)
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By Lemma 3.1, (c) if hn < B ≤ hn+1 the inequality (3.7) is satisfied if and only if
L ∈ Tn+1.

We estimate the quadratic term in B(u, u) as

L

2

∞∑
k=1

c2
kP (

kπ

L
) ≥ (q(L) + B)‖u‖2L2 ≥ 0,

and conclude that that B(u, u) > 0 if u 6= 0. Then the functional I has only the
trivial critical point which completes the proof of Theorem 1.3. �

4. Bounds for the minimizer

Let us consider the problem

uiv + Au′′ + Bu + u3 = 0, 0 < x < L,

u(0) = u(L) = u′′(0) = u′′(L) = 0,

and the corresponding energy functional

J(u;L) =
1
L

{1
2

∫ L

0

(u′′2 −Au′2 + Bu2)dx +
1
4

∫ L

0

u4dx
}
.

For u ∈ X(L), let

|u|2 :=
1
L

∫ L

0

u2(x)dx,

and

J(u;L) =
1
2
J1(u;L) +

1
4
J2(u;L) (4.1)

where

J1(u;L) :=
1
L

∫ L

0

(u′′2 −Au′2 + Bu2)dx,

J2(u;L) :=
1
L

∫ L

0

u4dx.

Let P (ξ) = ξ4−Aξ2 +B be the symbol of the linear operator Lu = uiv +Au′′+Bu
and

Pn(L) = P (
nπ

L
) = p(

nπ

L
) + B.

We have that u ∈ X(L)

u =
∞∑

j=1

cj sin(
jπx

L
),

J(u;L) =
1
4

∞∑
j=1

c2
jPj(L) +

1
4L

∫ L

0

u4dx.

If u0 is the minimizer of J , then
d

dt
J(tu0;L)

∣∣
t=1

= J1(u0;L) + J2(u0;L) = 0. (4.2)

By the proof of Theorem 1.2, if L ∈ ∆n, where ∆n is an interval which is the set
of solutions of the inequality Pn(L) < 0, (1.4) has at least two nontrivial solutions.
Moreover, if L ∈ ∆n, there exist natural numbers m,m + 1, . . . ,m + k, m ≥
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1, k ≥ 0 depending on L such that Pj(L) < 0 if j ∈ S = {m,m + 1, . . . ,m + k} and
Pj(L) ≥ 0 if j /∈ S.

Let Ek+1(L) be the finite dimensional subspace of X(L)

Ek+1(L) = span{sin(
mπx

L
), . . . , sin(

(m + k)πx

L
)},

and for u ∈ X(L), u = u+ũ u ∈ Ek+1, ũ ∈ E⊥k+1 be the orthogonal decomposition
of u. We have

J1(u;L) =
∑
j∈S

c2
jPj(L) ≤ 0, (4.3)

J1(ũ;L) =
∑
j /∈S

c2
jPj(L) ≥ 0. (4.4)

Denote
pn = Pmn

(L) = min{Pj(L) : j ∈ S} < 0,

where mn ∈ S depends on n and L.

Proof of Theorem 1.4. We have

J(u;L) =
1
4

∞∑
j=1

c2
jPj(L) +

1
4L

∫ L

0

u4dx ≥ 1
2
pn|u|2 +

1
4
|u|4 ≥ −1

4
p2

n. (4.5)

The proof of the estimates (i)-(iv) is based upon a selection of a suitable test
function. We set

En(L) = sp{sin(
mnπx

L
)} ⊂ E(L), u1(x) = c sin(

mnπx

L
) ∈ En(L),

where c will be chosen later. We have

J(u0;L) ≤ J(u1;L) =
1
4
c2pn +

3c4

32
.

Taking c2 = c2
0 = − 4

3pn = 4
3 |pn|, we obtain

J(u0;L) ≤ J(u1;L) = −1
6
p2

n, (4.6)

which together with (4.5) proves (i).
We have by (4.1), (4.2), and (4.6)

−1
6
p2

n ≥ J(u0;L) =
1
4
J1(u0;L) ≥ 1

4
pn|u0|2

which implies

|u0|2 ≥ −2
3
pn =

2
3
|pn| = |u1|2. (4.7)

However by (4.2) and (4.4)

|u0|4 ≤
1
L

∫ L

0

u4
0dx = −J1(u0;L)

= −J1(u0;L)− J1(ũ0;L)

≤ −J1(ũ0;L) + |pn‖u0|2

≤ |pn‖u0|2 ≤ |pn‖u0|2

(4.8)

and
|u0|2 ≤ |pn|, (4.9)
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which together with (4.7) proves (ii).
Denote p = |u0|2 and q = |ũ0|2. Then we have |u0|2 = p + q and by (4.8),

(p + q)2 = |u0|4 ≤ −J1(ũ0;L) + |pn|p

which is equivalent to

p2 + (2q − |pn|)p + (q2 + J1(ũ0;L)) ≤ 0. (4.10)

Then
(2q − |pn|)2 − 4(q2 + J1(ũ0;L)) ≥ 0

which implies
D1

n := |pn|2 − 4|pn|q − 4J1(ũ0;L) ≥ 0.

It follows by (4.10) that

1
2
(|pn| − 2q −

√
D1

n) ≤ p ≤ 1
2
(|pn| − 2q +

√
D1

n).

By (i), we have 2
3 |pn| ≤ p and then

2
3
|pn| ≤

1
2
(|pn| − 2q +

√
D1

n)

or
1
6
|pn|+ q ≤ 1

2

√
D1

n.

Then
1
36
|pn|2 +

1
3
|pn|q + q2 ≤ 1

4
(|pn|2 − 4|pn|q − 4J1(ũ0;L)),

or

q2 +
4
3
|pn|q + (J1(ũ0;L)− 2

9
|pn|2) ≤ 0.

Then, we have

D2
n =

4
9
|pn|2 −

(
J1(ũ0;L)− 2

9
|pn|2

)
≥ 0

or
2
3
|pn|2 − J1(ũ0;L) ≥ 0.

Moreover

−2
3
|pn| −

√
D2

n ≤ q ≤ −2
3
|pn|+

√
D2

n

and since J1(ũ;L) ≥ 0,

0 ≤ q ≤
(
− 2

3
+

√
2
3

)
|pn|,

which proves (iii). Observe that from

0 ≤ −2
3
|pn|+

√
2
3
|pn|2 − J1(ũ0;L)

it follows J1(ũ0;L) ≤ 2
9 |pn|2, which proves (iv). �
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