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REDUCIBILITY OF ZERO CURVATURE EQUATIONS

RUBEN FLORES-ESPINOZA

Abstract. By introducing a natural reducibility definition for zero curvature

equations, we give a Floquet representation for such systems and show ap-

plications to the reducibility problem for quasiperiodic 2-dimensional linear
systems and to fiberwise linear dynamical systems on trivial vector bundles.

1. Introduction

The zero curvature equation is a differential equation on matrix functions in two
variables associated to flat linear connections on vector bundles with 2-dimensional
base space. This equation is found in various situations in geometry and dynamics,
particularly in the theory of harmonic maps and integrable systems [2, 8] or in
the theory of connections and its applications to Hamiltonian dynamics on vector
bundles [1, 5, 6].

The solvability of the zero curvature equation is equivalent to the existence of a
common solution for a pair of linear dynamical systems on matrix functions. Using
this fact, we describe the set of solutions on the class of pairs of matrix functions
with periodic coefficients in each one of its two variables and show that the problem
is reduced to the solvability of a Lax type equation.

By introducing a natural concept of reducibility for zero curvature equations,
as the existence of a global “gauge” transformation reducing the initial equation
to another one with constant coefficients, we give a Floquet representation for
such equations and discuss the reducibility problem for quasiperiodic linear dy-
namical systems and for fiberwise linear dynamical systems on vector bundles with
2-dimensional base space.

The reducibility problem for quasiperiodic systems, has been studied by some
authors [3, 4], and conditions of analytical or arithmetical type have been given
in order to solve this problem. Here, we clarify the reducibility property for such
systems in terms of the geometrical meaning of the zero curvature equation.

The second application concerns the reducibility of fiberwise linear dynamical
systems on vector bundles. We give conditions for such reducibility in terms of the
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solvability of zero curvature type equations and explain the kind of obstructions
that can be found.

2. The zero curvature equation

We start with the following definition.

Definition 2.1. A pair (Θ1,Θ2) of n × n smooth complex matrix functions in
variables (s, t) ∈ R2, is called a compatible pair if there exists a n × n smooth
complex matrix function G(s, t) satisfying simultaneously the matrix linear systems

∂G

∂s
(s, t) = Θ1(s, t)G(s, t), (2.1)

∂G

∂t
(s, t) = Θ2(s, t)G(s, t) (2.2)

with initial condition G(0, 0) = I.

Note that any pair (K1,K2) of constant commuting matrices is a compatible
pair. The common solution G in (2.1-2.2) takes the form

G(s, t) = exp(K1s + K2t).

If (Θ1,Θ2) is a compatible pair, the property of second mixed derivatives

∂2G

∂t∂s
=

∂2G

∂s∂t
,

and expressions (2.1-2.2) imply
∂Θ1

∂t
− ∂Θ2

∂s
+ [Θ1,Θ2] = 0. (2.3)

Equation (2.3) is called the zero curvature equation.
Conversely, we have the following proposition.

Proposition 2.2. If the pair (Θ1,Θ2) satisfy the zero curvature equation, then
(Θ1,Θ2) is a compatible pair.

Proof. Let be F 1(s, t) and F 2(s, t) the matrix functions satisfying

∂F 1

∂s
(s, t) = Θ1(s, t)F 1(s, t), F 1(0, t) = I for t ∈ R (2.4)

∂F 2

∂t
(s, t) = Θ2(s, t)F 2(s, t), F 2(s, 0) = I for s ∈ R (2.5)

and consider the smooth n× n matrix function

G(s, t) = F 1(s, t)F 2(0, t)

From the definition of G we verify directly that G satisfies (2.1). To prove that G
also satisfies (2.2), consider the matrix function

H =
∂G

∂t
−Θ2G

and verify that H satisfies the linear system (2.1)
∂H

∂s
−Θ1H = 0.

Since H(0, t) = ( ∂
∂tG)(0, t) − Θ2(0, t)G(0, t) = ( ∂

∂tF
2)(0, t) − Θ2(0, t)F 2(0, t) = 0,

by uniqueness H(s, t) = 0 for all s, and then G satisfies (2.2). �
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Remark 2.3. From the previous proposition, we see that the common solution G
has the representations

G(s, t) = F 1(s, t)F 2(0, t) = F 2(s, t)F 1(s, 0) (2.6)

The geometrical meaning of the zero curvature equation is shown through the
following remarks.

Remark 2.4. The compatibility of the pair (Θ1,Θ2) is equivalent to the commu-
tativity of the vector fields on R2 × Cn

X1 =
∂

∂s
+ Θ1x

∂

∂x
, X2 =

∂

∂t
+ Θ2x

∂

∂x

Remark 2.5. On the trivial vector bundle E = R2 ×Cn → R2, every matrix pair
(Θ1,Θ2) define a linear connection Γ on E with connection matrix 1-form

Ω = −(Θ1ds + Θ2dt).

In terms of the linear connection Γ, the compatibility of the pair (Θ1,Θ2) means
that its curvature matrix 2-form vanishes

Curv Ω ≡ dΩ + Ω ∧ Ω = 0

Here, we use the matrix notation (Ω ∧ Ω)ij = Ωis ∧ Ωsj Moreover, the common
solution G of (2.1) and (2.2) satisfies equation

dG + ΩG = 0.

For more information on linear connections on vector bundles see [7].

Taking into account the equivalence between the compatibility of a matrix pair
(Θ1,Θ2) and the solvability of the zero curvature equation, we have a full description
of the solutions of (2.3) in the following terms.

Proposition 2.6. The pair (Θ1,Θ2) is a solution of the zero curvature equation
(2.3), if and only if

Θ1(s, t) = (
∂F 2

∂s
(s, t) + F 2(s, t)L(s))(F 2(s, t))−1 (2.7)

where L(s) is some n × n smooth complex matrix function and F 2(s, t) satisfies
( ∂

∂tF
2)(s, t) = Θ2(s, t)F 2(s, t) with F 2(s, 0) = I for each s ∈ R.

Proof. If (Θ1,Θ2) is a compatible pair, the matrix function Θ1 satisfies the equation

∂Θ1

∂t
= [Θ1,Θ2] +

∂Θ2

∂s
.

Solving this equation for Θ1, we have that Θ1 = Θpart + Θhom where: Θpart(s, t) =
∂
∂sF 2(s, t)(F 2(s, t))−1 and Θhom(s, t) = F 2(s, t)L(s)(F 2(s, t))−1 for some matrix
function L(s). �

Consider now, the class of matrix pairs with periodic entries in the variables s
and t

Θi(s, t) = Θi(s + 2π, t) = Θi(s, t + 2π), i = 1, 2. (2.8)

In this class, the solvability of (2.3) is reduced to the solvability of a Lax equation,
in the following terms
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Proposition 2.7. Let be Θ2(s, t) a n × n smooth matrix function satisfying the
periodicity conditions

Θ2(s + 2π, t) = Θ2(s, t + 2π) = Θ2(s, t)

and denote by m2(s) the monodromy matrix corresponding to the linear periodic
system on Rn

dx

dt
= Θ2(s, t)x

Then, the pair (Θ1,Θ2) with Θ1 as in (2.7), is a solution of (2.3) with periodic
entries if and only if there exists a n× n smooth matrix function L(s) satisfying,

L(s) = L(s + 2π) (2.9)
dm2

ds
= [L(s),m2]. (2.10)

Remark 2.8. Condition (2.10) implies the invariance of the spectrum of the mon-
odromy matrix m2(s).

3. Reducibility

Let be R(s, t) a n × n non singular complex matrix function with R(0, 0) = I
and G the common solution to the equations (2.1)-(2.2). Then the matrix function

Y (s, t) = R(s, t)G(s, t)

is a simultaneous solution of
∂Y

∂s
= (

∂R

∂s
+ RΘ1)R−1Y (3.1)

∂Y

∂t
= (

∂R

∂t
+ RΘ2)R−1)Y (3.2)

with Y (0, 0) = I, and the pair

((
∂R

∂s
+ RΘ1)R−1, (

∂R

∂t
+ RΘ2)R−1) (3.3)

becomes a compatible pair.

Remark 3.1. In particular if we take R = G−1 the transformed system (3.1)–(3.2)
takes the form

∂Y

∂s
= 0

∂Y

∂t
= 0

and the solutions of the linear dynamical systems

dx

ds
= Θ1(s, t)x,

dx

dt
= Θ2(s, t)x

under the change of variable y = R(s, t)x are transformed respectively into the
straight lines y(s) = x(0, t) and y(t) = x(s, 0).
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Definition 3.2. Let B a given class of bounded complex functions on R2. A
compatible complex matrix pair (Θ1,Θ2) is called B-reducible if there exists a
n× n smooth non singular complex matrix function R(s, t) with R(0, 0) = I such
that R,R−1 and dR have entries belonging to B and satisfy

(
∂R

∂s
+ RΘ1)R−1 = K1 (3.4)

(
∂R

∂t
+ RΘ2)R−1 = K2. (3.5)

where K1,K2 are constant matrices.The matrix function R(s, t) is called the re-
ducibility matrix function. If R is a real matrix, the pair is called real re-
ducible.

If the pair (Θ1,Θ2) is reducible, then equations (3.4)–(3.5) can be solved for the
matrix function R,

∂R

∂s
= K1R−RΘ1

∂R

∂t
= K2R−RΘ2

obtaining the expressions

R(s, t) = exp(K1s)n1(t)(F 1(s, t))−1

and
R(s, t) = exp(K2t)n2(s)(F 2(s, t))−1

where n1(t) = R(0, t) and n2(s) = R(s, 0). In terms of the common solution (2.6),
we have

R(0, t) = n1(t) = exp(K2t)(F 2(0, t))−1

and R takes the form

R(s, t) = exp(K2t + K1s)G(s, t)−1. (3.6)

Proposition 3.3 (Floquet representation). A compatible pair (Θ1,Θ2) is B -
reducible, if and only if the common matrix solution G(s, t) of (2.1-2.2), has the
form

G(s, t) = R−1(s, t) exp(K1s + K2t) (3.7)

with R,R−1 and dR with coefficients in B and K1,K2 commuting constant matrices.

Now, let us consider the reducibility problem in the class of matrix functions
pairs with periodic entrees in both variables (s, t) as in (2.8). Here, the reducibility
matrix R must satisfy the conditions

R(s + 2π, t) = R(s, t + 2π) = R(s, t).

In this case, any compatible periodic matrix pair can always be reduced to a con-
stant pair system. To show that, take F 1(s, t) and F 2(s, t) as in (2.4) and (2.5)
and define the reducibility matrix function with the expression

R(s, t) = exp(K1s + K2t)G−1(s, t)

with K1 = 1
2π lnF 1(2π, 0), K2 = 1

2π lnF 2(0, 2π).
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If the matrix functions F 1(2π, 0) and F 2(0, 2π) do not possess a real logarithm,
we can take the square (F 1(2π, 0))2 and (F 2(0, 2π))2 and define

K1 =
1
4π

ln(F 1(2π, 0))2,

K2 =
1
4π

ln(F 1(2π, 0))2.

In this case the matrix function R(s, t) = exp(sK1 + tK2)G(s, t)−1 satisfies the
conditions

R(s + 4π, t) = R(s, t + 4π) = R(s, t)

and we have real-reducibility but relative to a bigger class of functions.

Proposition 3.4. Any compatible pair of matrix functions (Θ1,Θ2) satisfying (2.8)
is reducible in the same class.

Remark 3.5. In geometric terms, we can say that for any flat linear connection
on the trivial vector bundle T2 × Rn → T2 with base space the 2-torus T2, its
connection matrix 1-form Ω = −Θ1ds−Θ2dt, can be transformed under a “gauge”
transformation into a global constant matrix 1-form.

3.1. Reducibility of quasiperiodic linear systems. As an application of the
reducibility criterion on the class of periodic matrix pairs, we consider now the
reducibility problem for quasiperiodic linear systems.

We recall that a quasiperiodic linear system is by definition a time dependent
linear system of the form

dx

dt
= V (α1(t), α2(t))x, (3.8)

where V (α1, α2) is a n× n real matrix function satisfying

V (α1 + 2π, α2) = V (α1, α2 + 2π) = V (α1 + 2π, α2 + 2π),

with α(t) = (α1(t), α2(t)) and α1(t) = ω1t+α0
1, α2(t) = ω2t+α0

2 for (α0
1, α

0
2) ∈ R2.

The vector (ω1, ω2) is called the frequency vector.
System (3.8) is called non-resonant if k1ω1 + k2ω2 = 0 with k1, k2 ∈ Z implies

k1 = k2 = 0. On the contrary, the system is called resonant.
For each value of the initial vector (α0

1, α
0
2) the quasiperiodic system (3.8) is a

time dependent linear dynamical system. This system is periodic if and only if the
system is resonant.

Definition 3.6. The quasiperiodic system (3.8) is called reducible if there exists
a non singular complex matrix function R(α1, α2) satisfying

R(α1 + 2π, α2) = R(α1, α2 + 2π) = R(α1, α2) (3.9)

and for all (α0
1, α

0
2), the time dependent change of coordinates

y = R(ω1t + α0
1, ω2t + α0

2)x,

transforms system (3.8) into a system of the form

dy

dt
= By (3.10)

with B a constant matrix.
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According to the previous definition, the reducibility of the quasiperiodic system
implies the simultaneous reducibility of a family of time dependent linear systems
into a single linear system with constant coefficients.

To discuss the reducibility of (3.8), we introduce the autonomous system on
R2 × Rn

dα1

dt
= ω1

dα2

dt
= ω2

dx

dt
= V (α1, α2)x

with associated vector field X on R2 × Rn given by

X = ω1
∂

∂α1
+ ω2

∂

∂α2
+ V (α1, α2)x

∂

∂x
(3.11)

We call the vector field X a quasiperiodic vector field.
If the quasiperiodic system (3.8) is non-resonant we will say that vector field

X is non-resonant. Analogously, if the quasiperiodic system is resonant the corre-
sponding quasiperiodic vector field is called resonant.

The following lemma will be useful in the proof of our main theorem about
reducibility for quasiperiodic linear systems.

Lemma 3.7. Assume that quasiperiodic vector field (3.11) is the sum X = Y + Z
of two commuting resonant quasiperiodic vector fields Y , Z having independent
frequency vectors (µ1, µ2) and (ρ1, ρ2),

Y = ρ1
∂

∂α1
+ ρ2

∂

∂α2
+ A(α1, α2)x

∂

∂x
,

Z = µ1
∂

∂α1
+ µ2

∂

∂α2
+ B(α1, α2)x

∂

∂x
.

Then, there exists two resonant and commuting vector fields X and Y of the form

X = ω1
∂

∂α1
+ W 1(α1, α2)x

∂

∂x
,

Y = ω2
∂

∂α2
+ W 2(α1, α2)x

∂

∂x
,

such that X = X + Y and [X,Y ] = 0.

Proof. Let be ∆ = ρ1µ2 − µ1ρ2. By assumption ∆ 6= 0. Taking ω1 = µ1 + ρ1,
ω2 = µ2 + ρ2 and W 1 = uA + vB and W 2 = qA + rB with u = ω1µ2

∆ , v = −ω1ρ2
∆ ,

q = −ω2µ1
∆ and r = ω2ρ1

∆ , we obtain the expressions of W 1,W 2 with the required
properties. �

Now, suppose the quasiperiodic vector field X can be represented in the form

X = ω1
∂

∂α1
+ ω2

∂

∂α2
+ (W 1(α1, α2) + W 2(α1, α2))x

∂

∂x

where the resonant vector fields

ω1
∂

∂α1
+ W 1(α1, α2)x

∂

∂x
and ω2

∂

∂α2
+ W 2(α1, α2)x

∂

∂x
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commute. From remark 2.4, the pair ( 1
ω1

W 1, 1
ω2

W 2) is compatible and there exists
a smooth matrix function G(α1, α2) such that

∂G

∂α1
(α1, α2) =

1
ω1

W 1(α1, α2)G(α1, α2),

∂G

∂α2
(α1, α2) =

1
ω2

W 2(α1, α2)G(α1, α2)

G(0, 0) = I.

Taking α(t) = (α1(t), α2(t)) and α1(t) = ω1t + α0
1, α2(t) = ω2t + α0

2 for (α0
1, α

0
2) ∈

R2, we note that
G(α(t)) = G(ω1t + α0

1, ω2t + α0
2)

satisfies
d

dt
(G(α(t)) = V (α(t))G(α(t)).

From proposition 3.4, we know that a necessary and sufficient condition for the real
reducibility of the pair ( 1

ω1
W 1, 1

ω2
W 2) is that matrices G(2π, 0) and G(0, 2π) have

a real logarithm. Suppose this is the case and denote by

K1 =
1
2π

lnG(2π, 0),

K2 =
1
2π

lnG(0, 2π).

Then, the non-singular matrix function

R(α1, α2) = exp(α1K1 + α2K2)G(α1, α2)−1

defines for each choice of the initial condition (α0
1, α

0
2), the linear change of coordi-

nates
y = R((α1(t), α2(t))x, (3.12)

which transforms the quasiperiodic system (3.8) into the system with constant
coefficients

dy

dt
= (ω1K1 + ω2K2)y.

Conversely, if the quasiperiodic system (3.8) is reducible to the system dy
dt = By

under the quasiperiodic linear transformation (3.12), then

V = R−1(BR− ω1
∂R

∂α1
− ω2

∂R

∂α1
)

and the vector fields on T2 × Rn given by

Q1 = ω1
∂

∂α1
+

1
2
R−1(BR− 2ω1

∂R

∂α1
)x

∂

∂x
,

Q2 = ω2
∂

∂α2
+

1
2
R−1(BR− 2ω2

∂R

∂α2
)x

∂

∂x
,

satisfy X = Q1 + Q2 with [Q1, Q2] = 0.
From the above considerations, we state the following result.

Theorem 3.8. The quasiperiodic system (3.8) is reducible if and only if the cor-
responding quasiperiodic vector field (3.11) is the sum of two commuting resonant
quasiperiodic vector fields.

This theorem can be rewritten in terms of the zero curvature equation as follows.
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Corollary 3.9. The quasiperiodic system (3.8) is reducible if and only if there
exists a matrix function Ṽ (α1, α2) such that

Ṽ (α1 + 2π, α2) = Ṽ (α1, α2 + 2π) = Ṽ (α1, α2),

ω · ∂Ṽ

∂α
− ω̃ · ∂V

∂α
+ [Ṽ , V ] = 0,

where ω̃ = (ω1,−ω2).

Proof. The necessity follows if we define Ṽ = ω̃ · ( ∂
∂αR−1)R. The sufficiency is

proved expressing the quasiperiodic vector field X as the sum of the commuting
resonant vector fields

Q1 = ω1
∂

∂α1
+

1
2
(V − Ṽ )x

∂

∂x
,

Q2 = ω2
∂

∂α2
+

1
2
(V + Ṽ )x

∂

∂x
.

�

3.2. Reducibility of fiberwise linear systems. On the trivial vector bundle
E = R2×Rn with coordinates ξ = (s, t) ∈ R2 and x = (x1, . . . , xn) ∈ Rn, dynamical
systems of the form

dξ

dτ
= v(ξ), (3.13)

dx

dτ
= V (ξ)x, (3.14)

are called fiberwise linear dynamical systems.
We can associate to system (3.13)–(3.14), any pair (V,W ) of matrix functions

such that W has the form

W = (
∂F

∂t
+ FL(t))F−1, (3.15)

where F is the fundamental matrix for ∂
∂sF = V (s, t)F , and F (0, t) = I for all t.

In such a situation, (V,W ) satisfies the zero curvature equation and there exists a
matrix function G such that

dG = (V ds + Wdt)G,

G(0, 0) = I.

Under the gauge transformation

(s, t, x) → (s, t, G−1(s, t)x) (3.16)

the system (3.13)-(3.14) is transformed into the system

dξ

dτ
= v(ξ),

dy

dτ
= G−1(ivΩ + V )Gy

where Ω = −(V ds + Wdt) and ivΩ denotes the interior product of the 1-form Ω
with the vector field v. Moreover, if

d(G−1(ivΩ + V )G) = 0,
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or equivalently, if

LvΩ + dV + [Ω, V ] = 0,

where Lv denotes the ordinary Lie derivative operator on differential forms , applied
to Ω entry by entry, then the gauge transformation (3.16) transforms the original
system (3.13)–(3.14) into a system of the form

dξ

dτ
= v(ξ), (3.17)

dy

dτ
= Ky, (3.18)

with K = (ivΩ + V )(0, 0).
We summarize the above considerations in the following proposition.

Proposition 3.10. The fiberwise linear system (3.13)-(3.14) is reducible if there
exists a matrix function L(t) such that the matrix 1-form

Ω = −(V ds + (
∂

∂t
F + FL(t))F−1dt),

where F is the fundamental matrix of ∂
∂sF = V F and F (0, t) = I, satisfies the

equation

LvΩ + dV + [Ω, V ] = 0. (3.19)

In this case, the transformation (s, t, x) → (s, t, G−1(s, t)x), where dG = ΩG and
G(0, 0) = I, reduces the system (3.13-3.14) to (3.17-3.18).

In the previous proposition, the choice of the matrix function L(t) allow us to
look for gauge transformations satisfying the conditions imposed by the geometry
of the base or by a given structure on the fibers. Sometimes, obstructions can
appear and the existence of a globally defined reducibility matrix is not possible.
To show such obstructions, we present the following example on a trivial vector
bundle having the cylinder as base space.

On the trivial vector bundle E = (S × R)× R2 with base the cylinder S × R,
take coordinates (θ, s) for S × R, and x = (x1, x2) for R2. Consider the fiberwise
linear system

dθ

dτ
= 1

ds

dτ
= 0 (3.20)

dx

dτ
= V (θ, s)x,

where V (θ + 2π, s) = V (θ, s).
Suppose the existence of a reducibility matrix function R(θ, s) satisfying

R(θ + 2π, s) = R(θ, s)
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and such that the change of coordinates y = R(θ, s)x transforms the system (3.20)
into a system of the form

dθ

dτ
= 1

ds

dτ
= 0

dx

dτ
= K1x.

In this case we have

V = R−1(K1R− ∂

∂θ
R).

Now, take any constant matrix K2 commuting with K1. Then, the matrix function

W = R−1(K2R− ∂

∂θ
R)

should form with V a compatible pair (V,W ) satisfying the condition

W (θ + 2π, s) = W (θ, s).

Moreover, W has the form

W (θ, s) = (
∂F

∂s
(θ, s) + F (θ, s)L(s))(F (θ, s))−1,

where F (θ, s) is the fundamental matrix of the periodic linear system

dx

dθ
= V (θ, s)x (3.21)

and the matrix function L(s) satisfies the expression

dm

ds
= [L(s),m] (3.22)

for the monodromy matrix function

m(s) = F (2π, s).

Now, suppose that V is the matrix function

V (θ, s) =
(

s 0
s cos θ s

)
.

For that choice of V , the fundamental solution of (3.21) is

F = exp(θs)
(

1 0
s sin θ 1

)
and the monodromy matrix m = F (2π, s) takes the form

m(s) = exp(2πs)
(

1 0
0 1

)
.

The spectrum of m(s) is not constant and therefore it cannot be a solution of any
equation of Lax type of the form (3.22). Consequently, the system is not reducible.
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