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CONVERGENCE RESULTS FOR A CLASS OF ABSTRACT
CONTINUOUS DESCENT METHODS

SERGIU AIZICOVICI, SIMEON REICH, & ALEXANDER J. ZASLAVSKI

Abstract. We study continuous descent methods for the minimization of
Lipschitzian functions defined on a general Banach space. We establish con-

vergence theorems for those methods which are generated by approximate

solutions to evolution equations governed by regular vector fields. Since the
complement of the set of regular vector fields is σ-porous, we conclude that

our results apply to most vector fields in the sense of Baire’s categories.

1. Introduction

Let (X, ‖ · ‖) be a Banach space, (X∗, ‖ · ‖∗) its dual space, and let f : X → R1

be a function which is bounded from below and Lipschitzian on bounded subsets
of X. Recall that for each pair of sets A,B ⊂ X∗,

H(A,B) = max{sup
x∈A

inf
y∈B

‖x− y‖∗, sup
y∈B

inf
x∈A

‖x− y‖∗}

is the Hausdorff distance between A and B. For each x ∈ X, let

f0(x, h) = lim sup
t→0+, y→x

[f(y + th)− f(y)]/t, h ∈ X, (1.1)

be the Clarke generalized directional derivative of f at the point x, let

∂f(x) = {l ∈ X∗ : f0(x, h) ≥ l(h) for all h ∈ X} (1.2)

be Clarke’s generalized gradient of f at x, and set

Ξ(x) = inf{f0(x, h) : h ∈ X and ‖h‖ = 1}. (1.3)

It is well known that ∂f(x) is nonempty and bounded. Set

inf(f) = inf{f(x) : x ∈ X}.
Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X, and for each x ∈ X, f0(x, V x) ≤ 0. We denote by Ac the set
of all continuous V ∈ A and by Ab the set of all V ∈ A which are bounded on X.
Finally, let Abc = Ab ∩Ac. Next we endow the set A with two metrics, ρs and ρw.
To define ρs, we first set, for each V1, V2 ∈ A,

ρ̃s(V1, V2) = sup{‖V1x− V2x‖ : x ∈ X}
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and then let
ρs(V1, V2) = ρ̃s(V1, V2)(1 + ρ̃s(V1, V2))−1. (1.4)

(Here we use the convention that ∞/∞ = 1.) Clearly, (A, ρs) is a complete metric
space. To define ρw, we first set, for each V1, V2 ∈ A and each integer i ≥ 1,

ρi(V1, V2) = sup{‖V1x− V2x‖ : x ∈ X and ‖x‖ ≤ i} (1.5)

and then let

ρw(V1, V2) =
∞∑

i=1

2−i[ρi(V1, V2)(1 + ρi(V1, V2))−1]. (1.6)

Clearly, (A, ρw) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N, ε) = {(V1, V2) ∈ A×A : ‖V1x− V2x‖ ≤ ε, x ∈ X, ‖x‖ ≤ N},
where N, ε > 0, is a base for the uniformity generated by the metric ρw. It is easy
to see that

ρw(V1, V2) ≤ ρs(V1, V2) for all V1, V2 ∈ A.

The metric ρw induces on A a topology which is called the weak topology and
ρs induces a topology which is called the strong topology. Clearly, Ac is a closed
subset of A with the weak topology while Ab and Abc are closed subsets of A with
the strong topology. We consider the subspaces Ac, Ab and Abc with the metrics
ρs and ρw which induce the strong and the weak topologies, respectively.

The study of steepest descent and other minimization methods is a central topic
in optimization theory. See, for example, [4, 9, 11, 12, 13, 14, 15]. When the
function f is convex, one usually looks for a sequence {xi}∞i=1 which either tends to
a minimum point of f (if such a point exists) or at least such that limi→∞ f(xi) =
inf(f). If f is not necessarily convex, but X is finite-dimensional, then we expect
to construct a sequence which tends to a critical point z of f , namely a point z for
which 0 ∈ ∂f(z). If f is not necessarily convex and X is infinite-dimensional, then
the problem is more difficult and less understood because we cannot guarantee, in
general, the existence of a critical point and a convergent subsequence. To partially
overcome this difficulty, we have introduced the function Ξ : X → R1. Evidently,
a point z is a critical point of f if and only if Ξ(z) ≥ 0. Therefore we say that z
is ε-critical for a given ε > 0 if Ξ(z) ≥ −ε. In [14] we looked for sequences {xi}∞i=1

such that either lim infi→∞ Ξ(xi) ≥ 0 or at least lim supi→∞ Ξ(xi) ≥ 0. In the first
case, given ε > 0, all the points xi, except possibly a finite number of them, are
ε-critical, while in the second case this holds for a subsequence of {xi}∞i=1.

In [14] we show, under certain assumptions on f , that for most (in the sense of
Baire’s categories) vector fields W ∈ A, certain discrete iterative processes yield
sequences with the desirable properties. Moreover, we show that the complement
of the set of “good” vector fields is not only of the first category, but also σ-porous.
Analogous results for convex functions f were obtained in [12, 13]. This approach,
when a certain property is investigated not for a single point of a complete metric
space, but for the whole space, has also been successfully applied in the theory
of dynamical systems [5, 6], optimization [10], and optimal control [18], as well as
in approximation theory [7]. Before we continue, we briefly recall the concept of
porosity [2, 16, 17]. As a matter of fact, several different notions of porosity have
been used in the literature. In the present paper we will use porosity with respect
to a pair of metrics, a concept which was introduced in [18].
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When (Y, d) is a metric space we denote by Bd(y, r) the closed ball of center y ∈ Y
and radius r > 0. Assume that Y is a nonempty set and d1, d2 : Y × Y → [0,∞)
are two metrics which satisfy d1(x, y) ≤ d2(x, y) for all x, y ∈ Y .

A subset E ⊂ Y is called porous with respect to the pair (d1, d2) (or just porous
if the pair of metrics is fixed) if there exist α ∈ (0, 1) and r0 > 0 such that for each
r ∈ (0, r0] and each y ∈ Y , there exists z ∈ Y for which d2(z, y) ≤ r and

Bd1(z, αr) ∩ E = ∅.

A subset of the space Y is called σ-porous with respect to (d1, d2) (or just σ-
porous if the pair of metrics is understood) if it is a countable union of porous (with
respect to (d1, d2)) subsets of Y .

Note that if d1 = d2, then by Proposition 1.1 of [18] our definitions reduce to
those in [6, 7, 13]. We use porosity with respect to a pair of metrics because in
applications a space is usually endowed with a pair of metrics and one of them is
weaker than the other. Note that the porosity of a set with respect to one of these
two metrics does not imply its porosity with respect to the other metric. However,
it is shown in [18, Proposition 1.2] that if a subset E ⊂ Y is porous with respect to
(d1, d2), then E is porous with respect to any metric which is weaker than d2 and
stronger than d1. For each set E ⊂ X, we denote by cl(E) the closure of E in the
norm topology. The results of [14] were established in any Banach space and for
those functions which satisfy the following two assumptions.

A(i) For each ε > 0, there exists δ ∈ (0, ε) such that

cl({x ∈ X : Ξ(x) < −ε}) ⊂ {x ∈ X : Ξ(x) < −δ};

A(ii) for each r > 0, the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.
We will say that a mapping V ∈ A is regular if for any natural number n, there

exists a positive number δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and
Ξ(x) < −1/n, we have f0(x, V x) ≤ −δ(n).

This concept of regularity is a non-convex analog of the regular vector fields
introduced in [14]. We denote by F the set of all regular vector fields V ∈ A.

The following result was established in [14].

Theorem 1.1. Assume that both A(i) and A(ii) hold. Then A \ F (respectively,
Ac \ F , Ab \ F and Abc \ F) is a σ-porous subset of the space A (respectively, Ac,
Ab and Abc) with respect to the pair (ρw, ρs).

In [14] two of the authors studied the convergence of discrete descent methods
generated by regular vector fields. In [1] we obtained analogs of the main results
of [14] for continuous descent methods generated by regular vector fields. Our pur-
pose in the present paper is to study some continuous descent methods for the
minimization of Lipschitzian functions which are generated by approximate solu-
tions to evolution equations governed by regular vector fields. Such methods would
be quite useful in practice. Section 2 contains an auxiliary result. In Section 3 we
state and prove three convergence theorems. An extension of our convergence the-
ory to Lipschitzian functions satisfying a Palais-Smale type condition is presented
in Section 4. In view of Theorem 1.1, our results apply to most vector fields in the
sense of Baire’s categories.
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2. An auxiliary result

Throughout this paper we let x ∈ W 1,1(0, T ;X), i.e. (see, e.g., [3]),

x(t) = x0 +
∫ t

0

u(s)ds, t ∈ [0, T ],

where T > 0, x0 ∈ X and u ∈ L1(0, T ;X). Then x : [0, T ] → X is absolutely
continuous and x′(t) = u(t) for a.e. t ∈ [0, T ]. Recall that the function f : X → R1

is Lipschitzian on bounded subsets of X. Thus the restriction of f to the set
{x(t) : t ∈ [0, T ]} is Lipschitzian. Hence the function (f ·x)(t) := f(x(t)), t ∈ [0, T ],
is absolutely continuous. It follows that for almost every t ∈ [0, T ], both the
derivatives x′(t) and (f · x)′(t) exist:

x′(t) = lim
h→0

h−1[x(t + h)− x(t)],

(f · x)′(t) = lim
h→∞

h−1[f(x(t + h))− f(x(t))].

We need the following result proved in [1, Proposition 2.1].

Proposition 2.1. Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f · x)′(t) exist. Then

(f · x)′(t) = lim
h→0

h−1[f(x(t) + hx′(t))− f(x(t))]. (2.1)

In the sequel we denote by µ(E) the Lebesgue measure of a Lebesgue measurable
set E ⊂ R1.

Assume that V ∈ A and that x ∈ W 1,1(0, T ;X) satisfies

x′(t) = V (x(t)) a.e. t ∈ [0, T ].

Then by Proposition 2.1, (f · x)′(t) ≤ 0 for a.e. t ∈ [0, T ] and f(x(·)) is decreasing.

3. Three convergence theorems

Theorem 3.1. Let A(ii) hold, let V ∈ A be regular, and assume that

lim
‖x‖→∞

f(x) = ∞.

Let K0 and ε be positive numbers. Then there exist N0 > 0 and K̃ > 0 such that
the following property holds:

For each T ≥ N0, there is γ > 0 such that if x ∈ W 1,1(0, T ;X) satisfies

‖x(0)‖ ≤ K0 (3.1)

and
‖x′(t)− V (x(t))‖ ≤ γ for a.e. t ∈ [0, T ], (3.2)

then
‖x(t)‖ ≤ K̃, t ∈ [0, T ] (3.3)

and
µ{t ∈ [0, T ] : Ξ(x(t)) < −ε} ≤ N0. (3.4)
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Proof. We may assume that ε < 1/4. Choose

K1 > sup{|f(x)| : x ∈ X, ‖x‖ ≤ K0 + 1}. (3.5)

Then the set
{x ∈ X : f(x) ≤ K1 + | inf(f)|+ 4} (3.6)

is bounded. Consequently, there exists a constant K̃ > K0 + K1 + 2 such that

if x ∈ X and f(x) ≤ K1 + | inf(f)|+ 4, then ‖x‖ ≤ K̃. (3.7)

There also exists a constant L > 1 such that

|f(y1)− f(y2)| ≤ L‖y1 − y2‖ (3.8)

for all y1, y2 ∈ X such that

‖y1‖, ‖y2‖ ≤ K̃ + 1. (3.9)

Since V is regular, there is δ0 ∈ (0, 1) such that for each x ∈ X satisfying

‖x‖ ≤ K̃ + 1 and Ξ(x) < −ε, (3.10)

we have
f0(x, V x) ≤ −δ0. (3.11)

Choose
N0 > 2δ−1

0 [2 + K1 + | inf(f)|] + 1 (3.12)
and let T ≥ N0. Choose a positive number

γ < (4LT )−1. (3.13)

Assume that x ∈ W 1,1(0, T ;X) satisfies (3.1) and (3.2). We will show that for
each t ∈ [0, T ],

f(x(t)) ≤ f(x(0)) + tLγ. (3.14)
There is ∆ ∈ (0, 1) such that

‖x(t)− x(0)‖ ≤ 1/4, t ∈ [0,∆]. (3.15)

Clearly,
‖x(t)‖ ≤ ‖x(0)‖+ 1/4 ≤ K0 + 1/4 < K̃, t ∈ [0,∆]. (3.16)

Let s ∈ (0,∆]. It follows from Proposition 2.1, the relation V ∈ A, and the
subadditivity of Clarke’s generalized directional derivative that

f(x(s))− f(x(0)) =
∫ s

0

(f · x)′(t)dt ≤
∫ s

0

f0(x(t), x′(t))dt (3.17)

≤
∫ s

0

f0(x(t), V (x(t)))dt +
∫ s

0

f0(x(t), x′(t)− V (x(t)))dt

≤
∫ s

0

f0(x(t), x′(t)− V (x(t)))dt.

By (3.16), (3.2), (1.1), and the definition of L (see (3.8) and (3.9)), we have for
a.e. t ∈ [0, s],

f0(x(t), x′(t)− V (x(t))) ≤ L‖x′(t)− V (x(t))‖ ≤ Lγ.

When combined with (3.17), this inequality implies that

f(x(s))− f(x(0)) ≤ Lγs.

Thus (3.14) holds for any t ∈ [0,∆]. Set

Ω = {h ∈ (0, T ] : inequality (3.14) holds for all t ∈ [0, h]}. (3.18)



6 S. AIZICOVICI, S. REICH, & A. J. ZASLAVSKI EJDE-2004/45

Clearly, ∆ ∈ Ω. Set h0 = sup Ω. It is not difficult to see that

f(x(t)) ≤ f(x(0)) + tLγ for all t ∈ [0, h0]. (3.19)

We now show that h0 = T . Let us assume the converse. Then h0 < T .
By (3.19) and (3.13),

f(x(h0)) ≤ f(x(0)) + h0Lγ < f(x(0)) + TLγ < f(x(0)) + 4−1.

There is h1 ∈ (h0, T ) such that for each t ∈ [h0, h1],

f(x(t)) < f(x(0)) + 1/4. (3.20)

Relations (3.20), (3.1), (3.5) and (3.7) imply that for all t ∈ [h0, h1],

f(x(t)) < K1 + 1/4 and ‖x(t)‖ ≤ K̃. (3.21)

Let s ∈ (h0, h1]. It follows from Proposition 2.1, the subadditivity of Clarke’s
directional derivative, and the relation V ∈ A that

f(x(s))− f(x(h0)) =
∫ s

h0

(f · x)′(t)dt ≤
∫ s

h0

f0(x(t), x′(t))dt

≤
∫ s

h0

f0(x(t), V (x(t)))dt +
∫ s

h0

f0(x(t), x′(t)− V (x(t)))dt

≤
∫ s

h0

f0(x(t), x′(t)− V (x(t)))dt.

(3.22)
By (3.21), (3.2), and the definition of L (see (3.8) and (3.9)), we have for a.e.
t ∈ [h0, s],

f0(x(t), x′(t)− V (x(t))) ≤ L‖x′(t)− V (x(t))‖ ≤ Lγ.

When combined with (3.22), this inequality implies that

f(x(s))− f(x(h0)) ≤ (s− h0)Lγ.

This latter inequality and (3.19) lead to

f(x(s)) ≤ (s− h0)Lγ + f(x(h0)) ≤ (s− h0)Lγ + f(x(0)) + h0Lγ = f(x(0)) + sLγ.

Thus f(x(s)) ≤ f(x(0)) + sLγ for each s ∈ (h0, h1]. This means that h1 ∈ Ω, a
contradiction. The contradiction we have reached proves that h0 = T and that
(3.14) is indeed true for all t ∈ [0, T ].

From (3.14), (3.13), (3.1) and (3.5) it follows that for all t ∈ [0, T ],

f(x(t)) ≤ f(x(0)) + tLγ ≤ f(x(0)) + TLγ < f(x(0)) + 1/4 < K1 + 1/4.

When combined with (3.7), this inequality implies that ‖x(t)‖ ≤ K̃, t ∈ [0, T ].
Thus (3.3) holds. Set

Ω0 = {t ∈ [0, T ] : Ξ(x(t)) < −ε}. (3.23)
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By Proposition 2.1 and the subadditivity of Clarke’s directional derivative,
f(x(T ))− f(x(0))

=
∫ T

0

(f · x)′(t)dt

≤
∫ T

0

f0(x(t), x′(t))dt

≤
∫ T

0

f0(x(t), V (x(t)))dt +
∫ T

0

f0(x(t), x′(t)− V (x(t)))dt.

(3.24)

By the relation V ∈ A, (3.23), (3.3), and the definition of δ0 (see (3.10) and (3.11)),∫ T

0

f0(x(t), V (x(t)))dt ≤
∫

Ω0

f0(x(t), V (x(t)))dt ≤ −δ0µ(Ω0). (3.25)

By (3.3), the definition of L (see (3.8) and (3.9)), (3.2) and (3.13), we have∫ T

0

f0(x(t), x′(t)− V (x(t)))dt ≤
∫ T

0

L‖x′(t)− V (x(t))‖dt

≤
∫ L

0

Lγdt = TLγ < 1/4.

When combined with (3.24), (3.25), (3.1) and (3.5), this inequality implies that

inf(f)−K1 ≤ f(x(T ))− f(x(0)) ≤ −δ0µ(Ω0) + 1,

which yields, together with (3.12),

µ(Ω0) ≤ δ−1
0 (1 + K1 − inf(f)) < N0.

Theorem 3.1 is proved. �

Theorem 3.2. Let A(ii) hold, let V ∈ A be regular, and assume that

lim
‖x‖→∞

f(x) = ∞.

Let γ : [0,∞) → [0, 1] be such that limt→∞ γ(t) = 0. If x ∈ W 1,1
loc ([0,∞);X) is

bounded and satisfies

‖x′(t)− V (x(t))‖ ≤ γ(t) a.e. t ∈ [0,∞), (3.26)

then for each ε > 0, there exists Nε > 0 such that the following property holds:
For each ∆ ≥ Nε, there is t∆ > 0 such that if s ≥ t∆, then

µ{t ∈ [s, s + ∆] : Ξ(x(t)) < −ε} ≤ Nε.

Proof. Let ε > 0. There is K0 > 0 such that

‖x(t)‖ ≤ K0, t ∈ [0,∞). (3.27)

By Theorem 3.1, there is Nε > 0 such that the following property holds:
(P1) For each ∆ ≥ Nε, there is γ∆ > 0 such that if y ∈ W 1,1(0,∆; X) satisfies

‖y(0)‖ ≤ K0 (3.28)

and
‖y′(t)− V (y(t))‖ ≤ γ∆ for a.e. t ∈ [0,∆], (3.29)

then
µ{t ∈ [0,∆] : Ξ(x(t)) < −ε} ≤ Nε. (3.30)
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Let ∆ ≥ Nε and let γ∆ be as guaranteed by (P1). There exists t∆ > 0 such that

γ(t) ≤ γ∆ for all t ≥ t∆. (3.31)

Assume that s ≥ t∆ and set

y(t) = x(t + s), t ∈ [0,∆]. (3.32)

Clearly, by (3.27),

‖y(0)‖ = ‖x(s)‖ ≤ K0

so that (3.28) holds. It follows from (3.32), the relation s ≥ t∆, (3.26) and (3.31)
that for a.e. t ∈ [0,∆],

‖y′(t)− V (y(t))‖ = ‖x′(t + s)− V (x(t + s))‖ ≤ γ(t + s) ≤ γ∆.

Thus (3.29) holds too. By property (P1),

Nε ≥ µ{t ∈ [0,∆] : Ξ(y(t)) < −ε} = µ{t ∈ [s, s + ∆] : Ξ(x(t)) < −ε}.

Theorem 3.2 is proved.
�

Theorem 3.3. Let A(ii) hold, let V ∈ A be regular, and assume that

lim
‖x‖→∞

f(x) = ∞.

Let a function γ : [0,∞) → [0, 1] satisfy limt→∞ γ(t) = 0. If x ∈ W 1,1
loc ([0,∞);X)

is bounded and satisfies (3.26), then for each ε > 0,

lim
T→∞

µ{t ∈ [0, T ] : Ξ(x(t)) < −ε}/T = 0.

Proof. Let ε > 0 and δ ∈ (0, 1). Let Nε > 0 be as guaranteed by Theorem 3.2 and
choose a number ∆ such that

∆ > 4(Nε + 1)/δ. (3.33)

By Theorem 3.2, there is t∆ > 0 such that for each s ≥ t∆,

µ{t ∈ [s, s + ∆] : Ξ(x(t)) < −ε} ≤ Nε. (3.34)

Choose

T0 > (t∆ + 2∆)(4/δ). (3.35)

Let T ≥ T0. There is a natural number n such that

T − n∆ ≥ t∆ > T − (n + 1)∆. (3.36)

This implies that

n ≤ (T − t∆)/∆ < n + 1 ≤ 2n. (3.37)

It follows from (3.34) that for each integer i = 0, 1, . . . , n− 1,

µ
{
t ∈ [t∆ + i∆, t∆ + (i + 1)∆] : Ξ(x(t)) < −ε

}
≤ Nε. (3.38)
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Then by (3.36), (3.37) and (3.38),

µ
{
t ∈ [0, T ] : Ξ(x(t)) < −ε

}
= µ

{
t ∈ [0, t∆] : Ξ(x(t)) < −ε

}
+ µ

{
t ∈ [t∆, t∆ + n∆] : Ξ(x(t)) < −ε

}
+ µ

{
t ∈ [t∆ + n∆, T ] : Ξ(x(t)) < −ε

}
≤ t∆ + µ

{
t ∈ [t∆, t∆ + n∆] : Ξ(x(t)) < −ε

}
+ ∆

≤ t∆ + ∆ +
n−1∑
i=0

µ
{
t ∈ [t∆ + i∆, t∆ + (i + 1)∆] : Ξ(x(t)) < −ε

}
≤ t∆ + ∆ + nNε.

By this inequality, (3.35), (3.37) and (3.33),

µ
{
t ∈ [0, T ] : Ξ(x(t)) < −ε

}
/T ≤ [t∆ + ∆ + nNε]/T

≤ (t∆ + ∆)/T0 + (nNε)/T < δ/4 + (nNε)/T

≤ δ/4 + (T/∆)Nε/T

≤ δ/4 + Nε/∆ < δ/4 + δ/4 < δ .

Thus
µ{t ∈ [0, T ] : Ξ(x(t)) < −ε}/T < δ

for all T ≥ T0. This concludes the proof of Theorem 3.3. �

4. Lipschitzian functions satisfying the Palais-Smale condition

We start this section by recalling several results which were established in our
previous paper [1].

Proposition 4.1 ([1]). For each ε > 0, there exists xε ∈ X such that

f(xε) ≤ inf(f) + ε and Ξ(xε) ≥ −ε.

This proposition follows from Ekeland’s variational principle [8].
We say that the function f satisfies the Palais-Smale (P-S) condition if each

sequence {xn}∞n=1 ⊂ X for which

sup{|f(xn)| : n = 1, 2, . . . } < ∞

and lim supn→∞ Ξ(xn) ≥ 0, has a norm convergent subsequence.
Denote

Cr(f) = {x ∈ X : Ξ(x) ≥ 0}.

Proposition 4.2 ([1]). If {xn}∞n=1 ⊂ X, limn→∞ xn = x, and lim infn→∞ Ξ(xn) ≥
0, then Ξ(x) ≥ 0.

Propositions 4.1 and 4.2 imply the next three propositions which can also be
found in [1].

Proposition 4.3 ([1]). If f satisfies the (P-S) condition, then Cr(f) 6= ∅.

Proposition 4.4 ([1]). If the function f satisfies the (P-S) condition, then for each
r > 0, the set

{x ∈ X : ‖x‖ ≤ r} ∩ Cr(f)
is compact in the norm topology.
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For each x ∈ X and A ⊂ X set

d(x, A) = inf{‖x− y‖ : y ∈ A}.

Proposition 4.5 ([1]). Let r, ε > 0, and let f satisfy the (P-S) condition. Then
there is δ > 0 such that if x ∈ X satisfies ‖x‖ ≤ r and Ξ(x) ≥ −δ, then
d(x,Cr(f)) ≤ ε.

We are now ready to present and prove our three convergence results regarding
functions satisfying the Palais-Smale condition.

Theorem 4.6. Let A(ii) hold, and let V ∈ A be regular. Assume that

lim
‖x‖→∞

f(x) = ∞,

and that f satisfies the (P-S) condition. Let K0 and ε be positive numbers. Then
there exist N∗, K̃ > 0 such that the following property holds:

for each T ≥ N∗, there is γ > 0 such that if x ∈ W 1,1(0, T ;X) satisfies

‖x(0)‖ ≤ K0 (4.1)

and
‖x′(t)− V (x(t))‖ ≤ γ for a.e. t ∈ [0, T ], (4.2)

then
‖x(t)‖ ≤ K̃, t ∈ [0, T ], (4.3)

and
µ{t ∈ [0, T ] : d(x(t),Cr(f)) > ε} ≤ N∗. (4.4)

Proof. By Theorem 3.1 (with ε = 1/2), there are N0, K̃ > 0 such that the following
property holds:

(P2) For each T ≥ N0, there is γ > 0 such that if x ∈ W 1,1(0, T ;X) satisfies
(4.1) and (4.2), then (4.3) holds.

By Proposition 4.5, there is δ > 0 such that

if z ∈ X, ‖z‖ ≤ K̃ and Ξ(z) ≥ −δ, then d(z,Cr(f)) ≤ ε. (4.5)

By Theorem 3.1 (with ε = δ), there exists N1 > 0 such that:
(P3) For each T ≥ N1, there is γ > 0 such that if x ∈ W 1,1(0, T ;X) satisfies

(4.1) and (4.2), then

µ({t ∈ [0, T ] : Ξ(x(t)) < −δ} ≤ N1. (4.6)

Set
N∗ = N0 + N1. (4.7)

Let T ≥ N∗. By virtue of (P2), there is γ1 > 0 such that the following property
holds:

(P4) If x ∈ W 1,1(0, T ;X) satisfies (4.1) and

‖x′(t)− V (x(t))‖ ≤ γ1 for a.e. t ∈ [0, T ], (4.8)

then (4.3) is true.
Also, by (P3) there exists γ2 > 0 such that the following property holds:
(P5) If x ∈ W 1,1(0, T ;X) satisfies (4.1) and

‖x′(t)− V (x(t))‖ ≤ γ2 for a.e. t ∈ [0, T ], (4.9)

then (4.6) holds.
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Set
γ = min{γ0, γ1}. (4.10)

Assume that x ∈ W 1,1(0, T ;X) satisfies (4.1) and (4.2). Then by property (P4),
(4.1), (4.2), and (4.10), inequality (4.3) holds as well. By property (P5), (4.1),
(4.2), and (4.10), inequality (4.6) holds. Let

t ∈ [0, T ] and d(x(t),Cr(f)) > ε.

Then by (4.3) and (4.5), Ξ(x(t)) < −δ, so that

{t ∈ [0, T ] : d(x(t),Cr(f)) > ε} ⊂ {t ∈ [0, T ] : Ξ(x(t)) < −δ},

while by (4.6) and (4.7),

µ{t ∈ [0, T ] : d(x(t),Cr(f)) > ε} ≤ µ{t ∈ [0, T ] : Ξ(x(t)) < −δ} ≤ N1 ≤ N∗.

The proof of Theorem 4.6 is complete. �

Theorem 4.7. Let A(ii) hold, let V ∈ A be regular. Assume that f satisfies the
(P-S) condition and that

lim
‖x‖→∞

f(x) = ∞.

Let γ : [0,∞) → [0,∞) be such that limt→∞ γ(t) = 0. If x ∈ W 1,1
loc ([0,∞);X) is

bounded and satisfies

‖x′(t)− V (x(t))‖ ≤ γ(t) for a.e. t ∈ [0,∞),

then for each δ > 0, there exists N0 > 0 such that the following property holds:
For each ∆ ≥ N0, there is t∆ > 0 such that if s ≥ t∆, then

µ{t ∈ [s. s + ∆] : d(x(t),Cr(f)) > δ} ≤ N0.

Proof. Let δ > 0. Since x is assumed to be bounded, there is a constant

K0 > sup{‖x(t)‖ : t ∈ [0,∞)}. (4.11)

By Proposition 4.5, there exists ε > 0 such that

if z ∈ X, ‖z‖ ≤ K0, and Ξ(z) ≥ −ε, then d(x, Cr(f)) ≤ δ. (4.12)

Let Nε > 0 be as guaranteed by Theorem 3.2. Put N0 = Nε and let ∆ ≥ Nε. By
the choice of Nε and Theorem 3.2, the following property holds:

(P6) There is t∆ > 0 such that for each s ≥ t∆,

µ{t ∈ [s, s + ∆] : Ξ(x(t)) < −ε} ≤ Nε. (4.13)

Assume that s ≥ t∆. By (4.11) and (4.12),

if t ∈ [s, s + ∆] and d(x(t),Cr(f)) > δ, then Ξ(x(t)) < −ε,

and

{t ∈ [s, s + ∆] : d(x(t),Cr(f)) > δ} ⊂ {t ∈ [s, s + ∆] : Ξ(x(t)) < −ε}.

When combined with (4.13), this inclusion implies that

µ{t ∈ [s, s + ∆] : d(x(t),Cr(f)) > δ} ≤ Nε = N0,

as claimed. Theorem 4.7 is proved. �
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Theorem 4.8. Let A(ii) hold, let V ∈ A be regular, and assume that

lim
‖x‖→∞

f(x) = ∞.

Let γ : [0,∞) → [0, 1] be such that limt→∞ γ(t) = 0. If x ∈ W 1,1
loc ([0,∞);X) is

bounded and satisfies

‖x′(t)− V (x(t))‖ ≤ γ(t) for a.e. t ∈ [0,∞),

then for each δ > 0,

lim
T→∞

µ{t ∈ [0, T ] : d(x(t),Cr(f)) > δ}/T = 0.

Proof. Since x is assumed to be bounded, there is a constant K0 such that

K0 > sup{‖x(t)‖ : t ∈ [0,∞)}. (4.14)

Let δ > 0. By Proposition 4.5, there exists ε > 0 such that

if x ∈ X, ‖z‖ ≤ K0, and Ξ(z) ≥ −ε, then d(x,Cr(f)) ≤ δ. (4.15)

By Theorem 3.3,

lim
T→∞

µ{t ∈ [0, T ] : Ξ(x(t)) < −ε}/T = 0. (4.16)

By (4.14) and (4.15), for each T > 0,

{t ∈ [0, T ] : d(x(t),Cr(f)) > δ} ⊂ {t ∈ [0, T ] : Ξ(x(t)) < −ε}.
When combined with (4.16), this inclusion implies that

lim
T→∞

µ{t ∈ [0, T ] : d(x(t),Cr(f)) > δ}/T = 0.

Theorem 4.8 is proved. �
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