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NONLINEAR TRIPLE-POINT PROBLEMS ON TIME SCALES

DOUGLAS R. ANDERSON

Abstract. We establish the existence of multiple positive solutions to the
nonlinear second-order triple-point boundary-value problem on time scales,

u∆∇(t) + h(t)f(t, u(t)) = 0,

u(a) = αu(b) + δu∆(a), βu(c) + γu∆(c) = 0

for t ∈ [a, c] ⊂ T, where T is a time scale, β, γ, δ ≥ 0 with β + γ > 0,

0 < α < c−a
c−b

and b ∈ (a, c) ⊂ T.

1. Introduction to the boundary-value problem

We are concerned with proving the existence of multiple positive solutions to
the second-order triple-point nonlinear boundary-value problem on a time scale T
given by the time-scale dynamic equation

u∆∇(t) + h(t)f(t, u(t)) = 0, t ∈ (a, c) ⊂ T (1.1)

with boundary conditions

u(a) = αu(b) + δu∆(a), βu(c) + γu∆(c) = 0, (1.2)

where β, γ, δ ≥ 0 with β+γ > 0, 0 < α < c−a
c−b and b ∈ (a, c) ⊂ T for a ∈ Tκ, c ∈ Tκ.

The function h ∈ Cld[a, c] is nonnegative with h(t0) > 0 for at least one t0 ∈ (a, b],
and the nonlinearity f : [a, c]× [0,∞) → [0,∞) is continuous such that f(t, ·) > 0
on any subset of T containing t0. This problem is related to that first studied in
the case T = R on the unit interval by He and Ge [14] and Ma [19, 20, 21],

u′′ + f(t, u) = 0, t ∈ (0, 1) u(0) = 0, αu(η) = u(1) (1.3)

where 0 < η < 1 and 0 < α < 1/η. The boundary-value problem (1.3) has since
been extended to general time scales in Anderson [2] and Kaufmann [17] as

u∆∇(t) + f(t, u(t)) = 0, u(0) = 0, αu(η) = u(T ),

and in a slightly different way by Sun and Li [22]

u∆∇(t) + a(t)f(t, u(t)) = 0, u∆(0) = 0, αu(η) = u(T ).

In this paper there is a nexus between the boundary conditions at a and b instead of
at b = η and c = T , and we add the δ ≥ 0 term as well. Consequently these results
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are new for differential and difference equations as well as for dynamic equations
on general time scales.

For more on time scales and positive solutions, see the books by Bohner and
Peterson [8, 9] and the following articles: [1, 3, 4, 5, 6, 10, 11, 12, 15, 16].

2. preliminary results

To prove the main existence results we will employ several straightforward lem-
mas. These lemmas are based on the linear boundary-value problem

u∆∇(t) + y(t) = 0 t ∈ (a, c) ⊂ T (2.1)

u(a) = αu(b) + δu∆(a), βu(c) + γu∆(c) = 0. (2.2)

Lemma 2.1. Let

d := γ(1− α) + β [(c− a)− α(c− b) + δ] . (2.3)

If d 6= 0, then for y ∈ Cld[a, c] the boundary-value problem (2.1), (2.2) has the
unique solution

u(t) =
1
d

(γ + β(c− t))
[ ∫ c

a

(s− a + δ)y(s)∇s

− α

∫ c

b

(s− b)y(s)∇s
]
−

∫ c

t

(s− t)y(s)∇s.

(2.4)

Proof. Let u be as in (2.4). Then the delta derivative of u is given by

u∆(t) = −β

d

[∫ c

a

(s− a + δ)y(s)∇s− α

∫ c

b

(s− b)y(s)∇s

]
+

∫ c

t

y(s)∇s

and

u∆∇(t) = −y(t),

so that u given in (2.4) is a solution of (2.1). It is routine to check that the boundary
conditions (2.2) are met by u in (2.4) as well. �

Lemma 2.2. If d > 0 and y ∈ Cld[a, c] with y ≥ 0, the unique solution u of (2.1),
(2.2) given in (2.4) satisfies

u(t) ≥ 0, t ∈ [a, c] ⊂ T.

Proof. From the fact that u∆∇(t) = −y(t) ≤ 0, we know that if u(a) ≥ 0 and
u(c) ≥ 0, then u(t) ≥ 0 for t ∈ [a, c]. For 0 < α ≤ 1,

u(c) =
γ

d

[∫ c

a

(s− a + δ)y(s)∇s− α

∫ c

b

(s− b)y(s)∇s

]
≥ γ

d

[
(1− α)

∫ c

b

(s− b)y(s)∇s + δ

∫ c

a

y(s)∇s

]
≥ 0.
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For 1 < α < c−a
c−b ,

u(c) =
γ

d

[∫ b

a

(s− a + δ)y(s)∇s +
∫ c

b

(s− a− α(s− b) + δ)y(s)∇s

]

≥ γ

d

[∫ b

a

(s− a + δ)y(s)∇s +
∫ c

b

(c− a− α(c− b) + δ)y(s)∇s

]
≥ 0

since α < (c− a)/(c− b). Finally,

u(a) =
1
d

(γ + β(c− a))
[ ∫ c

a

(s− a + δ)y(s)∇s− α

∫ c

b

(s− b)y(s)∇s
]
− d

d

∫ c

a

(s− a)y(s)∇s

=
α

d
(γ + β(c− b))

∫ b

a

(s− a)y(s)∇s +
α

d
(b− a)

∫ c

b

(γ + β(c− s))y(s)∇s

+
δ

d

∫ c

a

(γ + β(c− s))y(s)∇s

≥ 0.

�

Lemma 2.3. Let d > 0. If y ∈ Cld[a, c] with y nonnegative but nontrivial, then the
unique solution u as in (2.4) of (2.1), (2.2) satisfies

inf
t∈[a,b]

u(t) ≥ k‖u‖, ‖u‖ := sup
t∈[a,c]

|u(t)|, (2.5)

where

k := min
{α(c− b)

c− a
,
c− b

c− a
,

α(b− a)
c− a− α(c− b)

}
∈ (0, 1). (2.6)

Proof. Note that u∆∇(t) = −y(t) ≤ 0 for all t ∈ (a, c), so that

min
t∈[a,b]

u(t) = min{u(a), u(b)}.

Then for any τ ∈ [a, c),

η(t) := u(t)−
( c− t

c− τ

)
u(τ)

satisfies η(τ) = 0, η(c) = u(c) ≥ 0, and η∆∇(t) = u∆∇(t) ≤ 0 on [τ, c). In
particular,

u(t)
c− t

≥ u(τ)
c− τ

for all t ∈ [τ, c). Now fix τ ∈ [a, c) such that u(τ) = ‖u‖. If a ≤ τ ≤ b and
u(a) ≤ u(b), then

αu(b)
c− b

≥ αu(τ)
c− τ

≥ αu(τ)
c− a

,

rewritten with the boundary condition at b as

u(a)− δu∆(a) ≥
( c− b

c− a

)
α‖u‖.

Therefore,

min
t∈[a,b]

u(t) = u(a) ≥
( c− b

c− a

)
α‖u‖,
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since u∆(a) ≥ 0 in this case. If a ≤ τ ≤ b and u(b) ≤ u(a), then

u(b) ≥
( c− b

c− τ

)
u(τ) ≥

( c− b

c− a

)
u(τ),

so that

min
t∈[a,b]

u(t) = u(b) ≥
( c− b

c− a

)
‖u‖.

If b < τ < c, then u(a) = mint∈[a,b] u(t), and by the concavity of u and a secant
line we have

u(τ) ≤ u(a) +
(u(b)− u(a)

b− a

)
(c− a)

=
[c− a− α(c− b)]u(a)− δ(c− a)u∆(a)

α(b− a)

≤ [c− a− α(c− b)]u(a)
α(b− a)

,

since again u∆(a) ≥ 0. Consequently,

min
t∈[a,b]

u(t) = u(a) ≥ α(b− a)
c− a− α(c− b)

‖u‖.

�

3. Existence of at Least Two Positive Solutions

We apply the Avery-Henderson Fixed Point Theorem [7] to prove the existence of
at least two positive solutions to the nonlinear boundary-value problem (1.1), (1.2),
where h ∈ Cld[a, c] is nonnegative with h(t0) > 0 for at least one t0 ∈ (a, b],and
the nonlinearity f : [a, c] × [0,∞) → [0,∞) is continuous such that f(t, ·) > 0 on
any subset of T containing t0. The solutions are the fixed points of the operator A
defined by

Au(t) =
1
d

(γ + β(c− t))
[ ∫ c

a

(s− a + δ)h(s)f(s, u(s))∇s

− α

∫ c

b

(s− b)h(s)f(s, u(s))∇s
]
−

∫ c

t

(s− t)h(s)f(s, u(s))∇s

by Lemma 2.1. Notationally, the cone P has subsets of the form P (φ, r) := {u ∈
P : φ(u) < r} for a given functional φ.

Theorem 3.1. [7] Let P be a cone in a real Banach space S. If η and φ are
increasing, nonnegative continuous functionals on P , let θ be a nonnegative con-
tinuous functional on P with θ(0) = 0 such that, for some positive constants r and
M ,

φ(u) ≤ θ(u) ≤ η(u) and ||u|| ≤ Mφ(u)

for all u ∈ P (φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P (θ, q).

If A : P (φ, r) → P is a completely continuous operator satisfying
(i) φ(Au) > r for all u ∈ ∂P (φ, r),
(ii) θ(Au) < q for all u ∈ ∂P (θ, q),
(iii) P (η, p) 6= ∅ and η(Au) > p for all u ∈ ∂P (η, p),
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then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Let S denote the Banach space C[ρ(a), σ(c)] with the supremum norm. Define
the cone P ⊂ S by

P = {u ∈ S : u(t) ≥ 0, u is concave, and min
t∈[a,b]

u(t) ≥ k‖u‖}, (3.1)

where k is given in (2.6). Finally, let the nonnegative, increasing, continuous func-
tionals φ, θ, and η be defined on the cone P by

φ(u) := min
t∈[a,b]

u(t), θ(u) := max
t∈[b,c]

u(t), η(u) := max
t∈[a,c]

u(t).

Observe that, for each u ∈ P , the concavity of u implies

φ(u) ≤ θ(u) ≤ η(u), (3.2)

‖u‖ =≤ 1
k

min
t∈[a,b]

u(t) =
1
k

φ(u) ≤ 1
k

θ(u) ≤ 1
k

η(u). (3.3)

Theorem 3.2. Let d > 0 and k be as in (2.6). Suppose there exist positive numbers
0 < p < q < r such that the function f satisfies the following conditions:

(i) f(s, u) > pM for s ∈ [a, b] and u ∈ [kp, p],
(ii) f(s, u) < qm for s ∈ [a, c] and u ∈ [0, q/k],

(iii) f(s, u) > rM for s ∈ [a, b] and u ∈ [r, r/k]

for some positive constants m and M . Then the second-order boundary-value prob-
lem (1.1), (1.2), has at least two positive solutions u1 and u2 such that

p < max
t∈[a,c]

u1(t) with max
t∈[b,c]

u1(t) < q,

q < max
t∈[b,c]

u2(t) with min
t∈[a,b]

u2(t) < r.

Proof. For u ∈ P , u(t) ≥ k‖u‖ for all t ∈ [a, b]. By Lemma 2.3, A(P ) ⊂ P .
Standard arguments show that A : P → P is completely continuous. For any
u ∈ P , (3.2) and (3.3) imply

φ(u) ≤ θ(u) ≤ η(u), ‖u‖ ≤ 1
k

φ(u).

It is clear that θ(0) = 0, and for all u ∈ P , λ ∈ [0, 1] we have

θ(λu) = max
t∈[b,c]

(λu)(t) = λ max
t∈[b,c]

u(t) = λθ(u).

Since 0 ∈ P and p > 0, P (η, p) 6= ∅.
In the following claims, we verify the remaining conditions of Theorem 3.1.

Claim 1: If u ∈ ∂P (η, p), then η(Au) > p: Since u ∈ ∂P (η, p), kp ≤ u(t) ≤ ‖u‖ = p
for t ∈ [a, b]. Define

M := d
(

min{α, 1}(γ + β(c− b))
∫ b

a

(s− a + δ)h(s)∇s
)−1

. (3.4)
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Thus

η(Au) = max
t∈[a,c]

Au(t)

≥ Au(b)

=
1
d

(γ + β(c− b))
[ ∫ c

a

(s− a + δ)h(s)f(s, u(s))∇s

− α

∫ c

b

(s− b)h(s)f(s, u(s))∇s
]
−

∫ c

b

(s− b)h(s)f(s, u(s))∇s

=
γ + β(c− b)

d

∫ b

a

(s− a + δ)h(s)f(s, u(s))∇s

+
b− a + δ

d

∫ c

b

(γ + β(c− s))h(s)f(s, u(s))∇s

≥ γ + β(c− b)
d

∫ b

a

(s− a + δ)h(s)f(s, u(s))∇s

> pM
γ + β(c− b)

d

∫ b

a

(s− a + δ)h(s)∇s

≥ p

by hypothesis (i) and (3.4).
Claim 2: If u ∈ ∂P (θ, q), then θ(Au) < q: Note that u ∈ ∂P (θ, q) and (3.3) imply
that 0 ≤ u(t) ≤ ‖u‖ ≤ q/k for t ∈ [a, c]. Define

m := d
(
(γ + β(c− b))

∫ c

a

(s− a + δ)h(s)∇s
)−1

. (3.5)

Then

θ(Au) = max
t∈[b,c]

Au(t)

≤ max
t∈[b,c]

1
d

(γ + β(c− t))
[ ∫ c

a

(s− a + δ)h(s)f(s, u(s))∇s

− α

∫ c

b

(s− b)h(s)f(s, u(s))∇s
]

≤ 1
d

(γ + β(c− b))
∫ c

a

(s− a + δ)h(s)f(s, u(s))∇s

<
qm

d
(γ + β(c− b))

∫ c

a

(s− a + δ)h(s)∇s

= q

using (2.4), hypothesis (ii), and (3.5).
Claim 3: If u ∈ ∂P (φ, r), then φ(Au) > r: Since u ∈ ∂P (φ, r), from (3.3) we have
that min

t∈[a,b]
u(t) = r and r ≤ ‖u‖ ≤ r

k . Since δ ≥ 0, as in the proof of Claim 1 we

have

Au(b) =
γ + β(c− b)

d

∫ b

a

(s− a + δ)h(s)f(s, u(s))∇s

+
b− a + δ

d

∫ c

b

(γ + β(c− s))h(s)f(s, u(s))∇s.
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In a similar fashion from the proof of Lemma 2.2 we have

Au(a) = α
[γ + β(c− b)

d

∫ b

a

(s− a)h(s)f(s, u(s))∇s

+
b− a

d

∫ c

b

(γ + β(c− s))h(s)f(s, u(s))∇s
]

+
δ

d

∫ c

a

(γ + β(c− s))h(s)f(s, u(s))∇s.

By concavity,
min

t∈[a,b]
Au(t) = min{Au(a), Au(b)}.

If α ≥ 1, then Au(a) ≥ Au(b). If 0 < α < 1, then Au(a) ≥ αAu(b). It follows that

φ(Au) = min
t∈[a,b]

Au(t)

≥ min{α, 1}Au(b)

≥ min{α, 1}
(γ + β(c− b)

d

) ∫ b

a

(s− a + δ)h(s)f(s, u(s))∇s

> min{α, 1}rM
(γ + β(c− b)

d

) ∫ b

a

(s− a + δ)h(s)∇s

≥ r

by hypothesis (iii) and (3.4). Therefore the hypotheses of Theorem 3.1 are satisfied
and there exist at least two positive fixed points u1 and u2 of A in P (φ, r). Thus,
the second-order triple-point boundary-value problem (1.1), (1.2), has at least two
positive solutions u1 and u2 such that

p < η(u1) with θ(u1) < q,

q < θ(u2) with φ(u2) < r.

�

Corollary 3.3. Let d > 0. If there exists q > 0 such that the function f satisfies
the following conditions:

(i) lim inf
u→0+

f(s, u)
u

> M/k for s ∈ [a, b],

(ii) f(s, u) < qm for s ∈ [a, c] and u ∈ [0, q/k],

(iii) lim inf
u→∞

f(s, u)
u

> M for s ∈ [a, b],

then the second-order boundary-value problem (1.1), (1.2), has at least two positive
solutions u1 and u2 such that

p < max
t∈[a,c]

u1(t) with max
t∈[b,c]

u1(t) < q,

q < max
t∈[b,c]

u2(t) with min
t∈[a,b]

u2(t) < r.

Proof. From assumption (i) of the corollary we know there exists p ∈ (0, q) such
that

f(s, u)
u

>
M

k
, u ∈ (0, p], s ∈ [a, b].
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In particular,

f(s, u) > uM/k ≥ pk(M/k) = pM, u ∈ [kp, p], s ∈ [a, b],

and (i) of Theorem 3.2 holds. Now let

f∞ := lim inf
u→∞

(
min

s∈[a,b]

f(s, u)
u

)
,

and η ∈ (M,f∞). Then there exists r′ > q such that mins∈[a,b] f(s, u) ≥ ηu,
u ∈ [r′,∞). Set

$ := min
{

min
s∈[a,b]

f(s, u) : u ∈ [0, r′]
}

and take
r > max

{
r′,

$

η −M

}
.

Then
min

s∈[a,b]
f(s, u) ≥ ηu−$ ≥ ηr −$ > rM, u ∈ [r,∞),

so that (iii) of Theorem 3.2 holds. The conclusion follows. �

Similar to Corollary 3.3, one can prove the following statement.

Corollary 3.4. Let d > 0. If there exists q > 0 such that the function f satisfies
the following conditions:

(i) lim sup
u→0+

f(s, u)
u

< m for s ∈ [a, c],

(ii) f(s, u) > qM for s ∈ [a, b] and u ∈ [kq, q],

(iii) lim sup
u→∞

f(s, u)
u

< mk for s ∈ [a, c],

then the second-order boundary-value problem (1.1), (1.2), has at least two positive
solutions.

4. Existence of at Least Three Positive Solutions

To prove the existence of at least three positive solutions to (1.1), (1.2) we will
use the Leggett-Williams fixed point theorem [13, 18]:

Theorem 4.1. Let P be a cone in the real Banach space S, A : Pr → Pr be
completely continuous and φ be a nonnegative continuous concave functional on P
with φ(u) ≤ ‖u‖ for all u ∈ Pr. Suppose there exists 0 < p < q < ` ≤ r such that
the following conditions hold:

(i) {u ∈ P (φ, q, `) : φ(u) > q} 6= ∅ and φ(Au) > q for all u ∈ P (φ, q, `);
(ii) ‖Au‖ < p for ‖u‖ ≤ p;

(iii) φ(Au) > q for u ∈ P (φ, q, r) with ‖Au‖ > `.
Then A has at least three fixed points u1, u2, and u3 in Pr satisfying:

‖u1‖ < p, φ(u2) > q, p < ‖u3‖ with φ(u3) < q.

Again define the continuous concave functional φ : P → [0,∞) to be φ(u) :=
mint∈[a,b] u(t), the cone P as in (3.1), M as in (3.4), and

m := d
(
(γ + β(c− a))

∫ c

a

(s− a + δ)h(s)∇s
)−1

.



EJDE-2004/47 TRIPLE-POINT PROBLEMS ON TIME SCALES 9

Moreover, we take

Pr := {u ∈ P : ‖u‖ < r}, P (φ, p, q) := {u ∈ P : p ≤ φ(u), ‖u‖ ≤ q}.

Theorem 4.2. Let d > 0. Suppose that there exist constants 0 < p < q < q/k < r
such that

(D1) f(s, u) ≤ rm for s ∈ [a, c], u ∈ [0, r];
(D2) f(s, u) ≥ qM for s ∈ [a, b], u ∈ [q, q/k];
(D3) f(s, u) < pm for s ∈ [a, c], u ∈ [0, p],

where k is given in (2.6). Then the boundary-value problem (1.1), (1.2) has at least
three positive solutions u1, u2, u3 satisfying

‖u1‖ < p, q < min
t∈[a,b]

u2(t), ‖u3‖ > p with min
t∈[a,b]

u3(t) < q.

Proof. Again the solutions are the fixed points of the operator A defined by

Au(t) =
1
d

(γ + β(c− t))
[ ∫ c

a

(s− a + δ)h(s)f(s, u(s))∇s

− α

∫ c

b

(s− b)h(s)f(s, u(s))∇s
]
−

∫ c

t

(s− t)h(s)f(s, u(s))∇s.

The conditions of Theorem 4.1 will now be shown to be satisfied. For all u ∈ P
we have φ(u) ≤ ‖u‖. If u ∈ Pr, then ‖u‖ ≤ r and assumption (D1) implies
f(s, u(s)) ≤ rm for s ∈ [a, c]. Consequently,

‖Au‖ = max
t∈[a,c]

Au(t)

≤ max
t∈[a,c]

1
d

(γ + β(c− t))
[ ∫ c

a

(s− a + δ)h(s)f(s, u(s))∇s

− α

∫ c

b

(s− b)h(s)f(s, u(s))∇s
]

≤ 1
d

(γ + β(c− a))
∫ c

a

(s− a + δ)h(s)f(s, u(s))∇s

<
rm

d
(γ + β(c− a))

∫ c

a

(s− a + δ)h(s)∇s

= r.

This proves that A : Pr → Pr. Similarly, if u ∈ Pp, then assumption (D3) yields
f(s, u(s)) < pm for s ∈ [a, c]. Just as above, we have A : Pp → Pp. It follows that
condition (ii) of Theorem 4.1 is satisfied.

We now consider condition (i) of Theorem 4.1; pick uP (t) ≡ q/k for t ∈ [a, c],
for k given in (2.6). Then uP ∈ P (φ, q, q/k) and φ(uP ) = φ(q/k) > q, so that {u ∈
P (φ, q, q/k) : φ(u) > q} 6= ∅. Consequently, if u ∈ P (φ, q, q/k), then q ≤ u(s) ≤ q/k
when s ∈ [a, b]. From assumption (D2) we have that

f(s, u(s)) ≥ qM

for s ∈ [a, b]. As in Claim 3 of the proof of Theorem 3.2,

min
t∈[a,b]

Au(t) = min{Au(a), Au(b)}.
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If α ≥ 1, then Au(a) ≥ Au(b); if 0 < α < 1, then Au(a) ≥ αAu(b). It follows that

φ(Au) = min
t∈[a,b]

Au(t)

≥ min{α, 1}Au(b)

≥ min{α, 1}
(γ + β(c− b)

d

) ∫ b

a

(s− a + δ)h(s)f(s, u(s))∇s

> min{α, 1}qM
(γ + β(c− b)

d

) ∫ b

a

(s− a + δ)h(s)∇s

≥ q

by hypothesis (D2) and (3.4). Therefore,

φ(Au) > q, u ∈ P (φ, q, q/k),

so that condition (i) of Theorem 4.1 holds. To check on Theorem 4.1 (iii), we
suppose that u ∈ P (φ, q, r) with ‖Au‖ > q/k. Then, Lemma 2.3 and the definition
of φ yield

φ(Au) = min
t∈[a,b]

Au(t) ≥ k‖Au‖ > kq/k = q.

�

Using the ideas in the proof of the above theorem, we can establish the existence
of an arbitrary odd number of positive solutions of (1.1), (1.2), assuming the right
conditions on the nonlinearity f .

Theorem 4.3. Let d > 0. Suppose that there exist constants

0 < p1 < q1 < q1/k < p2 < q2 < q2/k < p3 < · · · < pn, n ∈ {2, 3, 4, · · · },
such that

(D1) f(s, u) ≥ qiM for s ∈ [a, b], u ∈ [qi, qi/k];
(D2) f(s, u) < pim for s ∈ [a, c], u ∈ [0, pi],

where k is given in (2.6). Then the boundary-value problem (1.1), (1.2) has at least
2n− 1 positive solutions.

5. Example

Let T = {1 − (1/2)N0} ∪ {1}. Taking a = 0, b = 31/32, c = β = 1, α = 20,
γ = 1/19, and δ = 3/4, we have d = 1/8 and k = 1/32. If we let h(s) ≡ 1, then
m = 57/680 and M = 77824/71145. Suppose

f(t, u) = f(u) :=
2000eu

99e700 + eu
, t ∈ [0, 1], u ≥ 0.

Clearly f is always increasing. If we take p = 701, q = 705, and r = 24000, then

0 < p < q < q/k < r.

We check that (D1), (D2), and (D3) of Theorem 4.2 are satisfied. Since f(715) ≈
1999.94 and lim f(u) = 2000,

f(u) ≤ 24000m ≈ 2011.76, u ∈ [0, r],

so that (D1) is met. To verify (D2), note that f(705) ≈ 1199.72, so that

f(u) ≥ 705M ≈ 771.18, u ∈ [q, 32q].
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Lastly, as f(701) ≈ 53.45,

f(u) < 701m ≈ 58.76, u ∈ [0, p]

and (D3) holds. Therefore by Theorem 4.2, the boundary-value problem

u∆∇(t) + f(u(t)) = 0, u(0) = 20u(31/32) +
3
4
u∆(0), u(1) +

1
19

u∆(1) = 0

has at least three positive solutions u1, u2, u3 satisfying

‖u1‖ < 701, 705 < min
t∈[0,31/32]

u2(t), ‖u3‖ > 701 with min
t∈[0,31/32]

u3(t) < 705.
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