Electronic Journal of Differential Equations, Vol. 2004(2004), No. 48, pp. 1-24. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC COMPLEX MONGE-AMPÈRE EQUATION

SAOUSSEN KALLEL-JALLOULI

Abstract. We consider the Dirichlet problem

$$
\operatorname{det}\left(\frac{\partial^{2} u}{\partial z_{i} \partial \overline{z_{j}}}\right)=g(z, u) \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=\varphi,
$$

where Ω is a bounded open set of \mathbb{C}^{n} with regular boundary, g and φ are sufficiently smooth functions, and g is non-negative. We prove that, under additional hypotheses on g and φ, if $\left|\operatorname{det} \varphi_{i \bar{j}}-g\right|_{C^{s_{*}}}$ is sufficiently small the problem has a plurisubharmonic solution.

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{2 n}$ with smooth boundary and let $z_{i}=x_{i}+$ $i x_{i+n}(1 \leq i \leq n)$. We shall also denote by Ω the set of $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ satisfying $(\operatorname{Re} z, \operatorname{Im} z) \in \Omega$. We study the problem of finding a sufficiently smooth plurisubharmonic solution to the degenerate problem

$$
\begin{align*}
\operatorname{det}\left(\frac{\partial^{2} \phi}{\partial z_{i} \partial \overline{z_{j}}}\right) & =g(z, \phi) \quad \text { in } \Omega \tag{1.1}\\
\left.\phi\right|_{\partial \Omega} & =\varphi
\end{align*}
$$

In [8, 9], the author studies local solutions, while, here we consider global solutions.
This problem has received considerable attention both in the non-degenerate case $(g>0)$ and in the degenerate case $(g \geq 0)$. In particular, Caffarelli, Kohn, Nirenberg and Spruck [4] established some existence results in strongly pseudoconvex domains based on the construction of a subsolution. The recent work of Guan 6], extends some of these results to arbitrary smooth bounded domains. Guan proved for the nondegenerate case that a sufficient condition for the classical solvability is the existence of a subsolution. Here we are concerned with degenerate problems in an arbitrary smooth bounded domain, which need not be Pseudoconvex.

Counterexamples due to Bedford and Fornaes [2] show that the Dirichlet problem, in general, does not have a regular solution. This implies that we should place some restrictions on g and φ.

[^0]Let us assume that φ is a real function defined in $\bar{\Omega}, \Sigma$ is a finite set of points in Ω, and $g(z, \phi)=K(z) f(\operatorname{Re} z, \operatorname{Im} z, \phi)$. We further assume the following hypotheses.
(A1) $K \geq 0$ in $\bar{\Omega}$, and $K^{-1}(0)=\Sigma$
(A2) $f(x, u)>0$ in $\bar{\Omega} \times \mathbb{R}$, and $\frac{\partial f}{\partial u} \geq-\varrho$ in $\bar{\Omega} \times \mathbb{R}$, with $0 \leq \varrho \ll 1$
(A3) $\left.\varphi\right|_{\bar{\Omega} \backslash \Sigma}$ is strictly plurisubharmonic, $\left.\left(\varphi_{i \bar{j}}\right)\right|_{\Sigma}$ is of rank $(n-1)$, and the eigenvalues of $\left(\varphi_{i \bar{j}}\right)$ on Σ are distinct.
Our main results are the following theorems:
Theorem 1.1. Let $s_{*} \geq 7+2 n$ be an integer, $\left.\alpha \in\right] 0,1[$, and $\Gamma>1$. If $\varphi \in$ $C^{s_{*}+2, \alpha}(\bar{\Omega})$ satisfies the condition (A3), then one can find a constant $\varepsilon_{0}>0$ (depending on $s_{*}, \alpha, \Gamma, \Omega$ and φ) such that for any $g=K f \in C^{s_{*}}$ satisfying (A1), (A2),

$$
\begin{equation*}
\left|\operatorname{det} \varphi_{i \bar{j}}-g(\varphi)\right|_{C^{s_{*}}} \leq \varepsilon_{0} \tag{1.2}
\end{equation*}
$$

and $\left|\frac{\partial g}{\partial u}\right|_{C^{s_{*}}} \leq \Gamma$, then problem (1.1) has a plurisubharmonic (real valued) solution $\phi \in C^{s_{*}-3-n}(\bar{\Omega})$, which is unique when $\rho=0$.

Let $l_{\alpha}(x)$ denote α-th row the matrix of cofactors of $\left(\varphi_{i \bar{j}}\right)$, and

$$
D^{k} K(x)\left(l_{\alpha}(x), l_{\beta}(x)\right)^{(k)}=D^{k} K(x)\left(l_{\alpha}(x), l_{\beta}(x) ; \ldots ; l_{\alpha}(x), l_{\beta}(x)\right)
$$

Theorem 1.2. Under the assumptions in Theorem 1.1, suppose that $\varphi \in C^{\infty}(\bar{\Omega})$ and for any point $x_{0} \in \Sigma$ one can find an integer k such that $D^{j} K\left(x_{0}\right)=0$ for all $j \leq k-1$ and there exists $\alpha \neq \beta \in\{1, \ldots, n\}$ such that $D^{k} K\left(x_{0}\right)\left(l_{\alpha}\left(x_{0}\right), l_{\beta}\left(x_{0}\right)\right)^{(k)} \neq$ 0 . Then there exists an integer $s_{*}>0$ and a constant $\varepsilon_{0}>0$ such that for any function $g \in C^{\infty}$ satisfying (A2), (A3) and 1.2 , the plurisubharmonic solution ϕ to the problem 1.1) is in $C^{\infty}(\bar{\Omega})$.

In Theorem 1.1, the assumption concerning Σ leads to a-priori estimates and the assumption on g and φ ensures the convergence of an iteration scheme of Nash-Moser type. It is to be noted that we do not require demonstrating that a subsolution exists as in [4] and [6].

Under some additional conditions on g, we can prove the smoothness of the solution, using the works of $\mathrm{Xu}[12$ and Xu and Zuily [13].

This paper is organized as follows. In Section 2 we state some preliminary results. In Section 3, we state fundamental global a-priori estimates for degenerate linearized operators that are crucial to establish an iteration scheme of Nash-Moser type. We then prove Theorem 1.1 in Section 4. We prove Theorem 1.2 in Section 5. Finally, we prove the a-priori estimates stated in Section 3.

2. Preliminary Results

We shall use the norms

$$
|\cdot|_{k}=\|\cdot\|_{C^{k}(\bar{\Omega})}, \quad\|\cdot\|_{k}=\|\cdot\|_{H^{k}(\Omega)}, \quad|\cdot|_{k, \tau}=\|\cdot\|_{C^{k, \tau}(\bar{\Omega})}
$$

where $k \in \mathbb{N}$ and $\tau \in] 0, \alpha[$.
In this work, we need some technical lemmas which play important roles in the proof of convergence of our iteration scheme.
Lemma 2.1. Let s_{*} be an integer, $s_{*} \geq 7+2 n$. We can find a constant $\beta \geq 2$ such that for any $0 \leq i, j, k \leq s_{*}+2, n_{*}=n+\tau$ and $u \in C^{s_{*}+2, \alpha}(\bar{\Omega})$ we have: The Sobolev inequality

$$
\begin{equation*}
|u|_{i, \tau} \leq \beta\|u\|_{i+n_{*}} \tag{2.1}
\end{equation*}
$$

The Gagliardo-Nirenberg inequality

$$
\begin{equation*}
\|u\|_{j} \leq \beta\|u\|_{i}^{\frac{k-j}{k-i}}\|u\|_{k}^{\frac{j-i}{k-i}}, \quad i<j<k \tag{2.2}
\end{equation*}
$$

The inequality

$$
\begin{equation*}
\|u\|_{s_{*}} \leq \beta|u|_{s_{*}} \tag{2.3}
\end{equation*}
$$

For any $\lambda \geq 1$, there exists a family of smoothing linear operators $S_{\lambda}: \cup_{i \geq 0} H^{i}(\Omega) \rightarrow$ $\cap_{j \geq 0} H^{j}(\Omega)$, satisfying

$$
\begin{gather*}
\left\|S_{\lambda} u\right\|_{i} \leq \beta\|u\|_{j}, \quad \text { if } i \leq j \tag{2.4}\\
\left\|S_{\lambda} u\right\|_{i} \leq \beta \lambda^{i-j}\|u\|_{j}, \quad \text { if } i \geq j \tag{2.5}\\
\left\|S_{\lambda} u-u\right\|_{i} \leq \beta \lambda^{i-j}\|u\|_{j}, \quad \text { if } i \leq j \tag{2.6}
\end{gather*}
$$

Lemma 2.2 ([1, [7). (1) For $t>0$; if $u, v \in L^{\infty} \cap H^{t}$, then $u v \in L^{\infty} \cap H^{t}$ and

$$
\begin{equation*}
\|u v\|_{t} \leq K_{1}\left(|u|_{0}\|v\|_{t}+\|u\|_{t}|v|_{0}\right) \tag{2.7}
\end{equation*}
$$

where, K_{1} is a constant ≥ 1 independent of u and v.
(2) Let $H: \mathbb{R}^{m} \rightarrow \mathbb{C}$ be a function C^{∞} of its arguments.

For $s>0$, if $\omega \in\left(L^{\infty} \cap H^{s}\right)^{m}$ and $|\omega|_{0} \leq M$, then

$$
\begin{equation*}
\|H(\omega)\|_{s} \leq K_{2}(s, H, M)\left(\|\omega\|_{s}+1\right) \tag{2.8}
\end{equation*}
$$

where $K_{2} \geq 1$ and is a constant independent of ω.
If $\left.\omega \in\left(C^{i, \mu}\right)^{m}, \mu \in\right] 0,1\left[\right.$ and $i \in \mathbb{N}$, then $H(\omega) \in C^{i, \mu}$.
If we suppose that $|\omega|_{0} \leq M$, then we can find a constant $K_{3}=K_{3}(i, \mu, H, M) \geq$ 1 such that

$$
\begin{equation*}
|H(\omega)|_{i, \mu} \leq K_{3}\left(|\omega|_{i, \mu}+1\right) \tag{2.9}
\end{equation*}
$$

We shall also need the following technical lemma.
Lemma 2.3 ([8, Lemma]). Let $F\left(u_{z_{i} \overline{z_{j}}}\right)=\operatorname{det}\left(u_{z_{i} \overline{z_{j}}}\right)$. For $1 \leq i, j, a, b \leq n$, we have

$$
\begin{equation*}
F \frac{\partial^{2} F}{\partial u_{z_{a} \overline{z_{b}}} \partial u_{z_{i} \overline{z_{j}}}}=\frac{\partial F}{\partial u_{z_{a} \overline{z_{b}}}} \frac{\partial F}{\partial u_{z_{i} \overline{z_{j}}}}-\frac{\partial F}{\partial u_{z_{i} \overline{z_{b}}}} \frac{\partial F}{\partial u_{z_{a} \overline{z_{j}}}} . \tag{2.10}
\end{equation*}
$$

3. A priori estimates for the linearized operator

Defining $\phi=\varphi+\varepsilon w$, 1.1 becomes

$$
\begin{equation*}
\operatorname{det}\left(\phi_{z_{i} \overline{z_{j}}}\right)=\operatorname{det}\left(\varphi_{z_{i} \overline{z_{j}}}+\varepsilon w_{z_{i}} \overline{z_{j}}\right)=g . \tag{3.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
G(w)=\frac{1}{\varepsilon}[\operatorname{det} \Phi-g] . \tag{3.2}
\end{equation*}
$$

Then the linearization of G at w is

$$
\begin{equation*}
L_{G}(w)=\sum_{i, j=1}^{n} \phi^{i j} \partial_{z_{i}} \partial_{\overline{z_{j}}}+b \tag{3.3}
\end{equation*}
$$

where $\widetilde{\Phi}=\left(\phi^{i j}\right)$ is the matrix of cofactors of $\Phi=\left(\phi_{z_{i} \overline{z_{j}}}(z, \varepsilon, w)\right)$ and $b=\frac{\partial g}{\partial u}$.
Now we construct linear elliptic operators, maybe degenerate, related to linearized operators. For any smooth real valued function w, the matrix $\left(\phi_{i \bar{j}}\right)$ is Hermitian and we can find a unitary matrix $T(z, \varepsilon)$ satisfying

$$
\begin{equation*}
T(z, \varepsilon)\left(\phi_{z_{i} \overline{z_{j}}}\right)^{t} \bar{T}(z, \varepsilon)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \tag{3.4}
\end{equation*}
$$

Without loss of generality we may assume that Σ is reduced to one point, the origin. By means of change of variables we may assume, using (A3), that

$$
\begin{equation*}
\varphi_{z_{i} \overline{z_{j}}}(0)=\sigma_{i} \delta_{i}^{j} \quad i, j=1, \ldots, n \tag{3.5}
\end{equation*}
$$

where $\sigma_{i}>0$ for $i=1, \ldots, n-1, \sigma_{n}=0$ and $\sigma_{i} \neq \sigma_{j}$ for $i \neq j$. Let $0<\tau \leq \frac{\alpha}{4}$.
Lemma 3.1. There exist constants $\varepsilon_{1}>0, \delta_{1}>0$ and $M>0$ depending only on φ, n, Ω such that when

$$
V_{0}=\left\{(z, \varepsilon, w) /|z| \leq \delta_{1}, 0 \leq \varepsilon \leq \varepsilon_{1}, w \in C^{3, \tau}(\bar{\Omega}),|w|_{3, \tau} \leq 1\right\}
$$

we have: (i) The eigenvalues $\lambda_{i}, i=1, \ldots, n$ of Φ are distinct on V_{0} and of class C^{1} in $\stackrel{\circ}{V}_{0}$. Moreover, $\lambda_{i}>0$ in V_{0}, for $i=1, \ldots, n-1$.
(ii) $\operatorname{For}(z, \varepsilon, w) \in V_{0}$,

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\sigma_{i}-\lambda_{i}(z, \varepsilon, w)\right|+\left|\Phi^{n n}(z, \varepsilon, w)-\prod_{i=1}^{n-1} \sigma_{i}\right| \leq M(\varepsilon+|z|) \tag{3.6}
\end{equation*}
$$

(iii) $\operatorname{For}(z, \varepsilon, w) \in V_{0}$ and $i=1, \ldots, n-1$,

$$
\begin{equation*}
\lambda_{i} \geq \inf _{1 \leq i \leq n-1} \sigma_{i}-M \delta_{1}-(M+1) \varepsilon_{1}>0 \text { and } \Phi^{n n} \geq \prod_{i=1}^{n-1} \sigma_{i}-M \delta_{1}-M \varepsilon_{1}>0 \tag{3.7}
\end{equation*}
$$

Proof. Let us consider the function $H(z, \varepsilon, w, \lambda)=\operatorname{det}\left(\varphi_{z_{i} \overline{z_{j}}}+\varepsilon w_{z_{i} \overline{z_{j}}}-\lambda \delta_{i}^{j}\right)$. Then $H \in C^{1}$ and by (3.5), we have

$$
H\left(0,0,0, \sigma_{i}\right)=0 \text { and } \frac{\partial H}{\partial \lambda}\left(0,0,0, \sigma_{i}\right) \neq 0, \quad \forall i \in\{1, \ldots, n\}
$$

By the implicit function theorem, one can find two constants $\varepsilon_{1}>0$ and $\delta_{1}>0$ such that (i) holds. Moreover by (3.5) we have

$$
\frac{\partial F}{\partial u_{n \bar{n}}}\left(\varphi_{i \bar{j}}\right)(0)=\Phi^{n n}(0,0, w)=\prod_{i=1}^{n-1} \sigma_{i}>0
$$

which gives (ii) and (iii).
Lemma 3.2. There exists a positive constant ε_{2} such that for any $0<\varepsilon<\varepsilon_{2}$, any real valued function $w \in C^{3, \tau}(\bar{\Omega})$ satisfying $|w|_{3, \tau} \leq 1$ and $\theta=\max _{z \in \bar{\Omega}}|G(w)|$, the operator

$$
\begin{equation*}
L=-L_{G}(w)-\theta \triangle \tag{3.8}
\end{equation*}
$$

is elliptic, maybe degenerate. (Here $\triangle=\sum_{i=1}^{n}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}\right)$)
Proof. Let

$$
\begin{equation*}
A=\theta|\xi|^{2}+\sum_{i, j=1}^{n} \phi^{i j} \xi_{i} \overline{\xi_{j}} \geq 0, \quad \forall(z, \xi) \in \bar{\Omega} \times \mathbb{C}^{n} \tag{3.9}
\end{equation*}
$$

If $z \in \bar{\Omega} \backslash\{0\}$, as φ is strictly plurisubharmonic, then $A>0$ for all $\xi \in \mathbb{C}^{n} \backslash\{0\}$.
If $z=0$, for $\xi \in \mathbb{C}^{n}$, we let $\xi={ }^{t} T(\tau, \varepsilon) \widetilde{\xi}$. Then we have

$$
A=\theta|\xi|^{2}+{ }^{t} \xi \widetilde{\Phi} \bar{\xi}=\theta|\xi|^{2}+{ }^{t} \widetilde{\xi} T \widetilde{\Phi}^{t} \bar{T} \overline{\widetilde{\xi}}
$$

Since $\Phi \widetilde{\Phi}=\operatorname{det} \Phi$ Id, by 3.4 ,

$$
\operatorname{det} \Phi \mathrm{Id}=T \Phi^{t} \bar{T} T \widetilde{\Phi}^{t} \bar{T}=\operatorname{diag}\left(\lambda_{i}\right) T \widetilde{\Phi}^{t} \bar{T}
$$

$$
T \widetilde{\Phi}^{t} \bar{T}=\operatorname{det} \Phi \operatorname{diag}\left(\frac{1}{\lambda_{i}}\right)=\prod_{i=1}^{n} \lambda_{i} \operatorname{diag}\left(\frac{1}{\lambda_{i}}\right)=(\varepsilon G+g) \operatorname{diag}\left(\frac{1}{\lambda_{i}}\right)
$$

Thus,

$$
\begin{aligned}
A & =\theta|\widetilde{\xi}|^{2}+\operatorname{det} \Phi \sum_{i=1}^{n} \frac{\left|\widetilde{\xi}_{i}\right|^{2}}{\lambda_{i}} \\
& =\theta|\widetilde{\xi}|^{2}+\sum_{i=1}^{n-1} \operatorname{det} \Phi \frac{\left|\widetilde{\xi}_{i}\right|^{2}}{\lambda_{i}}+\prod_{i=1}^{n-1} \lambda_{i}\left|\widetilde{\xi}_{n}\right|^{2} \\
& =\left(\theta+\prod_{i=1}^{n-1} \lambda_{i}\right)\left|\widetilde{\xi}_{n}\right|^{2}+\sum_{i=1}^{n-1} \frac{\varepsilon G+g+\theta \lambda_{i}}{\lambda_{i}}\left|\widetilde{\xi}_{i}\right|^{2} .
\end{aligned}
$$

By (3.7), for $i=1, \ldots, n-1, \varepsilon \leq \varepsilon_{1}$ and $|w|_{3, \tau} \leq 1$, we have

$$
\varepsilon G+\theta \lambda_{i} \geq \theta\left(\sigma_{i}-M \delta_{1}-(M+1) \varepsilon_{1}\right) \geq 0
$$

Therefore, $A \geq 0$, which proves the lemma.
Now we study a boundary-value problem for the degenrate elliptic operator

$$
L=-L_{G}(w)-\theta \triangle=\sum_{i, j=1}^{n} b^{i j} \partial_{z_{i}} \partial_{\overline{z_{j}}}+b,
$$

where

$$
b^{i j}=-\frac{\partial F}{\partial u_{i \bar{j}}}\left(\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}\right)-\theta \delta_{i}^{j}=-\Phi^{i j}-\theta \delta_{i}^{j}
$$

and $b=K \frac{\partial f}{\partial u}$. For $k, s \in \mathbb{N}$ we let

$$
\begin{gather*}
A(k)=\max \left(1, \max _{1 \leq i, j \leq n}\left|b^{i j}\right|_{k},|b|_{k}\right) \tag{3.10}\\
\Lambda_{s}=\{(i, j): 0 \leq i, j \leq s, i+j \leq s, \text { and } i+2 \leq \max (s, 2)\}
\end{gather*}
$$

Now from Lemma 3.2 we have the following statement.
Theorem 3.3. Suppose that $\theta \leq 1$ and $A(2) \leq M_{0}$, for some constant $M_{0}>0$. One can find $\varepsilon_{3}>0$ such that for any $\left.\left.\varepsilon \in\right] 0, \varepsilon_{3}\right]$, any real valued function $w \in C^{s_{*}+2, \tau}(\bar{\Omega})$ satisfying the inequality $|w|_{3, \tau} \leq 1$ and any real valued function $h \in H^{s_{*}}$, the problem

$$
\begin{gather*}
L u=h \quad i n \Omega \\
\left.u\right|_{\partial \Omega}=0 \tag{3.11}
\end{gather*}
$$

has a unique solution $u \in H^{s_{*}}$. Moreover for $0 \leq s \leq s_{*}$,

$$
\begin{gather*}
\|u\|_{0} \leq C_{0}\|h\|_{0} \tag{3.12}\\
\|u\|_{s} \leq C_{s}\left\{\|h\|_{s}+\sum_{j \leq s-1,(i, j) \in \Lambda_{s}}\left(1+|\varphi+\varepsilon w|_{i+4, \tau}\right)\|u\|_{j}\right\}, \quad s \geq 2 \tag{3.13}
\end{gather*}
$$

for some constant $C_{s}=C_{s}\left(\varphi, s, \Omega, M_{0}, \varepsilon_{3}\right)$ independent of w and ε.
For $\nu \in] 0,1\left[\right.$, we denote $L_{\nu}=L-\nu \triangle$. To solve the Dirichlet problem (3.11), we first establish the following proposition.

Propositon 3.4. Let $\theta \leq 1$ and, for some constant $M_{0}>0, A(2) \leq M_{0}$. Then there exists $\varepsilon_{3}>0$ such that for any $\left.\left.\varepsilon \in\right] 0, \varepsilon_{3}\right]$, any real valued function $w \in$ $C^{s_{*}+2, \tau}(\bar{\Omega})$ satisfying the inequality $|w|_{3, \tau} \leq 1$ and any real valued function $h \in$ $H^{s_{*}}(\Omega)$, the regularized problem

$$
\begin{gather*}
L_{\nu} u=h \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \tag{3.15}
\end{gather*}
$$

has a unique (real valued) solution $u \in H^{s_{*}+1}(\Omega)$.
Proof. Since $L_{G}(w)$ is a second order operator with real coefficients, from Lemma 3.2. L_{ν} is uniformly elliptic with coefficients in $C^{s_{*}, \tau}(\bar{\Omega})$. Thus by 3, Theorems 6.14 and 8.13] we see that 3.15 has a real valued solution.

If $3.12-3.14$ hold for the regularized problem 3.15 with an uniform constant C_{s} independent of $\left.\left.\nu \in\right] 0,1\right]$, then by letting ν tend to zero we get a solution $u \in$ $H^{s_{*}}(\Omega)$ to the original problem which of course satisfies (3.12)-(3.14).

Using Theorem 3.3, we prove Theorem 1.1 by constructing a sequence of approximating solutions and a priori estimates for linearized operators. The hypothesis (1.2) will play an important role in the proof of the convergence of our iteration scheme of Nash-Moser type.

4. Proof of Theorem 1.1

Part 1: An iteration scheme of Nash-Moser type. In this section, we use the Nash-Moser procedure [7, 10] and the results of Section 3 to prove Theorem 1.1. We construct a sequence which converges to a solution to our problem. We define

$$
\begin{equation*}
M_{0}=1+\max _{H \in \mathcal{F}} K_{3}\left(2, \tau, H,\left(1+|\varphi|_{2}\right)\right)\left(1+|\varphi|_{4, \tau}\right) \tag{4.1}
\end{equation*}
$$

where $\mathcal{F}=\left\{\frac{\partial F}{\partial u_{i \bar{j}}}, \frac{\partial g}{\partial u} / 1 \leq i, j \leq n\right\}$ and K_{3} is the constant introduced in 2.9). (i.e: $\left.|H(u)|_{j, \mu} \leq K_{3}(j, \mu, H, M)|u|_{j, \mu}\right)$. We also define

$$
\begin{equation*}
D=\max \left(\max _{0 \leq s \leq s_{*}} C_{s}, 1\right) \tag{4.2}
\end{equation*}
$$

Here C_{s} is the constant (depending only on $s, \varphi, \Omega, M_{0}$) given by Theorem 3.3. We let

$$
\begin{gather*}
\mu=\max \left(\beta, 3 D s_{*}^{2}\left(1+|\varphi|_{s_{*}+2, \tau}\right), n, 2^{\frac{1}{\tau}}\right) \quad \text { and } \quad \tilde{\mu}=\beta^{2} \mu^{s_{*}} \tag{4.3}\\
a_{1}=9 K_{0} \mu^{5}, \quad a_{2}=5 a_{1} \mu^{s_{*}+1}, \quad a_{3}=7 K_{0} \mu^{5} \tag{4.4}
\end{gather*}
$$

were K_{0} is the constant given by Proposition 6.1. Also, we fix $\widetilde{\varepsilon}$ satisfying

$$
\begin{equation*}
\widetilde{\varepsilon} \leq \min \left[1,\left(\varepsilon_{i}\right)_{1 \leq i \leq 4},\left(3 D^{2} a_{2}+6 \widetilde{\mu} D^{2}\right)^{-2}\right] \tag{4.5}
\end{equation*}
$$

were ε_{i} are given in Lemma 3.2, Theorem 3.3, the proof of Theorem 3.3 and the proof of (3.13).

As a consequence of these inequalities, we have $6 \widetilde{\varepsilon} \mu^{s_{*}} \leq 1 / 4$. Let $g \in C^{s_{*}}$ satisfy

$$
\left|\operatorname{det} \varphi_{i \bar{j}}-g(\varphi)\right|_{s_{*}} \leq \widetilde{\varepsilon}^{2}
$$

with ε_{0} in Theorem 1.1 equal to $\widetilde{\varepsilon}^{2}$. Let $S_{n}=S_{\mu_{n}}$ the family of operators given by Lemma 2.1, with $\mu_{n}=\mu^{n}$ (μ is given by 4.3).

Using Theorem 3.3 we construct $w_{n}, n=0,1, \ldots$, by induction on n as follows. We let $u_{0}, w_{0}=0$, and assume $w_{0}, w_{1}, \ldots, w_{n}$ have been chosen and define w_{n+1} by

$$
\begin{equation*}
w_{n+1}=w_{n}+u_{n+1} \tag{4.6}
\end{equation*}
$$

where u_{n+1} is the solution to the Dirichlet problem

$$
\begin{gather*}
L_{G}\left(\widetilde{w}_{n}\right) u_{n+1}+\theta_{n} \triangle u_{n+1}=g_{n}, \quad \text { in } \Omega \\
\left.u_{n+1}\right|_{\partial \Omega}=0 \tag{4.7}
\end{gather*}
$$

given by Theorem 3.3. Here

$$
\begin{gather*}
\widetilde{w}_{n}=S_{n} w_{n} \tag{4.8}\\
\theta_{n}=\left|G\left(\widetilde{w}_{n}\right)\right|_{0} \tag{4.9}\\
g_{0}=-S_{0} G(0), g_{n}=S_{n-1} R_{n-1}-S_{n} R_{n}+S_{n-1} G(0)-S_{n} G(0), \tag{4.10}\\
R_{0}=0, \quad R_{n}=\sum_{j=1}^{n} r_{j} \tag{4.11}\\
r_{0}=0, \quad r_{j}=\left[L_{G}\left(w_{j-1}\right)-L_{G}\left(\widetilde{w}_{j-1}\right)\right] u_{j}+Q_{j}-\theta_{j-1} \triangle u_{j}, \quad 1 \leq j \leq n \tag{4.12}\\
Q_{j}=G\left(w_{j}\right)-G\left(w_{j-1}\right)-L_{G}\left(w_{j-1}\right) u_{j}, \quad 1 \leq j \leq n \tag{4.13}
\end{gather*}
$$

To ensure that the w_{n} 's are well defined, we prove the following proposition.
Propositon 4.1. Let $s \in \mathbb{N}$. If $s_{*} \geq 7+2 n$ and $4+2 n+2 \tau \leq \sigma<s_{*}-2$, we have

$$
\begin{gather*}
\left\|u_{j}\right\|_{s} \leq \sqrt{\widetilde{\varepsilon}}\left[\max \left(\mu, \mu_{j-1}\right)\right]^{s-\sigma}, \quad j \in \mathbb{N}^{*}, 0 \leq s \leq s_{*}, \tag{4.14}\\
\left\|w_{j}\right\|_{s} \leq\left\{\begin{array}{l}
2 \sqrt{\widetilde{\varepsilon}}, \\
\sqrt{\widetilde{\varepsilon}} \mu_{j}^{s-\sigma}, \quad \text { for } s \leq \sigma-\tau \\
\left|\widetilde{w}_{j}\right|_{4, \tau} \leq 1, \quad j \in \mathbb{N}^{*},
\end{array}\right. \tag{4.15}\\
\left\|w_{j}-\widetilde{w_{j}}\right\|_{s} \leq 2 \beta \sqrt{\widetilde{\varepsilon}} \mu_{j}^{s-\sigma}, \quad 0 \leq s \leq s_{*}, j \in \mathbb{N}^{*}, \tag{4.16}\\
\left\|r_{j}\right\|_{s} \leq \widetilde{\varepsilon} a_{1}\left[\max \left(\mu, \mu_{j-1}\right)\right]^{s-\sigma}, \quad 0 \leq s \leq s_{*}-2, j \in \mathbb{N}^{*}, \tag{4.17}\\
\left\|g_{j}\right\|_{s} \leq \widetilde{\varepsilon} a_{2} \mu_{j}^{s-\sigma}, \quad 0 \leq s \leq s_{*}, j \in \mathbb{N}, \tag{4.18}\\
\theta_{j} \leq a_{3} \sqrt{\widetilde{\varepsilon}} \mu_{j}^{-2} \leq 1, \quad j \in \mathbb{N}, \tag{4.19}\\
A_{j}(2) \leq M_{0}, \quad j \in \mathbb{N} . \tag{4.20}
\end{gather*}
$$

Here, $A_{j}(k)$ is defined by using the definition of $A(k)$ in 3.10, where the coefficients correspond to \widetilde{w}_{j}.

Let us first show how that Proposition 4.1 implies Theorem 1.1. The proof of this proposition will be given later in Appendix 1.

Part 2: Proof of Theorem 1.1. We prove the convergence of the sequence $\left(w_{n}\right)$ using Proposition 4.1. Set $\sigma=s_{*}-2-\tau$ and $s=\sigma-\tau$. By (4.6) and 4.14, for any $i, k \in \mathbb{N}^{*}, i>k$,

$$
\left\|w_{i}-w_{k}\right\|_{s} \leq \sum_{j=k+1}^{i}\left\|u_{j}\right\|_{s} \leq \beta \sqrt{\widetilde{\varepsilon}} \sum_{j=k+1}^{i} \mu_{j-1}^{-\tau}=\beta \sqrt{\widetilde{\varepsilon}} \sum_{j=k+1}^{i}\left(\mu^{-\tau}\right)^{j-1}
$$

Since $\mu \geq 2$ and $\tau>0$, then $\left\|w_{i}-w_{k}\right\|_{s} \rightarrow 0$ as $i, k \rightarrow \infty$. Hence, there is a function $w \in H^{s_{*}-2-2 \tau}(\Omega)$ satisfying $w_{n} \rightarrow w$ in $H^{s_{*}-2-2 \tau}(\Omega)$.

Since $H^{s_{*}-2-2 \tau}(\Omega) \subset C^{s_{*}-2-n-3 \tau}(\bar{\Omega})$, it follows that $w \in C^{s_{*}-3-n}(\bar{\Omega})$. On the other hand, combining 4.7, 4.12 and 4.13, we obtain

$$
r_{j}=G\left(w_{j}\right)-G\left(w_{j-1}\right)-g_{j-1}
$$

Taking the sum between $j=1$ and $j=n$, using 4.10) and 4.11), we get

$$
\begin{equation*}
G\left(w_{n}\right)=\left(I-S_{n-1}\right) R_{n-1}+\left(I-S_{n-1}\right) G(0)+r_{n} . \tag{4.22}
\end{equation*}
$$

For $n \geq 2$, using (2.2) and 4.18, we have

$$
\left\|r_{n}\right\|_{s_{*}-2-2 \tau} \leq a_{1} \beta \widetilde{\varepsilon} \mu_{n-1}^{s_{*}-2-2 \tau-\sigma}=a_{1} \beta \widetilde{\varepsilon} \mu_{n-1}^{-\tau}
$$

Combining (2.3) with 2.6 and 1.2 , we get

$$
\left\|\left(I-S_{n-1}\right) G(0)\right\|_{s_{*}-2-2 \tau} \leq \beta \mu_{n-1}^{-2-2 \tau}\|G(0)\|_{s_{*}} \leq \beta^{2} \mu_{n-1}^{-2-2 \tau} \widetilde{\varepsilon}
$$

Combining (2.6), 4.11 and 4.18, we can write

$$
\begin{aligned}
\left\|\left(I-S_{n-1}\right) R_{n-1}\right\|_{s_{*}-2-2 \tau} & \leq \beta \mu_{n-1}^{-2 \tau}\left\|R_{n-1}\right\|_{s_{*}-2} \leq \beta \mu_{n-1}^{-2 \tau} \sum_{j=1}^{n-1}\left\|r_{j}\right\|_{s_{*}-2} \\
& \leq \beta \mu_{n-1}^{-2 \tau} \widetilde{\varepsilon} a_{1} B i g\left(\mu^{s_{*}-2-\sigma}+\sum_{j=2}^{n-1} \mu_{j-1}^{s_{*}-2-\sigma}\right) \\
& \leq \widetilde{\varepsilon} \beta a_{1} \mu_{n-1}^{-2 \tau} \mu_{n-1}^{s_{*}-2-\sigma} \leq \beta a_{1} \widetilde{\varepsilon} \mu_{n-1}^{-\tau}
\end{aligned}
$$

These inequalities imply $G\left(w_{n}\right) \rightarrow 0$ in $H^{s_{*}-2-2 \tau}(\Omega)$ as $n \rightarrow \infty$.
Since $H^{s_{*}-2-2 \tau}(\Omega) \subset C^{2}(\bar{\Omega})$ and $w_{n \mid \partial \Omega}=0$, we conclude that $G(w)=0$ and $\left.w\right|_{\partial \Omega}=0$. That is $u=\varphi+\varepsilon w$ is a solution to the original Monge-Ampère equation which is by Lemma 3.1 plurisubharmonic since g is nonnegative. If we suppose that $\rho=0$, in (A2), then the uniqueness of the solution follows immediately from [4].

5. Proof of Theorem 1.2

We shall use the result of Xu and Zuily [12, 13] that we recall briefly. Let us consider a non linear partial differential equation

$$
F\left(x, y, u, \nabla u, D^{2} u\right)=0
$$

where F is C^{∞}. To any solution u we can associate the vector fields $X_{j}=$ $\sum_{k} \frac{\partial F}{\partial u_{j k}} \partial_{k}$. Then
Theorem 5.1 ([12]). Suppose $u \in C_{\mathrm{loc}}^{\rho}(\Omega)$ with $\rho>\operatorname{Max}(4, r+2)$ for some constant $r \geq 0$ and that the brackets of the X_{j}, up to the order r, span the tangent space at each point of Ω, then u belongs to $C^{\infty}(\Omega)$.

To prove this theorem, it is sufficient to prove that the solution of Theorem 1.1 satisfies Theorem 5.1 at any point in Σ. Suppose $\Sigma=\{0\}$. For $i=1 \ldots n$;

$$
\begin{align*}
X_{i} & =\phi^{i i} \frac{\partial}{\partial x_{i}}+\sum_{j \neq i, j=1}^{n} \frac{\phi^{i j}+\overline{\phi^{i j}}}{2} \frac{\partial}{\partial x_{j}}+\sum_{j \neq i, j=1}^{n} \frac{i \phi^{i j}-i \overline{\phi^{i j}}}{2} \frac{\partial}{\partial x_{j+n}}, \tag{5.1}\\
X_{i+n} & =\phi^{i i} \frac{\partial}{\partial x_{i+n}}+\sum_{j \neq i, j=1}^{n} \frac{\phi^{i j}+\overline{\phi^{i j}}}{2} \frac{\partial}{\partial x_{j+n}}-\sum_{j \neq i, j=1}^{n} \frac{i \phi^{i j}-i \overline{\phi^{i j}}}{2} \frac{\partial}{\partial x_{j}} . \tag{5.2}
\end{align*}
$$

For computing the Lie algebra generated by the X_{i}, we need the following result.

Lemma 5.2. For any integer $1 \leq m \leq k$,

$$
\begin{align*}
& \left(a d X_{n}\right)^{m-1}\left[X_{n}-i X_{2 n}, X_{i}-i X_{i+n}\right] \\
& =\sum_{l=1}^{2 n} \sum_{|\beta| \leq m, i \neq j}\left[\left(C_{i \beta p}\right) \partial_{x}^{\beta} g+\varepsilon d_{p i j}\right] \partial_{x_{l}} \tag{5.3}\\
& \quad+\left[A_{n}\left(\varphi_{i \bar{j}}\right)\right]^{m-1} A_{i}\left(\varphi_{i \bar{j}}\right)\left[\left(\partial_{x_{n}}^{m} g+i \partial_{x_{n}}^{m-1} \partial_{x_{2 n}} g\right)\left(\partial_{x_{i}}+i \partial_{x_{i}+n}\right)\right]
\end{align*}
$$

where $C_{i \beta p}$ and $d_{p i j}$ are $C^{s_{*}-m, \tau}(\Omega)$ (depending on w and φ bounded for ε small enough) satisfying for $|\beta|=m, C_{i \beta p}(0)=0, p=1, \ldots, n$ if $n \geq 3$ and $C_{i \beta 1}(0)=0$ if $n=2 . A_{n}=\frac{\partial F}{\partial u_{n \bar{n}}}$ and $A_{i}=\frac{\partial^{2} F}{\partial u_{n \bar{n}} \partial u_{i \bar{i}}}$.
Proof. We use induction on the size of the brackets. First we calculate $D_{i n}=$ $\left[X_{n}+i X_{2 n}, X_{i}+i X_{i+n}\right]$, for $i \leq n-1$.

$$
\begin{aligned}
D_{i n}= & {\left[\sum_{j=1}^{n} \Phi^{n j} \partial_{x_{j}}+i \sum_{j=1}^{n} \Phi^{n j} \partial_{x_{j+n}}, \sum_{l=1}^{n} \Phi^{i l} \partial_{x_{l}}+i \sum_{l=1}^{n} \Phi^{i l} \partial_{x_{l+n}}\right] } \\
= & \sum_{l=1}^{n} \underbrace{\sum_{j=1}^{n}\left\{\Phi^{n j} \partial_{x_{j}}\left(\Phi^{i l}\right)-\Phi^{i j} \partial_{x_{j}}\left(\Phi^{n l}\right)\right\} \partial_{x_{l}}}_{(1)} \\
& +i \sum_{l=1}^{n} \underbrace{\sum_{j=1}^{n}\left\{\Phi^{n j} \partial_{x_{j+n}}\left(\Phi^{i l}\right)-\Phi^{i j} \partial_{x_{j+n}}\left(\Phi^{n l}\right)\right\} \partial_{x_{l}}}_{(2)} \\
& -\sum_{l=1}^{n} \underbrace{\sum_{j=1}^{n}\left\{\Phi^{n j} \partial_{x_{j+n}}\left(\Phi^{i l}\right)-\Phi^{i j} \partial_{x_{j+n}}\left(\Phi^{n l}\right)\right\} \partial_{x_{l+n}}}_{(1)} \\
& +i \sum_{l=1}^{n} \underbrace{}_{\sum_{j=1}^{n}\left\{\Phi^{n j} \partial_{x_{j}}\left(\Phi^{i l}\right)-\Phi^{i j} \partial_{x_{j}}\left(\Phi^{n l}\right)\right\} \partial_{x_{l}+n}}
\end{aligned}
$$

where

$$
(1)=\sum_{j=1}^{n} \sum_{p, q=1}^{n}\left\{\frac{\partial F}{\partial u_{n \bar{j}}} \frac{\partial^{2} F}{\partial u_{i \bar{l}} \partial u_{p \bar{q}}}-\frac{\partial F}{\partial u_{i \bar{j}}} \frac{\partial^{2} F}{\partial u_{n \bar{l}} \partial u_{p \bar{q}}}\right\} \partial_{x_{j}} u_{p \bar{q}} .
$$

Using 2.10, we get

$$
\begin{aligned}
F .(1)= & \sum_{j=1}^{n} \sum_{p, q=1}^{n} \frac{\partial F}{\partial u_{n \bar{j}}}\left(\frac{\partial F}{\partial u_{i \bar{l}}} \frac{\partial F}{\partial u_{p \bar{q}}}-\frac{\partial F}{\partial u_{i \bar{q}}} \frac{\partial F}{\partial u_{p \bar{l}}}\right) \partial_{x_{j}} u_{p \bar{q}} \\
& -\sum_{j=1}^{n} \sum_{p, q=1}^{n} \frac{\partial F}{\partial u_{i \bar{j}}}\left(\frac{\partial F}{\partial u_{n \bar{l}}} \frac{\partial F}{\partial u_{p \bar{q}}}-\frac{\partial F}{\partial u_{n \bar{q}}} \frac{\partial F}{\partial u_{p \bar{l}}}\right) \partial_{x_{j}} u_{p \bar{q}} \\
= & \sum_{j=1}^{n} \underbrace{\sum_{p, q=1}^{n} \frac{\partial F}{\partial u_{p \bar{q}}} \partial_{x_{j}} u_{p \bar{q}}\left(\frac{\partial F}{\partial u_{n \bar{j}}} \frac{\partial F}{\partial u_{i \bar{l}}}-\frac{\partial F}{\partial u_{i \bar{j}}} \frac{\partial F}{\partial u_{n \bar{l}}}\right)}_{(5)}
\end{aligned}
$$

$$
+\underbrace{\sum_{j, p, q=1}^{n} \frac{\partial F}{\partial u_{p \bar{l}}}\left(\frac{\partial F}{\partial u_{i \bar{j}}} \frac{\partial F}{\partial u_{n \bar{q}}}-\frac{\partial F}{\partial u_{n \bar{j}}} \frac{\partial F}{\partial u_{i \bar{q}}}\right) \partial_{x_{j}} u_{p \bar{q}}}_{(6)}
$$

Using (2.10), we have

$$
(5)=\partial_{x_{j}}(F) F \frac{\partial^{2} F}{\partial u_{n \bar{j}} \partial u_{i \bar{l}}}
$$

Similarly, we prove that

$$
\begin{aligned}
F .(2)= & \sum_{j=1}^{n} \partial_{x_{j+n}}(F) F \frac{\partial^{2} F}{\partial u_{n \bar{j}} \partial u_{i \bar{l}}} \\
& +\underbrace{\sum_{j, p, q=1}^{n} \frac{\partial F}{\partial u_{\bar{l}}}\left(\frac{\partial F}{\partial u_{i \bar{j}}} \frac{\partial F}{\partial u_{n \bar{q}}}-\frac{\partial F}{\partial u_{n \bar{j}}} \frac{\partial F}{\partial u_{i \bar{q}}}\right) \partial_{x_{j+n}} u_{p \bar{q}}}_{(7)}
\end{aligned}
$$

We can easily see that $(6)+i(7)=0$, so,

$$
(1)+i(2)=\sum_{j=1}^{n}\left(\partial_{x_{j}}(F)+i \partial_{x_{j+n}}(F)\right) \frac{\partial^{2} F}{\partial u_{n \bar{j}} \partial u_{i \bar{l}}}
$$

and

$$
D_{i n}=\sum_{l=1}^{n} \sum_{j=1}^{n}\left(\partial_{x_{j}}(f)+i \partial_{x_{j+n}}(f)\right) \frac{\partial^{2} F}{\partial u_{n \bar{j}} \partial u_{i \bar{l}}}\left[\partial_{x_{l}}+i \partial_{x_{l}+n}\right] .
$$

Since F is the determinant function, then, $\frac{\partial F}{\partial u_{i \bar{j}}}$ is independent of $u_{i \bar{l}}$ and $u_{l \bar{j}}$ for $l=1, \ldots, n$. Therefore $\frac{\partial^{2} F}{\partial u_{i \bar{j}} \partial u_{p \bar{q}}}$ vanishes unless $i \neq p, j \neq q$. So,

$$
D_{i n}=\sum_{(l, j) \neq(i, n), l, j \leq n}\left(\partial_{x_{j}}(f)+i \partial_{x_{j+n}}(f)\right) \frac{\partial^{2} F}{\partial u_{n \bar{j}} \partial u_{i \bar{l}}}\left[\partial_{x_{l}}+i \partial_{x_{l}+n}\right]
$$

We have $\varphi_{i \bar{j}}(0)=\left(1-\delta_{i}^{n}\right) \sigma_{i} \delta_{i}^{j}$; Therefore, if $n \geq 3$ and $(l, s) \neq(i, n)$,

$$
\frac{\partial^{2} F}{\partial u_{n \bar{s}} \partial u_{i \bar{l}}}\left(\varphi_{i \bar{j}}\right)(0)=0 .
$$

If $n=2$ and $l=1$, then $s=1$ and we also have

$$
\frac{\partial^{2} F}{\partial u_{2 \overline{1}} \partial u_{1 \overline{1}}}\left(\varphi_{i \bar{j}}\right)(0)=0 .
$$

So, (5.3) is proved for $m=1$. By a recursion on m, we deduce this lemma.
On the other hand, we have by 3.5

$$
\begin{gather*}
\Phi^{i j}\left(\varphi_{i \bar{j}}\right)(0)=0, \quad \text { for }(i, j) \neq(n, n), \\
A_{n}\left(\varphi_{i \bar{j}}\right)(0)=\prod_{i=1}^{n-1} \sigma_{i}>0 \tag{5.4}\\
A_{i}\left(\varphi_{i \bar{j}}\right)(0)=\prod_{j \neq i, i=1}^{n-1} \sigma_{i}>0 .
\end{gather*}
$$

Or by the hypothesis, $\partial_{x}^{\beta} g(0)=0$ for all $|\beta|<k$, and by (5.4), we can suppose that $\partial_{x_{n}}^{k} g(0) \neq 0\left(\partial_{x_{2 n}}^{k} g(0) \neq 0\right.$ leads to the same result, just consider $\left(a d X_{2 n}\right)^{m-1}$ instead of $\left.\left(\operatorname{ad} X_{n}\right)^{m-1}\right)$.

So, by taking the real and the imaginary parts of 5.3 at the origin, we obtain

$$
\begin{aligned}
& \left(a d X_{n}\right)^{k-1}\left(\left[X_{n}, X_{i}\right]-\left[X_{2 n}, X_{i+n}\right]\right) \\
& =\sum_{l=1}^{2 n} \sum_{j \neq i} \varepsilon d_{p i j}^{\prime}(0) \partial_{x_{l}}+\left[A_{n}\left(\varphi_{i \bar{j}}\right)(0)\right]^{k-1} A_{i}\left(\varphi_{i \bar{j}}\right)(0)\left[\partial_{x_{n}}^{k} g \partial_{x_{i}}-\partial_{x_{n}}^{k-1} \partial_{x_{2 n}} g \partial_{x_{i}+n}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(a d X_{n}\right)^{k-1}\left(\left[X_{2 n}, X_{i}\right]+\left[X_{n}, X_{i+n}\right]\right) \\
& =\sum_{l=1}^{2 n} \sum_{j \neq i} \varepsilon d_{p i j}^{\prime \prime}(0) \partial_{x_{l}}-\left[A_{n}\left(\varphi_{i \bar{j}}\right)(0)\right]^{k-1} A_{i}\left(\varphi_{i \bar{j}}\right)(0)\left[\partial_{x_{n}}^{k-1} \partial_{x_{2 n}} g \partial_{x_{i}}+\partial_{x_{n}}^{k} g \partial_{x_{i}+n}\right]
\end{aligned}
$$

Suppose now that $|w|_{k+2} \leq 1$. We will get at the origin for $\varepsilon \leq \widetilde{\varepsilon}$ small enough the determinant of the vectors

$$
\begin{gather*}
\left(a d X_{n}\right)^{k-1}\left(\left[X_{n}, X_{i}\right]-\left[X_{2 n}, X_{i+n}\right]\right) \\
\left(\operatorname{ad} X_{n}\right)^{k-1}\left(\left[X_{2 n}, X_{i}\right]+\left[X_{n}, X_{i+n}\right]\right)_{i=1, \ldots, n-1} \tag{5.5}\\
X_{n}, X_{2 n} \text { is different from zero. }
\end{gather*}
$$

Now, choose s_{*} so big that $s_{*} \geq \max (7+2 n, 6+k+n)$ by means of Theorem 1.1 there exists $\varepsilon_{0}<\widetilde{\varepsilon}^{2}$ such that for any g satisfying 1.2 there exists a unique solution $u=\varphi+\varepsilon_{0}^{\frac{1}{2}} w \in C^{k+3}(\Omega)$ to the problem (1.1). Moreover; by 2.1), $|w|_{k+2} \leq$ $\beta\|w\|_{k+2+n+\tau}$. Since $\sigma=s_{*}-2-\tau, s_{*} \geq 6+k+n$ and $\tau \leq \frac{\alpha}{4}<\frac{1}{4}$, then

$$
k+2+n+\tau \leq s_{*}-4+\tau=\sigma-2+2 \tau \leq \sigma-\tau
$$

We have then, using 4.3), 4.5 and 4.15,

$$
|w|_{k+2} \leq 2 \beta \sqrt{\widetilde{\varepsilon}} \leq 1
$$

So, by 5.5 , we can conclude that for $\widetilde{\varepsilon}$ sufficiently small, the vector fields at the origin; $\left[\left(a d X_{n}\right)^{k-1}\left(\left[X_{\delta n}, X_{i}\right]\right)\right]_{\delta=1,2 ; i=1, \ldots, 2 n-1}, X_{n}$ and $X_{2 n}$ span all the tangent space. Theorem 1.2 follows then from Theorem 5.1 .

6. Appendix 1

To prove proposition 4.1, we need the following result.
Propositon 6.1. There exists a constant $K_{0} \geq 1$ such that for any function $w^{i} \in$ $C^{s_{*}+2, \tau}(\bar{\Omega}),\left|w^{i}\right|_{2} \leq 1, i=1,2,3$ and for any $\varepsilon \leq 1$ we have

$$
\begin{equation*}
\left|G\left(w^{1}\right)-G\left(w^{2}\right)\right|_{0} \leq K_{0}\left|w^{1}-w^{2}\right|_{2}\left(\|\varphi\|_{2+n_{*}}+\left\|w^{1}\right\|_{2+n_{*}}+\left\|w^{2}\right\|_{2+n_{*}}+1\right) \tag{6.1}
\end{equation*}
$$

Also for $t \in[0,1], s \in\left[0, s_{*}\right]$,

$$
\begin{align*}
& \left\|\frac{d}{d t}\left[L_{G}\left(w^{1}+t w^{2}\right) w^{3}\right]\right\|_{s} \\
& \leq \varepsilon K_{0}\left[\left(\|\varphi\|_{2+s}+\varepsilon\left\|w^{1}\right\|_{2+s}+\varepsilon\left\|w^{2}\right\|_{2+s}+1\right)\left|w^{2}\right|_{2}\left|w^{3}\right|_{2}\right. \\
& \left.\quad+\left(\|\varphi\|_{2+n_{*}}+\varepsilon\left\|w^{1}\right\|_{2+n_{*}}+\varepsilon\left\|w^{2}\right\|_{2+n_{*}}+1\right)\left(\left|w^{2}\right|_{2}\left\|w^{3}\right\|_{2+s}+\left|w^{3}\right|_{2}\left\|w^{2}\right\|_{2+s}\right)\right] \tag{6.2}
\end{align*}
$$

Proof. Just write

$$
\begin{aligned}
& G\left(w^{1}\right)-G\left(w^{2}\right) \\
& =\frac{1}{\varepsilon}\left[\operatorname{det}\left(\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}^{1}\right)-\operatorname{det}\left(\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}^{2}\right)+g\left(w^{1}\right)-g\left(w^{2}\right)\right] \\
& =\int_{0}^{1} \sum_{i, j=1}^{n} \frac{\partial F}{\partial u_{i \bar{j}}}\left(\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}^{2}+t \varepsilon\left(w_{i \bar{j}}^{1}-w_{i \bar{j}}^{2}\right)\right)\left(w_{i \bar{j}}^{1}-w_{i \bar{j}}^{2}\right) d t \\
& \quad+\int_{0}^{1} \frac{\partial g}{\partial u}\left(\varphi+\varepsilon w^{2}+t \varepsilon\left(w^{1}-w^{2}\right)\right)\left(w^{1}-w^{2}\right) \\
& \quad+\int_{0}^{1} \frac{\partial g}{\partial p_{i}}\left(\varphi+\varepsilon w^{2}+t \varepsilon\left(w^{1}-w^{2}\right)\right)\left(w_{i}^{1}-w_{i}^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{d}{d t}\left[L_{G}\left(w^{1}+t w^{2}\right) w^{3}\right] \\
& =\frac{d}{d t}\left[\sum_{i, j=1}^{n} \frac{\partial F}{\partial u_{i \bar{j}}}\left(\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}^{1}+t \varepsilon w_{i \bar{j}}^{2}\right) w_{i \bar{j}}^{3}+\frac{\partial g}{\partial u}\left(\varphi+\varepsilon w^{1}+t \varepsilon w^{2}\right) w^{3}+\ldots\right] \\
& =\varepsilon \sum_{i, j, p, q=1}^{n} \frac{\partial^{2} F}{\partial u_{i \bar{j}} \partial u_{p \bar{q}}}\left(\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}^{1}+t \varepsilon w_{i \bar{j}}^{2}\right) w_{p \bar{q}}^{2} w_{i \bar{j}}^{3}+\ldots
\end{aligned}
$$

Combining (2.1), 2.7), 2.8 and (2.9) with the inequalities

$$
\left|\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}^{2}+t \varepsilon\left(w_{i \bar{j}}^{1}-w_{i \bar{j}}^{2}\right)\right|_{0} \leq|\varphi|_{2}+2\left|w^{2}\right|_{2}+\left|w^{1}\right|_{2} \leq 3+|\varphi|_{2}
$$

and

$$
\left|\varphi_{i \bar{j}}+\varepsilon w_{i \bar{j}}^{1}+t \varepsilon w_{i \bar{j}}^{2}\right|_{0} \leq|\varphi|_{2}+\varepsilon\left|w^{1}\right|_{2}+t \varepsilon\left|w^{2}\right|_{2} \leq 2+|\varphi|_{2},
$$

we deduce 6.1 and 6.2.
Proof of the proposition 4.1. The proposition is proved by induction. We have $u_{0}=$ 0 . Let begin by proving (4.19) to 4.21 . (i.e. 4.19) to 4.21 corresponding to $j=0)$.
(a) 4.190_{0} : Using 3.2 and 4.10 , we have

$$
g_{0}=-S_{0} G(0) \quad \text { and } \quad G(0)=\frac{1}{\widetilde{\varepsilon}}\left(\operatorname{det}\left(\varphi_{i j}\right)-g(\varphi)\right)
$$

But $\varphi \in C^{s_{*}+2, \alpha}(\bar{\Omega}), g \in C^{s_{*}}$ and S_{n} are smoothing operators, so $g_{0} \in H^{s_{*}}(\Omega)$. (2.3), 2.4, (3.2) and (1.2) show that

$$
\left\|g_{0}\right\|_{s} \leq \beta\|G(0)\|_{s} \leq \frac{\beta}{\widetilde{\varepsilon}}\left\|\operatorname{det}\left(\varphi_{i j}\right)-g(\varphi)\right\|_{s_{*}} \leq \frac{\beta^{2}}{\widetilde{\varepsilon}}\left|\operatorname{det}\left(\varphi_{i j}\right)-g(\varphi)\right|_{s_{*}} \leq \beta^{2} \widetilde{\varepsilon}
$$

Using (4.4) and $\beta \leq \mu$, we get $\left\|g_{0}\right\|_{s} \leq \mu^{2} \widetilde{\varepsilon} \leq a_{2} \widetilde{\varepsilon}$
(b) $4.200_{0}:(3.2,4.4,4$ and 1.2 give

$$
\theta_{0}=|G(0)|_{0} \leq \frac{1}{\widetilde{\varepsilon}}\left|\operatorname{det}\left(\varphi_{i \bar{j}}\right)-g(\varphi)\right|_{s_{*}} \leq \widetilde{\varepsilon} \leq \sqrt{\widetilde{\varepsilon}} a_{3} \leq 1
$$

(c) 4.210 : We have

$$
A_{0}(2)=\max \left(1,\left|\frac{\partial g}{\partial u}(\varphi)\right|_{2}, \max _{i, j}\left|\frac{\partial F}{\partial \varphi_{i \bar{j}}}\left(\varphi_{l \bar{q}}\right)\right|_{2}+\theta_{0}\right) .
$$

Then, by 2.9 , 4.1) and $4.20{ }_{0}, A_{0}(2) \leq M_{0}$.

Assume that $u_{0}, u_{1}, \ldots, u_{n-1} \in H^{s_{*}}(\Omega)$ satisfy $(3.12)-(3.14)$ and 4.14$)-4.21$ for $j \leq n-1$. We shall construct $u_{n} \in H^{s_{*}}(\Omega)$ satisfying 3.12 -3.14) and prove that (4.14) 4.21) are satisfied for $j=n$.

Combining 4.16 $n-1.21{ }_{n-1}$, we have $\left|\widetilde{w}_{n-1}\right|_{4, \kappa} \leq 1, \theta_{n-1} \leq 1, A_{n-1}(2) \leq$ M_{0} and $g_{n-1} \in H^{s_{*}}(\Omega)$. We can then apply Theorem 3.3 to get a solution $u_{n} \in$ $H^{s_{*}}(\Omega)$ to the problem 4.7$)_{n}$ satisfying (3.12)-3.14). Then:
(a) $4.14{ }_{n}$: For $n=1$, using $1.2,(2.3),(3.2,(3.12)$, and 4.2 , we have

$$
\left\|u_{1}\right\|_{0} \leq D\left\|g_{0}\right\|_{0} \leq D \beta\|G(0)\|_{0} \leq D \frac{\beta^{2}}{\widetilde{\varepsilon}}\left|\operatorname{det}\left(\varphi_{i j}\right)-g(\varphi)\right|_{s_{*}} \leq D \beta^{2} \widetilde{\varepsilon}
$$

(4.3), 4.5), and $s_{*} \geq \sigma$ give

$$
\begin{equation*}
\left\|u_{1}\right\|_{0} \leq \sqrt{\widetilde{\varepsilon}} \mu^{-\sigma} \tag{6.3}
\end{equation*}
$$

By (3.13), we have $\left\|u_{1}\right\|_{1} \leq D\left(\left\|g_{0}\right\|_{1}+\left\|u_{1}\right\|_{0}\right)$. Therefore, using (1.2), (2.3), (6.3), and $s_{*} \geq \sigma$, we get

$$
\left\|u_{1}\right\|_{1} \leq D\left(\beta^{2} \widetilde{\varepsilon}+\sqrt{\widetilde{\varepsilon}} \mu^{-\sigma}\right) \leq \sqrt{\widetilde{\varepsilon}} \mu^{1-\sigma}
$$

Suppose that for $0 \leq l \leq s$ and $s \geq 2$ we have

$$
\begin{equation*}
\left\|u_{1}\right\|_{l} \leq \sqrt{\widetilde{\varepsilon}} \mu^{l-\sigma} \tag{6.4}
\end{equation*}
$$

Using (3.14), we have, for $s \geq 2$,

$$
\left\|u_{1}\right\|_{s} \leq D\left(\left\|g_{0}\right\|_{s}+\sum_{l \leq s-1,(i, l) \in \Lambda_{s}}\left(1+|\varphi|_{i+4, \tau}\right)\left\|u_{1}\right\|_{l}\right)
$$

(1.2), (2.3), 2.4), 4.3), 4.10, and $s_{*} \geq \sigma$ imply

$$
\left\|g_{0}\right\|_{s} \leq \beta\|G(0)\|_{s} \leq \beta^{2}|G(0)|_{s} \leq \beta^{2} \widetilde{\varepsilon} \leq \widetilde{\mu} \widetilde{\varepsilon} \mu^{s-\sigma}
$$

which by (6.3) and 6.4) gives

$$
\begin{aligned}
\left\|u_{1}\right\|_{s} & \leq D\left(\widetilde{\mu} \widetilde{\varepsilon} \mu^{s-\sigma}+\sum_{l \leq s-1,(i, l) \in \Lambda_{s}}\left(1+|\varphi|_{i+4, \tau}\right) \sqrt{\widetilde{\varepsilon}} \mu^{l-\sigma}\right) \\
& \leq D\left(\widetilde{\mu} \widetilde{\varepsilon} \mu^{s-\sigma}+s_{*}^{2}\left(1+|\varphi|_{i+4, \tau}\right) \mu^{-1} \sqrt{\widetilde{\varepsilon}} \mu^{s-\sigma}\right)
\end{aligned}
$$

which by (4.3) and (4.5) shows that $\left\|u_{1}\right\|_{s} \leq \sqrt{\widetilde{\varepsilon}} \mu^{s-\sigma}$.
For $n \geq 2,4.12,4.2,4.5$, and $4.19{ }_{n-1}$ imply

$$
\begin{equation*}
\left\|u_{n}\right\|_{0} \leq D\left\|g_{n-1}\right\|_{0} \leq D \widetilde{\varepsilon} a_{2} \mu_{n-1}^{-\sigma} \leq \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{-\sigma} \tag{6.5}
\end{equation*}
$$

In the same way; (3.13), 4.2, 4.5, 4.19 ${ }_{n-1}$ and (6.5) give

$$
\left\|u_{n}\right\|_{1} \leq \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{1-\sigma}
$$

Suppose that, for $0 \leq l<s$ and $s \geq 2,\left\|u_{n}\right\|_{l} \leq \sqrt{\tilde{\varepsilon}} \mu_{n-1}^{l-\sigma}$. By (3.14), we have

$$
\left\|u_{n}\right\|_{s} \leq D\left(\left\|g_{n-1}\right\|_{s}+\sum_{l \leq s-1,(i, l) \in \Lambda_{s}}\left(1+\left|\varphi+\widetilde{\varepsilon} \widetilde{w}_{n-1}\right|_{i+4, \tau}\right)\left\|u_{n}\right\|_{l}\right)
$$

But, 2.1), 2.5, 4.15 $n-1$, and $4+n_{*} \leq \sigma-\tau$ imply that, for $0 \leq i \leq s-2$,

$$
\left|\widetilde{w}_{n-1}\right|_{i+4, \tau} \leq \beta\left\|\widetilde{w}_{n-1}\right\|_{4+n_{*}+i} \leq \beta^{2} \mu_{n-1}^{i}\left\|\widetilde{w}_{n-1}\right\|_{4+n_{*}} \leq 2 \beta^{2} \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{i}
$$

Therefore, using 4_{n-1}, we get

$$
\begin{aligned}
\left\|u_{n}\right\|_{s} & \leq D\left(\widetilde{\varepsilon} a_{2} \mu_{n-1}^{s-\sigma}+\sum\left(1+|\varphi|_{s_{*}+2, \tau}+2 \beta^{2} \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{i}\right) \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{l-\sigma}\right) \\
& \leq D\left(\widetilde{\varepsilon} a_{2} \mu_{n-1}^{s-\sigma}+2 \beta^{2} s_{*}^{2} \widetilde{\varepsilon} \mu_{n-1}^{s-\sigma}+\left(1+|\varphi|_{s_{*}+2, \tau}\right) s_{*}^{2} \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{s-1-\sigma}\right)
\end{aligned}
$$

which combined with (4.4) and 4.5 gives $\left\|u_{n}\right\|_{s} \leq \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{s-\sigma}$.
(b) 4.15 ${ }_{n}$ (4.6 shows that $w_{n}=\sum_{j=1}^{n} u_{j}$. By $4.14 j, 1 \leq j \leq n$, we have

$$
\left\|w_{n}\right\|_{s} \leq \sum_{j=1}^{n}\left\|u_{j}\right\|_{s} \leq \sqrt{\widetilde{\varepsilon}} \mu^{s-\sigma}+\sum_{j=2}^{n} \sqrt{\widetilde{\varepsilon}} \mu_{j-1}^{s-\sigma} \leq \sqrt{\widetilde{\varepsilon}} \mu^{s-\sigma}+\sum_{j=1}^{n-1} \sqrt{\widetilde{\varepsilon}} \mu_{j}^{s-\sigma}
$$

For $s \leq \sigma-\tau$, since $\mu \geq 2^{1 / \tau} \geq 2$, we have $\mu_{j}^{s-\sigma} \leq \mu_{j}^{-\tau} \leq \frac{1}{2^{j}}$ and

$$
\left\|w_{n}\right\|_{s} \leq \sum_{j=0}^{n-1} \sqrt{\widetilde{\varepsilon}} \mu_{j}^{s-\sigma} \leq \sqrt{\widetilde{\varepsilon}} \sum_{j=0}^{n-1} \frac{1}{2^{j}} \leq 2 \sqrt{\widetilde{\varepsilon}}
$$

For $s \geq \sigma-\tau$, we have

$$
\left\|w_{n}\right\|_{s} \leq \sqrt{\widetilde{\varepsilon}} \mu^{s-\sigma}+\sqrt{\widetilde{\varepsilon}} \frac{\mu^{n(s-\sigma)}-\mu^{s-\sigma}}{\mu^{s-\sigma}-1}
$$

Since $\mu \geq 2^{1 / \tau}$, it follows that $\mu^{s-\sigma} \geq \mu^{\tau} \geq 2$. Therefore, $\left\|w_{n}\right\|_{s} \leq \sqrt{\widetilde{\varepsilon}} \mu_{n}^{s-\sigma}$.
(c) $4.16{ }_{n}$: Combining (2.1), 2.4, 4.5, 4.15 n and $4+n_{*} \leq \sigma-\tau$, we obtain

$$
\left|\widetilde{w}_{n}\right|_{4, \tau} \leq \beta\left\|\widetilde{w}_{n}\right\|_{4+n_{*}} \leq \beta^{2}\left\|w_{n}\right\|_{4+n_{*}} \leq 2 \beta^{2} \sqrt{\widetilde{\varepsilon}} \leq 1
$$

(d) 4.17 n): In the case $s \leq \sigma-\tau$, using 2.6 and 4.15 n, we obtain

$$
\left\|w_{n}-\widetilde{w}_{n}\right\|_{s} \leq \beta \mu_{n}^{s-[\sigma+\tau]-1}\left\|w_{n}\right\|_{[\sigma+\tau]+1} \leq \beta \mu_{n}^{s-[\sigma+\tau]-1} \sqrt{\widetilde{\varepsilon}} \mu_{n}^{[\sigma+\tau]+1-\sigma} \leq \beta \sqrt{\widetilde{\varepsilon}} \mu_{n}^{s-\sigma}
$$

In the case $\left.s>\sigma-\tau,(2.6)(4.15)_{n}\right)$ and $\beta \geq 1$ give

$$
\left\|w_{n}-\widetilde{w}_{n}\right\|_{s} \leq \beta\left\|w_{n}\right\|_{s} \leq \beta \sqrt{\widetilde{\varepsilon}} \mu_{n}^{s-\sigma}
$$

(e) 4.18 n : By 4.12, we have

$$
r_{n}=\underbrace{\left[L_{G}\left(w_{n-1}\right)-L_{G}\left(\widetilde{w}_{n-1}\right)\right] u_{n}}_{(1)}-\underbrace{\theta_{n-1} \triangle u_{n}}_{(2)}+\underbrace{Q_{n}}_{(3)}
$$

When $n=1,(1)=0$. In the case $n \geq 2$, since

$$
(1)=\int_{0}^{1} \frac{d}{d t}\left[L_{G}\left(\widetilde{w}_{n-1}+t\left(w_{n-1}-\widetilde{w}_{n-1}\right)\right) u_{n}\right] d t
$$

by (2.1) and $4.17{ }_{n-1}$, we get

$$
\left|w_{n-1}-\widetilde{w}_{n-1}\right|_{2} \leq \beta\left\|w_{n-1}-\widetilde{w}_{n-1}\right\|_{2+n_{*}} \leq 2 \beta^{2} \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{3+n_{*}-\sigma}
$$

But $2 \beta^{2} \sqrt{\widetilde{\varepsilon}} \leq 1$ and $3+n_{*} \leq 4+2 n_{*} \leq \sigma$, so, $\left|w_{n-1}-\widetilde{w}_{n-1}\right|_{2} \leq 1$. In the same way, 2.1 , 4.5 and $4.14 n_{n}$ give

$$
\left|u_{n}\right|_{2} \leq \beta\left\|u_{n}\right\|_{2+n_{*}} \leq \beta \sqrt{\widetilde{\varepsilon}} \mu_{n-1}^{3+n_{*}-\sigma} \leq 1
$$

By (4.16) ${ }_{n-1}$, we also have $\left|\widetilde{w}_{n-1}\right|_{2} \leq 1$. Hence, we can apply Proposition 6.1 to get

$$
\begin{aligned}
\|(1)\|_{s} \leq \widetilde{\varepsilon} K_{0}\left\{\left[\|\varphi\|_{s+2}+\left\|\widetilde{w}_{n-1}\right\|_{s+2}+\left\|w_{n-1}\right\|_{s+2}+1\right]\left|w_{n-1}-\widetilde{w}_{n-1}\right|_{2}\left|u_{n}\right|_{2}\right. \\
+\left(\|\varphi\|_{2+n_{*}}+\left\|\widetilde{w}_{n-1}\right\|_{2+n_{*}}+\left\|w_{n-1}\right\|_{2+n_{*}}+1\right) \\
\left.\times\left(\left|w_{n-1}-\widetilde{w}_{n-1}\right|_{2}\left\|u_{n}\right\|_{s+2}+\left\|w_{n-1}-\widetilde{w}_{n-1}\right\|_{s+2}\left|u_{n}\right|_{2}\right)\right\}
\end{aligned}
$$

Using (2.3) and 4.3), we get for $0 \leq s \leq s_{*}$,

$$
\|\varphi\|_{s+2} \leq \beta|\varphi|_{s_{*}+2} \leq \beta \mu \leq \mu^{2}
$$

By (2.2), it suffices to prove $4.18{ }_{n}$ for $s=0$ and $s=s_{*}-2$.

Case $s=0$: combining 2.1, 4.14 $n_{n}, 4.15{ }_{n-1}$ and 4.17 n_{n-1}, we have

$$
\begin{aligned}
\|(1)\|_{0} \leq & \widetilde{\varepsilon} K_{0}\left\{\left(\mu^{2}+2 \beta \sqrt{\widetilde{\varepsilon}}+2 \sqrt{\widetilde{\varepsilon}}+1\right) 2 \beta^{3} \widetilde{\varepsilon} \mu_{n-1}^{4+2 n_{*}-2 \sigma}\right. \\
& \left.+\left(\mu^{2}+2 \beta \sqrt{\widetilde{\varepsilon}}+2 \sqrt{\widetilde{\varepsilon}}+1\right) 4 \beta^{3} \widetilde{\varepsilon} \mu_{n-1}^{4+n_{*}-2 \sigma}\right\},
\end{aligned}
$$

which using 4.5 and $\sigma \geq 4+2 n_{*} \geq 4+n_{*}$ gives $\|(1)\|_{0} \leq \widetilde{\varepsilon} K_{0} \mu_{n-1}^{-\sigma}$. Case $s=s_{*}-2: 4.5$ and $s_{*} \geq \sigma+\tau$, as in the previous case, imply

$$
\|(1)\|_{s_{*}-2} \leq \widetilde{\varepsilon} K_{0} \mu_{n-1}^{s_{*}-2-\sigma} .
$$

By (2.2), we obtain for $0 \leq s \leq s_{*}-2$,

$$
\|(1)\|_{s} \leq \beta \widetilde{\varepsilon} K_{0} \mu_{n-1}^{s-\sigma} .
$$

Next,

$$
\|(2)\|_{s} \leq \theta_{n-1}\left\|u_{n}\right\|_{s+2}
$$

If $n=1$ combining 4.5, 4.9) and $4.14 n$, we obtain

$$
\|(2)\|_{s} \leq|G(0)|_{0}\left\|u_{1}\right\|_{s+2} \leq \widetilde{\varepsilon} \sqrt{\widetilde{\varepsilon}} \mu^{s+2-\sigma} \leq \widetilde{\varepsilon} \mu^{s-\sigma} .
$$

In the case $n \geq 2: 4.14{ }_{n}$ and $4.20{ }_{n-1}$ imply

$$
\|(2)\|_{s} \leq a_{3} \widetilde{\varepsilon} \mu_{n-1}^{-2} \mu_{n-1}^{s+2-\sigma}=a_{3} \widetilde{\varepsilon} \mu_{n-1}^{s-\sigma} .
$$

Finally, since by 4.13,

$$
\begin{aligned}
(3) & =Q_{n}=G\left(w_{n-1}+u_{n}\right)-G\left(w_{n-1}\right)-L_{G}\left(w_{n-1}\right) u_{n} \\
& =\int_{0}^{1}\left(\int_{0}^{t} \frac{d}{d h}\left[L_{G}\left(w_{n-1}+h u_{n}\right) u_{n}\right] d h\right) d t
\end{aligned}
$$

Then, using (2.1), 4.5 and 4.15 $n-1$, we obtain

$$
\left|w_{n-1}\right|_{2} \leq \beta\left\|w_{n-1}\right\|_{2+n_{*}} \leq 2 \beta \sqrt{\widetilde{\varepsilon}} \leq 1
$$

Since we proved that $\left|u_{n}\right|_{2} \leq 1$, we can apply proposition 6.1 to have

$$
\begin{aligned}
\|(3)\|_{s} \leq & \widetilde{\varepsilon} K_{0}\left[\left(\|\varphi\|_{s+2}+\left\|u_{n}\right\|_{s+2}+\left\|w_{n-1}\right\|_{s+2}+1\right)\left|u_{n}\right|_{2}^{2}\right. \\
& \left.+2\left|u_{n}\right|_{2}\left\|u_{n}\right\|_{s+2}\left(\|\varphi\|_{2+n_{*}}+\left\|u_{n}\right\|_{2+n_{*}}+\left\|w_{n-1}\right\|_{2+n_{*}}+1\right)\right]
\end{aligned}
$$

Combining (2.1), 4.14 n_{n} and $4.15{ }_{n-1}$, we get For $s=0$:

$$
\begin{aligned}
& \|(3)\|_{0} \\
& \leq \widetilde{\varepsilon} K_{0}\left\{\left(\mu^{2}+\sqrt{\widetilde{\varepsilon}}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{2-\sigma}+2 \sqrt{\widetilde{\varepsilon}}+1\right) \beta^{2} \widetilde{\varepsilon}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{4+2 n_{*}-2 \sigma}\right. \\
& \left.\quad+8\left(\mu^{2}+\sqrt{\widetilde{\varepsilon}} \beta\left[\max \left(\mu, \mu_{n-1}\right)\right]^{2+n_{*}-\sigma}+2 \sqrt{\widetilde{\varepsilon}}+1\right) \widetilde{\varepsilon} \beta\left[\max \left(\mu, \mu_{n-1}\right)\right]^{4+n_{*}-2 \sigma}\right\},
\end{aligned}
$$

which combined with 4.5 and $\sigma \geq 4+2 n_{*}$ gives

$$
\|(3)\|_{0} \leq \widetilde{\varepsilon} K_{0}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{-\sigma} .
$$

For $s=s_{*}-2$; since $\sigma \geq 4+2 n_{*}$, we also get

$$
\|(3)\|_{s_{*}-2} \leq \widetilde{\varepsilon} K_{0}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{s_{*}-2-\sigma}
$$

Then (2.2) shows that, for $0 \leq s \leq s_{*}-2$,

$$
\|(3)\|_{s} \leq \beta \widetilde{\varepsilon} K_{0}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{s-\sigma},
$$

and we conclude that

$$
\left\|r_{n}\right\|_{s} \leq\left(2 \beta K_{0}+a_{3}\right) \widetilde{\varepsilon}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{s-\sigma}
$$

$$
\begin{aligned}
& \leq 9 K_{0} \mu^{5} \widetilde{\varepsilon}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{s-\sigma} \\
& =a_{1} \widetilde{\varepsilon}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{s-\sigma} .
\end{aligned}
$$

(f) 4.19$)_{n}$): By 4.10) and 4.11),

$$
\begin{aligned}
g_{n} & =S_{n-1} R_{n-1}-S_{n} R_{n}+\left(S_{n-1}-S_{n}\right) G(0) \\
& =\underbrace{\left(S_{n-1} R_{n-1}-S_{n} R_{n-1}\right)}_{(4)}-\underbrace{S_{n} r_{n}}_{(5)}+\underbrace{\left(S_{n-1}-S_{n}\right) G(0)}_{(6)} .
\end{aligned}
$$

Case $s=0$: 2.6, 4.11) and 4.18),$j \leq n-1$, imply

$$
\begin{aligned}
\|(4)\|_{0} & \leq\left\|\left(I-S_{n-1}\right) R_{n-1}\right\|_{0}+\left\|\left(I-S_{n}\right) R_{n-1}\right\|_{0} \\
& \leq \beta\left\|R_{n-1}\right\|_{s_{*}-2} \mu_{n-1}^{2-s_{*}}+\beta \mu_{n}^{2-s_{*}}\left\|R_{n-1}\right\|_{s_{*}-2} \\
& \leq\left(\beta a_{1} \widetilde{\varepsilon} \mu_{n-1}^{2-s_{*}}+\beta a_{1} \widetilde{\varepsilon} \mu_{n}^{2-s_{*}}\right)\left(\mu^{s_{*}-2-\sigma}+\sum_{j=2}^{n-1} \mu_{j-1}^{s_{*}-2-\sigma}\right) .
\end{aligned}
$$

Since $s_{*}-2>\sigma$ and $\beta \leq \mu$, then

$$
\|(4)\|_{0} \leq \beta a_{1} \widetilde{\varepsilon}\left(\mu_{n-1}^{2-s_{*}}+\mu_{n}^{2-s_{*}}\right) \mu_{n-1}^{s_{*}-2-\sigma} \leq 2 a_{1} \mu^{2} \widetilde{\varepsilon} \mu_{n}^{-\sigma} .
$$

On the other hand, combining (2.4), 4.18 $n, \sigma<s_{*}-2$ and $\beta \leq \mu$, we obtain

$$
\|(5)\|_{0} \leq \beta\left\|r_{n}\right\|_{0} \leq \beta a_{1} \widetilde{\varepsilon}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{-\sigma} \leq a_{1} \mu^{2} \widetilde{\varepsilon} \mu_{n}^{-\sigma} .
$$

We also have by 1.2), 2.3), 2.6). and $\sigma<s_{*}-2$,

$$
\begin{aligned}
\|(6)\|_{0} & \leq\left\|\left(I-S_{n-1}\right) G(0)\right\|_{0}+\left\|\left(I-S_{n}\right) G(0)\right\|_{0} \\
& \leq \beta \mu_{n-1}^{-\sigma}\|G(0)\|_{\sigma}+\beta \mu_{n}^{-\sigma}\|G(0)\|_{\sigma} \\
& \leq \beta^{2} \mu_{n-1}^{-\sigma}|G(0)|_{s_{*}}+\beta^{2} \mu_{n}^{-\sigma}|G(0)|_{s_{*}} \\
& \leq \beta^{2} \widetilde{\varepsilon} \mu_{n}^{-\sigma}\left(\mu^{\sigma}+1\right) \leq 2 \mu^{s_{*}} \widetilde{\varepsilon} \mu_{n}^{-\sigma} .
\end{aligned}
$$

We finally get

$$
\left\|g_{n}\right\|_{0} \leq\left(2+3 a_{1}\right) \mu^{s_{*}} \widetilde{\varepsilon} \mu_{n}^{-\sigma} .
$$

Case $s=s_{*}$: 2.5), (4.11), 4.18), $1 \leq j \leq n$, and $\sigma<s_{*}-2$ show that

$$
\begin{aligned}
& \|(4)+(5)\|_{s_{*}} \\
& \leq\left\|S_{n-1} R_{n-1}\right\|_{s_{*}}+\left\|S_{n} R_{n}\right\|_{s_{*}} \\
& \leq \beta \mu_{n-1}^{2}\left\|R_{n-1}\right\|_{s_{*}-2}+\beta \mu_{n}^{2}\left\|R_{n}\right\|_{s_{*}-2} \\
& \leq \beta \mu_{n-1}^{2} a_{1} \widetilde{\varepsilon}\left(\mu^{s_{*}-2-\sigma}+\sum_{j=2}^{n-1} \mu_{j-1}^{s_{*}-2-\sigma}\right)+\beta \mu_{n}^{2} a_{1} \widetilde{\varepsilon}\left(\mu^{s_{*}-2-\sigma}+\sum_{j=2}^{n} \mu_{j-1}^{s_{*}-2-\sigma}\right) \\
& \leq \beta a_{1} \widetilde{\varepsilon}\left(\mu_{n-1}^{2} \mu_{n-1}^{s_{*}-2-\sigma}+\mu_{n}^{2} \mu_{n}^{s_{*}-2-\sigma}\right) \\
& \leq 2 \beta a_{1} \widetilde{\varepsilon} \mu_{n}^{s_{*}-\sigma} \leq 2 \mu a_{1} \widetilde{\varepsilon} \mu_{n}^{s_{*}-\sigma} .
\end{aligned}
$$

Next, by 1.2), 2.5), 2.3), and $\beta \leq \mu$, we have

$$
\begin{aligned}
\|(6)\|_{s_{*}} & \leq\left\|S_{n} G(0)\right\|_{s_{*}}+\left\|S_{n-1} G(0)\right\|_{s_{*}} \\
& \leq \beta \mu_{n}^{s_{*}^{*-\sigma}}\|G(0)\|_{\sigma}+\beta \mu_{n-1}^{s_{*}-\sigma}\|G(0)\|_{\sigma} \\
& \leq 2 \beta^{2} \widetilde{\varepsilon} \mu_{n}^{s_{*}-\sigma} \leq 2 \mu^{2} \widetilde{\varepsilon} \mu_{n}^{s_{*}-\sigma} .
\end{aligned}
$$

Therefore,

$$
\left\|g_{n}\right\|_{s_{*}} \leq 2 \mu\left(a_{1}+\mu\right) \widetilde{\varepsilon} \mu_{n}^{s_{*}-\sigma} .
$$

We can finally conclude using (4.4) and $\mu \leq a_{1}$, that

$$
\left\|g_{n}\right\|_{s_{*}} \leq 4 a_{1} \mu^{2} \widetilde{\varepsilon} \mu_{n}^{s_{*}-\sigma} \leq a_{2} \widetilde{\varepsilon} \mu_{n}^{s_{*}-\sigma}
$$

(g) $4.20{ }_{n}$: By 4.9, we have

$$
\theta_{n}=\left|G\left(\widetilde{w}_{n}\right)\right|_{0} \leq\left|G\left(w_{n}\right)-G\left(\widetilde{w}_{n}\right)\right|_{0}+\left|G\left(w_{n}\right)\right|_{0}
$$

Using 4.22):

$$
G\left(w_{n}\right)=\left(I-S_{n-1}\right) R_{n-1}+\left(I-S_{n-1}\right) G(0)+r_{n} .
$$

Then

$$
\theta_{n} \leq \underbrace{\left|G\left(w_{n}\right)-G\left(\widetilde{w}_{n}\right)\right|_{0}}_{(7)}+\underbrace{\left|\left(I-S_{n-1}\right) R_{n-1}\right|_{0}}_{(8)}+\underbrace{\left|\left(I-S_{n-1}\right) G(0)\right|_{0}}_{(9)}+\underbrace{\left|r_{n}\right|_{0}}_{(10)}
$$

Since we proved that $\left|w_{n}\right|_{2} \leq 1$ and $\left|\widetilde{w}_{n}\right|_{2} \leq 1$, we can apply Proposition 6.1 to get

$$
(7) \leq \beta K_{0}\left\|w_{n}-\widetilde{w}_{n}\right\|_{2+n_{*}}\left(\|\varphi\|_{2+n_{*}}+\left\|w_{n}\right\|_{2+n_{*}}+\left\|\widetilde{w}_{n}\right\|_{2+n_{*}}+1\right)
$$

Equations 2.4, 4.15n $4.17{ }_{n}$, and $3+n_{*} \leq 4+2 n_{*}-\tau \leq \sigma-\tau$ imply

$$
(7) \leq 2 \beta^{2} K_{0} \sqrt{\widetilde{\varepsilon}} \mu_{n}^{2+n_{*}-\sigma}\left(\mu^{2}+2 \sqrt{\widetilde{\varepsilon}}+2 \beta \sqrt{\widetilde{\varepsilon}}+1\right)
$$

Since $\widetilde{\varepsilon} \leq \frac{1}{\left(6 \beta^{2}\right)^{2}}, \beta \leq \mu$ and $4+n_{*}-\sigma \leq 4+2 n_{*}-\sigma \leq 0$ then

$$
(7) \leq 4 \mu^{5} K_{0} \sqrt{\widetilde{\varepsilon}} \mu_{n}^{-2}
$$

In the case $n=1,(8)=0$. For $n \geq 2$, since $\beta \leq \mu, n_{*}-\sigma \leq-2$ and $\mu^{4} a_{1} \sqrt{\widetilde{\varepsilon}} \leq$ $a_{2} \sqrt{\widetilde{\varepsilon}} \leq 1$, combining 2.1, 2.6, 4.11, and 4.18,$j \leq n-1$, we obtain

$$
\begin{aligned}
(8) & \leq \beta\left\|\left(I-S_{n-1}\right) R_{n-1}\right\|_{n_{*}} \\
& \leq \beta^{2} \mu_{n-1}^{n_{*}-s_{*}+2} a_{1} \widetilde{\varepsilon}\left(\mu^{s_{*}-2-\sigma}+\sum_{j=2}^{n-1} \mu_{j-1}^{s_{*}-2-\sigma}\right) \\
& \leq \beta^{2} a_{1} \widetilde{\varepsilon} \mu_{n-1}^{s_{*}-\sigma} \leq \sqrt{\widetilde{\varepsilon}} \mu_{n}^{-2}
\end{aligned}
$$

Equations (1.2, 2.1), 2.3, 2.6, 4.5, and $\beta \leq \mu$ imply

$$
\begin{aligned}
(9) & \leq \beta\left\|\left(I-S_{n-1}\right) G(0)\right\|_{n_{*}} \leq \beta^{2} \mu_{n-1}^{n_{*}-s_{*}}\|G(0)\|_{s_{*}} \\
& \leq \beta^{3} \mu_{n-1}^{-2} \widetilde{\varepsilon} \leq \beta^{3} \mu^{2} \widetilde{\varepsilon} \mu_{n}^{-2} \leq \sqrt{\widetilde{\varepsilon}} \mu_{n}^{-2}
\end{aligned}
$$

Finally, by 2.1 and $4.18{ }_{n}$,

$$
\begin{aligned}
(10) \leq \beta\left\|r_{n}\right\|_{n_{*}} & \leq \beta a_{1} \widetilde{\varepsilon}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{n_{*}-\sigma} \\
& \leq \mu a_{1} \widetilde{\varepsilon}\left[\max \left(\mu, \mu_{n-1}\right)\right]^{-2} \leq \sqrt{\widetilde{\varepsilon}} \mu_{n}^{-2}
\end{aligned}
$$

Thus, we conclude that

$$
\theta_{n} \leq 7 K_{0} \mu^{5} \sqrt{\widetilde{\varepsilon}} \mu_{n}^{-2}=a_{3} \sqrt{\widetilde{\varepsilon}} \mu_{n}^{-2} \leq 1
$$

(h) 4.21: We have

$$
A_{n}(2) \leq \max \left(1,\left|\frac{\partial g}{\partial u}\left(\varphi+\widetilde{\varepsilon} \widetilde{w}_{n}\right)\right|_{2}, \max _{1 \leq i, j \leq n}\left|\frac{\partial F}{\partial u_{i \bar{j}}}\left(\varphi_{k \bar{l}}+\widetilde{\varepsilon}\left(\widetilde{w}_{n}\right)_{k \bar{l}}\right)\right|_{2}+\theta_{n}\right)
$$

Using (2.9), 4.1, $4.16{ }_{n}$ and $4.20{ }_{n}$, we get $A_{n}(2) \leq M_{0}$.

7. Appendix 2

In the rest of this paper, we prove estimates $\sqrt[3.12]{-3.14}$ for L_{ν}. We shall need the following result.

Propositon 7.1. The operator

$$
P=\sum_{i, j=1}^{n} \frac{\partial F}{\partial u_{z_{i} \overline{z_{j}}}}\left(u_{z_{i} \overline{z_{j}}}\right) \partial_{z_{i}} \partial_{\overline{z_{j}}},
$$

where $u \in C^{3}(\bar{\Omega})$, is formally self-adjoint.
Proof. Let $\Sigma=\left\{z \in \Omega / F\left(u_{z_{i} \overline{z_{j}}}\right)(z)=0\right\}$. Since

$$
P=\sum_{i=1}^{n} \partial_{z_{i}}\left(\sum_{j=1}^{n} \frac{\partial F}{\partial u_{z_{i} \overline{z_{j}}}} \partial_{\overline{z_{j}}}\right)-\sum_{i, j=1}^{n} \partial_{z_{i}}\left(\frac{\partial F}{\partial u_{z_{i} \overline{z_{j}}}}\left(u_{i \bar{j}}\right)\right) \partial_{\overline{z_{j}}},
$$

it is sufficient to prove that for $j=1, \ldots, n$ and $z \in \bar{\Omega}$,

$$
\begin{aligned}
A_{j}(z) & =\sum_{i=1}^{n} \partial_{z_{i}}\left(\frac{\partial F}{\partial u_{z_{i} \overline{z_{j}}}}\left(u_{z_{i} \overline{z_{j}}}\right)(z)\right) \\
& =\sum_{i, p, q=1}^{n} \frac{\partial^{2} F}{\partial u_{z_{i} \overline{z_{j}}} \partial u_{z_{p} \overline{z_{q}}}}\left(u_{z_{i} \overline{z_{j}}}\right) u_{z_{i} z_{p} \overline{z_{q}}}(z)=0 .
\end{aligned}
$$

Using the relation 2.10, we get $A_{j}(z)=0$ for any $z \notin \Sigma$. The continuity of the determinant function allow as to have the conclusion when $z \in \Sigma$.
7.1. Estimates in the elliptic Zone of L. Let $Q=\sum_{i, j=1}^{2 n} b^{i j} D_{x_{i}} D_{x_{j}}+b$ be a degenerate elliptic operator with real coefficients $b, b^{i j}=b^{j i} \in C^{s_{*}, \tau}(\bar{\Omega})$. Assume that there is a continuous function $\lambda(x) \geq 0$ defined in $\bar{\Omega}$ such that

$$
\sum_{i, j=1}^{2 n} b^{i j} \xi_{i} \xi_{j} \geq \lambda(x)|\xi|^{2}
$$

Let S be a subset of $\bar{\Omega}$ satisfying $\{x \in \bar{\Omega}: \lambda(x)=0\} \subset S$.
Lemma 7.2. Assume that Q is uniformly elliptic in $\bar{\Omega}$; that is $\lambda(x) \geq \lambda_{0}, \lambda_{0}$ is a positive constant Then for any integer $1 \leq s \leq s_{*}$ there exists a constant C_{s}^{\prime} depending only on s, λ_{0} and $A(0)$ such that for any real function $u \in C^{s_{*}, \tau}(\Omega) \cap$ $H_{0}^{1}(\Omega)$,

$$
\begin{gather*}
\|u\|_{1} \leq C_{1}^{\prime}\left(\|Q u\|_{0}+A(2)\|u\|_{0}\right) \tag{7.1}\\
\|u\|_{s} \leq C_{s}^{\prime}\left(\|Q u\|_{s-1}+\sum_{i \leq s-2, i+j \leq s-1} A(i+2)\|u\|_{j}\right), s \geq 2 \tag{7.2}
\end{gather*}
$$

It is not difficult to prove 7.1. In fact, we need only to apply well-known standard techniques to the linear elliptic operator Q and to calculate several constants precisely. By induction with respect to s and patient calculation, 7.2 follows from (7.1).

For $\delta>0$, we define the set S_{δ} by

$$
S_{\delta}=\{x \in \bar{\Omega}, d(x, S)<\delta\}
$$

Lemma 7.3. Assume that S is a compact C^{∞} submanifold of Ω and $\Omega \backslash S$ is connected. Then there exists a function $\mu \in L^{\infty}(\Omega)$ and a constant $C>0$ such that $\mu=0$ on $S, m_{\delta}=\inf _{\bar{\Omega} \backslash S_{\delta}} \mu>0$ for any sufficiently small δ and

$$
\begin{equation*}
\int_{\Omega} \mu u^{2} d x \leq C\left\{\|Q u\|_{0}\|u\|_{0}+\frac{1}{2} \sup \left[b_{i j}^{i j}-2 b\right]\|u\|_{0}^{2}\right\} \tag{7.3}
\end{equation*}
$$

for $u \in C^{s_{*}, \tau}(\Omega) \cap H_{0}^{1}(\Omega)$.
Proof. Standard techniques of elliptic operators give

$$
\int \lambda|D u|^{2} d x \leq C\left\{\|Q u\|_{0}\|u\|_{0}+\frac{1}{2} \sup \left[b_{i j}^{i j}-2 b\right]\|u\|_{0}^{2}\right\} .
$$

Hence, it suffices to show that $\int \mu u^{2} d x \leq \int \lambda|D u|^{2} d x$. First, let us fix a point $p \in \overline{\Omega \backslash S}$ arbitrarily.

By virtue of the fundamental theorem of ordinary differential equations, we can construct a family of curves $c(t, x) \in C^{\infty}\left(\left[0, T_{p}\right] \times U_{p}\right)$ such that $c(0, x)=x, c(t, x) \notin$ S for $0<t<T_{p}$ when $x \in \overline{\Omega \backslash S}, c\left(T_{p}, x\right) \notin \bar{\Omega},|\dot{c}(t, x)| \equiv 1$, $\sup _{x \in U_{p}} \tau_{x}<\infty$, and $c(t,$.$) is a local C^{\infty}$ diffeomorphism defined in U_{p} for any fixed t.

Here, T_{p} is a positive constant, U_{p} is a sufficiently small open neighborhood of p, and, $\tau_{x}=\inf \{t \geq 0: c(t, x) \notin \Omega\}$ We define a function $\mu_{p}(x)$ by

$$
\mu_{p}(x)=\inf \left\{\lambda(c(t, x)): 0 \leq t \leq \tau_{x}\right\}
$$

For $u \in C^{1}(\bar{\Omega})$ satisfying $\left.u\right|_{\partial \Omega}=0$, since

$$
u(x)=u(c(0, x))-u\left(c\left(\tau_{x}, x\right)\right)=-\int_{0}^{\tau_{x}} D u(c(t, x)) \cdot \dot{c}(t, x) d t
$$

we have

$$
|u(x)|^{2} \leq C \int_{0}^{\tau_{x}}|D u(c(t, x))|^{2} d t
$$

Multiplying this inequality by μ_{p} and using its definition, we obtain

$$
\mu_{p}(x)|u(x)|^{2} \leq C \int_{0}^{\tau_{x}} \lambda(c(t, x))|D u(c(t, x))|^{2} d t
$$

which implies

$$
\int_{U_{p}} \mu_{p}|u|^{2} \leq C \int_{\Omega} \lambda|D u|^{2} d t
$$

Secondly, we note that the above argument ensures the existence of a finite number of points p_{1}, \ldots, p_{N} such that $\overline{\Omega \backslash S} \subset \cup_{i=1}^{N} U_{p_{i}}$ and

$$
\int_{U_{p_{i}}} \mu_{p_{i}}|u|^{2} \leq C \int_{\Omega} \lambda|D u|^{2} d t
$$

Therefore, we have only to define μ by

$$
\mu(x)= \begin{cases}\min \left\{\mu_{p_{i}}(x): x \in U_{p_{i}}, 1 \leq i \leq n\right\}, & \text { if } x \in \Omega \backslash S \\ 0, & \text { if } x \in S\end{cases}
$$

Lemma 7.4. For $u \in C_{0}^{1}(\Omega)$,

$$
\begin{gather*}
\sum_{k}\left\|\left[\partial_{k}, Q\right] u\right\|_{0}^{2} \leq C\left(A(2)\|Q u\|_{1}\|u\|_{1}+A(2)^{2}\|u\|_{1}^{2}\right) \tag{7.4}\\
\sum_{k}\left\|\left[\partial_{k}, Q\right] u\right\|_{s}^{2} \leq C\left(A(2)\|Q u\|_{s+1}\|u\|_{s+1}+\sum_{(i, j) \in \Lambda_{s+1}} A(i+2)^{2}\|u\|_{j}^{2}\right) s \geq 1 \tag{7.5}
\end{gather*}
$$

Proof. [11, Lemma 1.7.1] shows that

$$
\left(b_{k}^{i j} u_{i j}\right)^{2} \leq C A(2) b^{i j} u_{l i} u_{l j}
$$

which implies

$$
\begin{aligned}
\sum_{k}\left\|\left[\partial_{k}, Q\right] u\right\|_{0}^{2} & \leq C \sum_{k} \int\left\{\left(b_{k}^{i j} u_{i j}\right)^{2}+\left(b_{k} u\right)^{2}\right\} \\
& \leq C A(2) \sum_{k} \int b^{i j} u_{l i} u_{l j}+C A(1)^{2}\|u\|_{1}^{2}
\end{aligned}
$$

Integrating by parts

$$
\int b^{i j} u_{l i} u_{l j}=-\left\langle(Q u)_{l}, u_{l}\right\rangle+\left\langle\left[\partial_{l}, Q\right] u, u_{l}\right\rangle+\frac{1}{2}\left\langle\left(b_{i j}^{i j}-2 b\right) u_{l}, u_{l}\right\rangle
$$

which implies

$$
\int b^{i j} u_{l i} u_{l j} \leq C\left(\|Q u\|_{1}\|u\|_{1}+\sum_{k}\left\|\left[\partial_{k}, Q\right] u\right\|_{0}\|u\|_{1}+A(2)\|u\|_{1}^{2}\right)
$$

From these inequalities, and using the inequality $\alpha \beta \leq \varepsilon \alpha^{2}+\frac{1}{\varepsilon} \beta^{2}$ it follows that

$$
\sum_{k}\left\|\left[\partial_{k}, Q\right] u\right\|_{0}^{2} \leq C\left(A(2)\|Q u\|_{s+1}\|u\|_{s+1}+A(2)^{2}\|u\|_{1}^{2}\right)
$$

For $s \geq 1$, 6.5 is proved by recursion on s using 6.4.
Lemma 7.5. Let $\chi \in C^{\infty}$ satisfy $\operatorname{supp} \nabla \chi \subset \Omega$. For any integer $0 \leq s \leq s_{*}$, there exists a constant $C_{s}>0$ such that for all $u \in C^{s_{*}, \tau}(\Omega)$,

$$
\begin{equation*}
\|[\chi, Q] u\|_{s}^{2} \leq C_{s}\left(A(2)\|Q u\|_{s}\|u\|_{s}+\sum_{(i, j) \in \Lambda_{s}} A(i+2)^{2}\|u\|_{j}^{2}\right) \tag{7.6}
\end{equation*}
$$

Proof. Let us consider a cut-off function $\widetilde{\chi} \in C_{0}^{\infty}(\Omega)$ satisfying $0 \leq \widetilde{\chi} \leq 1$ and $\widetilde{\chi}=1$ on $\cup_{i} \operatorname{supp} \partial_{i} \chi$, and define an operator $\widetilde{Q}=\widetilde{b}^{i j} D_{x_{i}} D_{x_{j}}+\widetilde{b}$ by $\widetilde{Q}=\widetilde{\chi} \bar{Q}$. Since $[\chi, \widetilde{Q}] u=[\chi, Q] u$ and $\|\widetilde{Q} u\|_{s} \leq C\|Q u\|_{s}$, it will suffice to prove (7.6) for \widetilde{Q}.

For $s=0$: The corollary to Lemma 1.7.1 in [11] shows that

$$
\left(\sum_{i, j} \widetilde{b}^{i j} u_{j}\right)^{2} \leq 2 A(0) \widetilde{b}^{i j} u_{i} u_{j}
$$

which gives

$$
\|[\chi, \widetilde{Q}] u\|_{0}^{2} \leq C A(0) \int \widetilde{b}^{i j} u_{i} u_{j}+C A(0)^{2}\|u\|_{0}^{2}
$$

Integrating by parts we have

$$
\int \widetilde{b}^{i j} u_{i} u_{j}=-\langle\widetilde{Q} u, u\rangle+\frac{1}{2}\left\langle\left(\widetilde{b}_{i j}^{i j}-2 \widetilde{b}\right) u, u\right\rangle \leq\|\widetilde{Q} u\|_{0}\|u\|_{0}+C A(2)\|u\|_{0}^{2}
$$

which implies $7.6{ }_{0}$.
Note that 7.6$]_{s \geq 1}$ follows from 7.60_{0} by induction with respect to s
7.2. Estimates near the degenerate points of L. For $t \geq t_{0} \geq 1$, we define

$$
V_{t}(0)=\left\{x \in \Omega,\left|x_{n}\right|<\frac{1}{t}\right\} \cap B\left(0, \delta_{1}\right) .
$$

Propositon 7.6. For any integer $0 \leq s \leq s_{*}$ and any function $u \in C_{0}^{s_{*}, \tau}\left(V_{t}(0)\right)$, there exists a constant $C_{s}^{\prime \prime}=C_{s}^{\prime \prime}\left(n, \Omega, \varphi, \delta_{1}\right)>0$ such that

$$
\begin{gather*}
\|u\|_{0} \leq C_{0}^{\prime \prime} t^{-1}\left\|L_{\nu} u\right\|_{0} \tag{7.7}\\
\|u\|_{s} \leq C_{s}^{\prime \prime} t^{-1}\left(\left\|L_{\nu} u\right\|_{s}+\sum_{(i, j) \in \Lambda_{s}} A(i+2)\|u\|_{j}\right), \quad s \geq 1 \tag{7.8}
\end{gather*}
$$

where δ_{1} is as in Lemma 3.1.
Proof. Let $v=\left(T-e^{t x_{n}}\right)^{-1} u$, and $T>5 e$ a constant. A direct computation gives

$$
\begin{gathered}
Q u=\left(T-e^{t x_{n}}\right) Q v-t e^{t x_{n}}\left\{2 b^{n j} v_{j}+t b^{n n} v\right\} \\
\int\left(T-e^{t x_{n}}\right)^{-1} Q u \cdot v=-I+I I-I I I-I V
\end{gathered}
$$

where

$$
\begin{gathered}
I=\int b^{i j} v_{i} v_{j}, \quad I I=\frac{1}{2} \int\left\{b_{i j}^{i j}-2 b\right\} v^{2} \\
I I I=t^{2} \int e^{t x_{n}} b^{n n}\left(T-e^{t x_{n}}\right)^{-1} v^{2}, \quad I V=2 t \int e^{t x_{n}}\left(T-e^{t x_{n}}\right)^{-1} v b^{n j} v_{j}
\end{gathered}
$$

Using the Cauchy-Schwartz inequality, we get

$$
|I V| \leq \int b^{i j} v_{i} v_{j}+4 t^{2} \int e^{2 t x_{n}}\left(T-e^{t x_{n}}\right)^{-2} b^{n n} v^{2}
$$

Since

$$
e^{t x_{n}}\left(T-e^{t x_{n}}\right)^{-1}-4 e^{2 t x_{n}}\left(T-e^{t x_{n}}\right)^{-2}=e^{t x_{n}}\left(T-e^{t x_{n}}\right)^{-2}\left(T-5 e^{t x_{n}}\right)
$$

it follows that

$$
t^{2} \int e^{2 t x_{n}}\left(T-e^{t x_{n}}\right)^{-4}\left(T-5 e^{t x_{n}}\right) b^{n n} u^{2} \leq-\int\left(T-e^{t x_{n}}\right)^{-2} Q u . u-I I
$$

Also

$$
e^{-1} \leq e^{t x_{n}} \leq e, \quad\left(T-e^{-1}\right)^{-1} \leq\left(T-e^{t x_{n}}\right)^{-1} \leq(T-e)^{-1}
$$

therefore,

$$
\begin{equation*}
C_{0} t^{2} \inf _{V_{t}(0)}\left(b^{n n}\right)\|u\|_{0}^{2} \leq C\left\{\|Q u\|_{0}\|u\|_{0}+\frac{1}{2} \sup _{V_{t}(0)}\left[b_{i j}^{i j}-2 b\right]\|u\|_{0}^{2}\right\} \tag{7.9}
\end{equation*}
$$

To prove 7.7), we apply 7.8). So, for $u \in C_{0}^{s_{*}, \tau}\left(V_{t}(0)\right)$, we can write

$$
t\left\{t C_{0} \inf _{V_{t}(0)}\left(b^{n n}\right)-\frac{C}{2} \sup _{V_{t}(0)}\left|b_{i j}^{i j}-2 b\right|\right\}\|u\|_{0}^{2} \leq C\|Q u\|_{0}\|u\|_{0}
$$

with $Q=L_{\nu}$ and $b^{n n}=\left(\Phi^{n n}+4(\theta+\nu)\right)$. If $|w|_{3, \tau} \leq 1,|x| \leq \delta_{0}$ and $\varepsilon \leq \varepsilon_{1}$, we have

$$
\Phi^{n n} \geq \prod_{i=1}^{n-1} \sigma_{i}-M \delta_{1}-M \varepsilon_{1}=\alpha>0
$$

Taking $\left.t \geq t_{0}=\max \left(\frac{4(C+1) A(2)}{\alpha C_{0}}, 1\right), 7.7\right)$ is proved. To prove (7.8), we use 7.7) and recursion on s. We now estimate $\|\chi u\|_{s}$.

Propositon 7.7. For any cut-off function $\chi \in C_{0}^{\infty}\left(V_{t}(0)\right), u \in C^{s_{*}, \tau}(\Omega) \cap H_{0}^{1}(\Omega)$ and $1 \leq s \leq s_{*}$,

$$
\begin{equation*}
\|\chi u\|_{s} \leq 2 C_{s}^{\prime \prime}\left(\left\|L_{\nu} u\right\|_{s}+\left\|\left[\chi, L_{\nu}\right] u\right\|_{s}+\sum_{j<s,(i, j) \in \Lambda_{s}}\left(|\varphi+\varepsilon w|_{i+4, \tau}+1\right)\|u\|_{j}\right) \tag{7.10}
\end{equation*}
$$

Proof. Let us consider a cut-off function $\chi \in C_{0}^{\infty}\left(V_{t}(0)\right)$. For $u \in C^{s_{*}, \tau} \cap H_{0}^{1}(\Omega)$, since $\operatorname{supp} \chi \subset V_{t}(0)$, we have by 7.9 for any $1 \leq s \leq s_{*}$,

$$
\begin{aligned}
\|\chi u\|_{s} \leq & C_{s}^{\prime \prime} t^{-1}\left(\left\|\chi L_{\nu} u\right\|_{s}+\left\|\left[\chi, L_{\nu}\right] u\right\|_{s}+\sum_{j<s,(i, j) \in \Lambda_{s}} A(i+2)\|u\|_{j}\right) \\
& +C_{s}^{\prime \prime} t^{-1} A(2)\|\chi u\|_{s}
\end{aligned}
$$

We have $A(2) \leq M_{0}$. We fix $t \geq t_{0}$ such that for $1 \leq s \leq s_{*}, C_{s}^{\prime \prime} t^{-1} A(2) \leq \frac{1}{2}$. On the other hand,

$$
A(i+2)=\max \left(1,\left|\frac{\partial g}{\partial u}(\varphi+\varepsilon w)\right|_{i+2}, \max _{1 \leq p, q \leq n}\left|\frac{\partial F}{\partial u_{p \bar{q}}}\left(\varphi_{k \bar{l}}+\varepsilon w_{k \bar{l}}\right)\right|_{i+2}+\theta\right)
$$

But, for $k \in\{0,1,2\},\left|\partial^{k} \varphi+\varepsilon \partial^{k} w\right|_{0} \leq|\varphi|_{2}+1$, then by 2.9 , since $\theta \leq 1$, we get, for $0 \leq i \leq s_{*}-2$,

$$
\begin{equation*}
A(i+2) \leq C(\varphi)\left(|\varphi+\varepsilon w|_{i+4, \tau}+1\right) \tag{7.11}
\end{equation*}
$$

and we deduce 7.10 .
7.3. Proof of the estimates $(3.12)-\sqrt{3.14)}$ for L_{ν}. . Since $\|u\|_{s} \leq\|(1-\chi) u\|_{s}+$ $\|\chi u\|_{s}$, it will suffice to estimate $\|(1-\chi) u\|_{s}$ and $\|\chi u\|_{s}$.

Proof of (3.12). Since $\chi=1$ in a neighborhood of zero in V, then, there exists $\delta>0$ such that $\operatorname{Supp}(1-\chi) \subset \bar{\Omega} \backslash B(0, \delta)$.

Let us consider the cut-off functions: $\widetilde{\chi}, \widetilde{\widetilde{\chi}} \in C_{0}^{\infty}(\bar{\Omega} \backslash S), 0 \leq \widetilde{\chi}, \widetilde{\widetilde{\chi}} \leq 1$ and such that $\tilde{\chi}=1$ on $\operatorname{supp} \partial_{i} \chi$ and $\widetilde{\widetilde{\chi}}=1$ on $\operatorname{supp} \widetilde{\chi}$. Let μ be the function given by Lemma 7.3 (m_{δ} depends only on φ, Ω, n).

By 7.3), there exists $C_{0}=C_{0}(\varphi, \Omega, n)>0$ such that

$$
\|(1-\chi) u\|_{0}^{2}=\int_{\bar{\Omega} \backslash B(0, \delta)} u^{2} d x \leq \frac{1}{m_{\delta}} \int \mu u^{2} d x \leq C_{0}\left(\|u\|_{0}\left\|L_{\nu} u\right\|_{0}+B\|u\|_{0}^{2}\right)
$$

where $B=\frac{1}{2} \sup \left[b_{i j}^{i j}-2 b\right]$. By proposition 7.1, $\sum_{i j} b_{i j}^{i j}=0$, and the hypothesis (A2) imply that $-2 b \leq \varrho$. So, $B \leq \varrho$ and we have

$$
\|(1-\chi) u\|_{0}^{2} \leq C_{1}\left(\|u\|_{0}\left\|L_{\nu} u\right\|_{0}+\varrho\|u\|_{0}^{2}\right) .
$$

Since $\operatorname{Supp} \tilde{\widetilde{\chi}} \subset \bar{\Omega} \backslash\{0\}$, we also have by the same way,

$$
\|\widetilde{\widetilde{\chi}} u\|_{0}^{2} \leq C_{1}\left(\|u\|_{0}\left\|L_{\nu} u\right\|_{0}+\varrho\|u\|_{0}^{2}\right) .
$$

On the other hand, by (7.8),

$$
\|\chi u\|_{0}^{2} \leq C_{2}\left\|L_{\nu} \chi u\right\|_{0}^{2} \leq C_{2}\left(\left\|L_{\nu} u\right\|_{0}^{2}+\left\|\left[\chi, L_{\nu}\right] u\right\|_{0}^{2}\right)
$$

but $\widetilde{\chi} L_{\nu} \widetilde{\widetilde{\chi}} u=\widetilde{\chi} L_{\nu} u$ and $\left[\chi, L_{\nu}\right] u=\left[\chi, \widetilde{\chi} L_{\nu}\right] \widetilde{\widetilde{\chi}} u$. Since $A(2) \leq M_{0}$ and $\nu \leq 1$, using Lemma 7.5, we get

$$
\begin{aligned}
\left\|\left[\chi, L_{\nu}\right] u\right\|_{0}^{2}=\left\|\left[\chi, \widetilde{\chi} L_{\nu}\right] \tilde{\widetilde{\chi}} u\right\|_{0}^{2} & \leq C\left[\left\|\widetilde{\chi} L_{\nu} \tilde{\widetilde{\chi}} u\right\|_{0}\|\tilde{\widetilde{\chi}} u\|_{0}+\left(M_{0}+1\right)^{2}\|\tilde{\widetilde{\chi}} u\|_{0}^{2}\right] \\
& \leq C^{\prime}\left(\left\|L_{\nu} u\right\|_{0}\|\widetilde{\widetilde{\chi}} u\|_{0}+\|\widetilde{\widetilde{\chi}} u\|_{0}^{2}\right) .
\end{aligned}
$$

Combining these inequalities with the fact that $\varrho \ll 1$, and using the inequality $\alpha \beta \leq \varepsilon \alpha^{2}+\frac{1}{\varepsilon} \beta^{2}$, we get 3.12

Proof of 3.13 . We have $\operatorname{supp}(1-\chi) \subset \bar{\Omega} \backslash B(0, \delta)$. Or φ is strictly plurisubharmonic on $E=\operatorname{supp}(1-\chi)$, then for $\varepsilon \leq \varepsilon_{4}$ small enough, L is uniformly elliptic on E. Using 7.1 and the estimation $A(2) \leq M_{0}$, we have

$$
\|(1-\chi) u\|_{1} \leq C_{1}^{\prime}\left(\left\|L_{\nu} u\right\|_{0}+\left(M_{0}+1\right)\|u\|_{0}+\left\|\left[\chi, L_{\nu}\right] u\right\|_{0}\right)
$$

Applying Lemma 7.5 we get

$$
\left\|\left[\chi, L_{\nu}\right] u\right\|_{0} \leq C_{0}\left(\left\|L_{\nu} u\right\|_{0}+\left(M_{0}+1\right)\|u\|_{0}\right)
$$

therefore,

$$
\|(1-\chi) u\|_{1} \leq C_{1}\left(M_{0}\right)\left(\left\|L_{\nu} u\right\|_{0}+\|u\|_{0}\right) .
$$

On the other hand, since $A(2) \leq M_{0}$, we get using 7.10,

$$
\|\chi u\|_{1} \leq C_{1}\left(M_{0}\right)\left(\left\|L_{\nu} u\right\|_{1}+\left\|\left[\chi, L_{\nu}\right] u\right\|_{1}+\|u\|_{0}\right) .
$$

But $\widetilde{\chi} L_{\nu} \widetilde{\widetilde{\chi}} u=\widetilde{\chi} L_{\nu} u$ and $\left[\chi, L_{\nu}\right] u=\left[\chi, \widetilde{\chi} L_{\nu}\right] \widetilde{\widetilde{\chi}} u$, so, since $A(2) \leq M_{0}$, Lemma 7.5 gives

$$
\begin{aligned}
\left\|\left[\chi, L_{\nu}\right] u\right\|_{1} & \leq C_{1}\left(\left\|\widetilde{\chi} L_{\nu} \widetilde{\widetilde{\chi}} u\right\|_{1}+\left(1+M_{0}\right)\|\widetilde{\widetilde{\chi}} u\|_{1}\right) \\
& \leq C_{1}\left(\left\|L_{\nu} u\right\|_{1}+\left(1+M_{0}\right)\|\widetilde{\widetilde{\chi}} u\|_{1}\right)
\end{aligned}
$$

Since L_{ν} is uniformly elliptic on $\operatorname{supp} \widetilde{\widetilde{\chi}}$ and $A(2) \leq M_{0}$, then we have by 7.1),

$$
\|\widetilde{\widetilde{\chi}} u\|_{1} \leq C_{1}^{\prime}\left(\left\|L_{\nu} u\right\|_{0}+\left(M_{0}+1\right)\|u\|_{0}+\left\|\left[\widetilde{\widetilde{\chi}}, L_{\nu}\right] u\right\|_{0}\right)
$$

which using (7.6) gives

$$
\|\widetilde{\widetilde{\chi}} u\|_{1} \leq C_{1}\left(M_{0}\right)\left(\left\|L_{\nu} u\right\|_{1}+\|u\|_{0}\right)
$$

Combining these inequalities, we get (3.13).
The proof of (3.14) is identical to that of (3.13) using the inequalities $(7.1),(7.2)$, (7.6), and (7.10).

Acknowledgments. The author wishes to thank the anonymous referee for his or her helpful comments.

References

[1] S. Alinhac, P. Gérard: Opérateurs pseudo-diffé rentiels et théorème de Nash-Moser, Inter Editions et Editions du CNRS, 1991.
[2] E. Bedford, J. E. Fornæss: Counterexamples to regularity for the complex Monge-Ampère equation. Invent. Math. 50, 129-134, 1979.
[3] E. Bedford, B. A. Taylor: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1-44, 1976.
[4] L. Caffarelli, J. J. Kohn, L. Nirenberg, J. Spruck: The Dirichlet problem for nonlinear second order elliptic equations. II. Complex Monge-Amp ère, and uniformly elliptic, equations, Comm. Pure and App. Math., Vol. XXXVIII, 209-252, 1985.
[5] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of second order, Second edition, Springer Verlag Berlin, Heidelberg, New York 1983.
[6] B. Guan: The Dirichlet problem for complex Monge-Ampère equations and the regularity of the pluri-complex Green function, Comm. Anal. and Geom. 6, 1998, 687-703.
[7] L. Hörmander: On the Nash-Moser implicit function theorem, Academia Scientiarum. Fennicae, Serie A, I, Math. 10, 67-97, 1984.
[8] S. Kallel-Jallouli: Existence of C^{∞} local solutions of the complex Monge-Ampère equation, Proc. Amer. Math. Soc., 131, 1103-1108, 2003.
[9] S. Kallel-Jallouli: Existence of local sufficiently smooth solutions to the complex MongeAmpère equation, to appear in Trans. of the Amer. Math. Soc.
[10] J. Moser: A new technique for the construction of solutions of non linear partial differential equations, Proc. Nat. Acad. Sc. USA 47, 1842-1831, 1961.
[11] O. A. Oleïnik, E.V. Radkevič, Second order equations with nonnegative characteristic form, A.M.S., Plenum press, New York-London, (translated from Russian).
[12] C. J. Xu: Régularité des solutions des e.d.p. non linéaires, C.R. Acad. Sci., Paris, Ser 3000, 267-270, 1985.
[13] C. J. Xu, C. Zuily: Smoothness up to the boundary for solutions of non linear and non elliptic Dirichlet problem, Trans. of the Amer. Math. Soc. Vol. 308, (1), 243-257, 1988.

Saoussen Kallel-Jallouli
Faculté des Sciences, Campus Universitaire, 1060 Tunis, Tunisie
E-mail address: Saoussen.Kallel@fst.rnu.tn

[^0]: 2000 Mathematics Subject Classification. 35J70, 32W20, 32W05.
 Key words and phrases. Degenerate elliptic, omplex Monge-Ampère,
 Plurisubharmonic function.
 (C) 2004 Texas State University - San Marcos.

 Submitted May 15, 2003. Published April 6, 2004.

