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DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC
COMPLEX MONGE-AMPÈRE EQUATION

SAOUSSEN KALLEL-JALLOULI

Abstract. We consider the Dirichlet problem

det
( ∂2u

∂zi∂zj

)
= g(z, u) in Ω , u

∣∣
∂Ω

= ϕ ,

where Ω is a bounded open set of Cn with regular boundary, g and ϕ are
sufficiently smooth functions, and g is non-negative. We prove that, under
additional hypotheses on g and ϕ, if | det ϕij − g|Cs∗ is sufficiently small the

problem has a plurisubharmonic solution.

1. Introduction

Let Ω be a bounded domain in R2n with smooth boundary and let zi = xi +
ixi+n(1 ≤ i ≤ n). We shall also denote by Ω the set of z = (z1, z2, . . . , zn) sat-
isfying (Re z, Im z) ∈ Ω. We study the problem of finding a sufficiently smooth
plurisubharmonic solution to the degenerate problem

det
( ∂2φ

∂zi∂zj

)
= g(z, φ) in Ω ,

φ
∣∣
∂Ω

= ϕ .

(1.1)

In [8, 9], the author studies local solutions, while, here we consider global solutions.
This problem has received considerable attention both in the non-degenerate case

(g > 0) and in the degenerate case (g ≥ 0). In particular, Caffarelli, Kohn, Niren-
berg and Spruck [4] established some existence results in strongly pseudoconvex
domains based on the construction of a subsolution. The recent work of Guan [6],
extends some of these results to arbitrary smooth bounded domains. Guan proved
for the nondegenerate case that a sufficient condition for the classical solvability is
the existence of a subsolution. Here we are concerned with degenerate problems in
an arbitrary smooth bounded domain, which need not be Pseudoconvex.

Counterexamples due to Bedford and Fornaes [2] show that the Dirichlet prob-
lem, in general, does not have a regular solution. This implies that we should place
some restrictions on g and ϕ.
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Let us assume that ϕ is a real function defined in Ω, Σ is a finite set of points in
Ω, and g(z, φ) = K(z)f(Re z, Im z, φ). We further assume the following hypotheses.

(A1) K ≥ 0 in Ω, and K−1(0) = Σ
(A2) f(x, u) > 0 in Ω× R, and ∂f

∂u ≥ −% in Ω× R, with 0 ≤ % << 1
(A3) ϕ

∣∣
Ω\Σ is strictly plurisubharmonic, (ϕij)

∣∣
Σ

is of rank (n−1), and the eigen-
values of (ϕij) on Σ are distinct.

Our main results are the following theorems:

Theorem 1.1. Let s∗ ≥ 7 + 2n be an integer, α ∈]0, 1[, and Γ > 1. If ϕ ∈
Cs∗+2,α(Ω) satisfies the condition (A3), then one can find a constant ε0 > 0 (de-
pending on s∗, α, Γ, Ω and ϕ) such that for any g = Kf ∈ Cs∗ satisfying (A1),
(A2),

|det ϕij − g(ϕ)|Cs∗ ≤ ε0 (1.2)

and | ∂g
∂u |Cs∗ ≤ Γ, then problem (1.1) has a plurisubharmonic (real valued) solution

φ ∈ Cs∗−3−n(Ω), which is unique when ρ = 0.

Let lα(x) denote α-th row the matrix of cofactors of (ϕij), and

DkK(x)(lα(x), lβ(x))(k) = DkK(x)
(
lα(x), lβ(x); . . . ; lα(x), lβ(x)

)
.

Theorem 1.2. Under the assumptions in Theorem 1.1, suppose that ϕ ∈ C∞(Ω)
and for any point x0 ∈ Σ one can find an integer k such that DjK(x0) = 0 for all
j ≤ k−1 and there exists α 6= β ∈ {1, . . . , n} such that DkK(x0)(lα(x0), lβ(x0))(k) 6=
0. Then there exists an integer s∗ > 0 and a constant ε0 > 0 such that for any
function g ∈ C∞ satisfying (A2), (A3) and (1.2), the plurisubharmonic solution φ
to the problem (1.1) is in C∞(Ω).

In Theorem 1.1, the assumption concerning Σ leads to a-priori estimates and
the assumption on g and ϕ ensures the convergence of an iteration scheme of
Nash-Moser type. It is to be noted that we do not require demonstrating that
a subsolution exists as in [4] and [6].

Under some additional conditions on g, we can prove the smoothness of the
solution, using the works of Xu [12] and Xu and Zuily [13].

This paper is organized as follows. In Section 2 we state some preliminary
results. In Section 3, we state fundamental global a-priori estimates for degenerate
linearized operators that are crucial to establish an iteration scheme of Nash-Moser
type. We then prove Theorem 1.1 in Section 4. We prove Theorem 1.2 in Section
5. Finally, we prove the a-priori estimates stated in Section 3.

2. Preliminary results

We shall use the norms

| · |k = ‖ · ‖Ck(Ω), ‖ · ‖k = ‖ · ‖Hk(Ω), | · |k,τ = ‖ · ‖Ck,τ (Ω)

where k ∈ N and τ ∈]0, α[.
In this work, we need some technical lemmas which play important roles in the

proof of convergence of our iteration scheme.

Lemma 2.1. Let s∗ be an integer, s∗ ≥ 7 + 2n. We can find a constant β ≥ 2
such that for any 0 ≤ i, j, k ≤ s∗ +2, n∗ = n+ τ and u ∈ Cs∗+2,α(Ω) we have: The
Sobolev inequality

|u|i,τ ≤ β‖u‖i+n∗ (2.1)
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The Gagliardo-Nirenberg inequality

‖u‖j ≤ β‖u‖
k−j
k−i

i ‖u‖
j−i
k−i

k , i < j < k (2.2)

The inequality
‖u‖s∗ ≤ β|u|s∗ (2.3)

For any λ ≥ 1, there exists a family of smoothing linear operators Sλ : ∪i≥0H
i(Ω) →

∩j≥0H
j(Ω), satisfying

‖Sλu‖i ≤ β‖u‖
j
, if i ≤ j (2.4)

‖Sλu‖i ≤ βλi−j‖u‖j , if i ≥ j (2.5)

‖Sλu− u‖i ≤ βλi−j‖u‖j , if i ≤ j (2.6)

Lemma 2.2 ([1, 7]). (1) For t > 0; if u, v ∈ L∞ ∩Ht, then uv ∈ L∞ ∩Ht and

‖uv‖t ≤ K1(|u|0‖v‖t + ‖u‖t|v|0), (2.7)

where, K1 is a constant ≥ 1 independent of u and v.
(2) Let H : Rm → C be a function C∞ of its arguments.
For s > 0, if ω ∈ (L∞ ∩Hs)m and |ω|0 ≤ M , then

‖H(ω)‖s ≤ K2(s,H,M)(‖ω‖s + 1), (2.8)

where K2 ≥ 1 and is a constant independent of ω.
If ω ∈ (Ci,µ)m, µ ∈]0, 1[ and i ∈ N, then H(ω) ∈ Ci,µ.

If we suppose that |ω|0 ≤ M , then we can find a constant K3 = K3(i, µ, H,M) ≥
1 such that

|H(ω)|i,µ ≤ K3(|ω|i,µ + 1). (2.9)

We shall also need the following technical lemma.

Lemma 2.3 ([8, Lemma]). Let F (uzizj
) = det(uzizj

). For 1 ≤ i, j, a, b ≤ n, we
have

F
∂2F

∂uzazb
∂uzizj

=
∂F

∂uzazb

∂F

∂uzizj

− ∂F

∂uzizb

∂F

∂uzazj

. (2.10)

3. A priori estimates for the linearized operator

Defining φ = ϕ + εw, (1.1) becomes

det(φzizj
) = det(ϕzizj

+ εwzizj
) = g. (3.1)

Let
G(w) =

1
ε
[detΦ− g]. (3.2)

Then the linearization of G at w is

LG(w) =
n∑

i,j=1

φij∂zi∂zj + b, (3.3)

where Φ̃ = (φij) is the matrix of cofactors of Φ = (φzizj (z, ε, w)) and b = ∂g
∂u .

Now we construct linear elliptic operators, maybe degenerate, related to lin-
earized operators. For any smooth real valued function w, the matrix (φij) is
Hermitian and we can find a unitary matrix T (z, ε) satisfying

T (z, ε)(φzizj
)tT (z, ε) = diag(λ1, . . . , λn). (3.4)
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Without loss of generality we may assume that Σ is reduced to one point, the origin.
By means of change of variables we may assume, using (A3), that

ϕzizj
(0) = σiδ

j
i i, j = 1, . . . , n, (3.5)

where σi > 0 for i = 1, . . . , n− 1, σn = 0 and σi 6= σj for i 6= j. Let 0 < τ ≤ α
4 .

Lemma 3.1. There exist constants ε1 > 0, δ1 > 0 and M > 0 depending only on
ϕ, n, Ω such that when

V0 = {(z, ε, w)/|z| ≤ δ1, 0 ≤ ε ≤ ε1, w ∈ C3,τ (Ω), |w|3,τ ≤ 1},
we have: (i) The eigenvalues λi, i = 1, . . . , n of Φ are distinct on V0 and of class
C1 in V̊0. Moreover, λi > 0 in V0, for i = 1, . . . , n− 1.
(ii) For (z, ε, w) ∈V0,

n∑
i=1

|σi − λi(z, ε, w)|+ |Φnn(z, ε, w)−
n−1∏
i=1

σi| ≤ M(ε + |z|). (3.6)

(iii) For (z, ε, w) ∈ V0 and i = 1, . . . , n− 1,

λi ≥ inf
1≤i≤n−1

σi−Mδ1−(M +1)ε1 > 0 and Φnn ≥
n−1∏
i=1

σi−Mδ1−Mε1 > 0. (3.7)

Proof. Let us consider the function H(z, ε, w, λ) = det(ϕzizj
+ εwzizj

−λδj
i ). Then

H ∈ C1 and by (3.5), we have

H(0, 0, 0, σi) = 0 and
∂H

∂λ
(0, 0, 0, σi) 6= 0, ∀i ∈ {1, . . . , n}.

By the implicit function theorem, one can find two constants ε1 > 0 and δ1 > 0
such that (i) holds. Moreover by (3.5) we have

∂F

∂unn
(ϕij)(0) = Φnn(0, 0, w) =

n−1∏
i=1

σi > 0,

which gives (ii) and (iii). �

Lemma 3.2. There exists a positive constant ε2 such that for any 0 < ε < ε2, any
real valued function w ∈ C3,τ (Ω) satisfying |w|3,τ ≤ 1 and θ = maxz∈Ω |G(w)|, the
operator

L = −LG(w)− θ4 (3.8)

is elliptic, maybe degenerate. (Here 4 =
∑n

i=1(
∂2

∂x2
i

+ ∂2

∂y2
i
))

Proof. Let

A = θ|ξ|2 +
n∑

i,j=1

φijξiξj ≥ 0, ∀(z, ξ) ∈ Ω× Cn. (3.9)

If z ∈ Ω\{0}, as ϕ is strictly plurisubharmonic, then A > 0 for all ξ ∈ Cn\{0}.
If z = 0, for ξ ∈ Cn, we let ξ =t T (τ, ε)ξ̃. Then we have

A = θ|ξ|2 +t ξΦ̃ξ = θ|ξ|2 +t ξ̃T Φ̃tT ξ̃.

Since ΦΦ̃ = det Φ Id, by (3.4),

detΦ Id = TΦtTT Φ̃tT = diag(λi)T Φ̃tT ,
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T Φ̃tT = detΦ diag(
1
λi

) =
n∏

i=1

λi diag(
1
λi

) = (εG + g) diag(
1
λi

).

Thus,

A = θ|ξ̃|2 + detΦ
n∑

i=1

|ξ̃i|2

λi

= θ|ξ̃|2 +
n−1∑
i=1

detΦ
|ξ̃i|2

λi
+

n−1∏
i=1

λi|ξ̃n|2

= (θ +
n−1∏
i=1

λi)|ξ̃n|2 +
n−1∑
i=1

εG + g + θλi

λi
|ξ̃i|2.

By (3.7), for i = 1, . . . , n− 1, ε ≤ ε1 and |w|3,τ ≤ 1, we have

εG + θλi ≥ θ(σi −Mδ1 − (M + 1)ε1) ≥ 0.

Therefore, A ≥ 0, which proves the lemma. �

Now we study a boundary-value problem for the degenrate elliptic operator

L = −LG(w)− θ4 =
n∑

i,j=1

bij∂zi∂zj + b,

where

bij = − ∂F

∂uij

(ϕij + εwij)− θδj
i = −Φij − θδj

i

and b = K ∂f
∂u . For k, s ∈ N we let

A(k) = max(1, max
1≤i,j≤n

|bij |k, |b|k)

Λs = {(i, j) : 0 ≤ i, j ≤ s, i + j ≤ s, and i + 2 ≤ max(s, 2)}
(3.10)

Now from Lemma 3.2 we have the following statement.

Theorem 3.3. Suppose that θ ≤ 1 and A(2) ≤ M0, for some constant M0 > 0. One
can find ε3 > 0 such that for any ε ∈]0, ε3], any real valued function w ∈ Cs∗+2,τ (Ω)
satisfying the inequality |w|3,τ ≤ 1 and any real valued function h ∈ Hs∗ , the
problem

Lu = h in Ω

u
∣∣
∂Ω

= 0
(3.11)

has a unique solution u ∈ Hs∗ . Moreover for 0 ≤ s ≤ s∗,

‖u‖0 ≤ C0‖h‖0 (3.12)

‖u‖1 ≤ C1(‖h‖1 + ‖u‖0) (3.13)

‖u‖s ≤ Cs{‖h‖s +
∑

j≤s−1, (i,j)∈Λs

(1 + |ϕ + εw|i+4,τ )‖u‖j}, s ≥ 2 (3.14)

for some constant Cs = Cs(ϕ, s, Ω,M0, ε3) independent of w and ε.

For ν ∈]0, 1[, we denote Lν = L− ν4. To solve the Dirichlet problem (3.11), we
first establish the following proposition.
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Propositon 3.4. Let θ ≤ 1 and, for some constant M0 > 0, A(2) ≤ M0. Then
there exists ε3 > 0 such that for any ε ∈]0, ε3], any real valued function w ∈
Cs∗+2,τ (Ω) satisfying the inequality |w|3,τ ≤ 1 and any real valued function h ∈
Hs∗(Ω), the regularized problem

Lνu = h in Ω,

u
∣∣
∂Ω

= 0,
(3.15)

has a unique (real valued) solution u ∈ Hs∗+1(Ω).

Proof. Since LG(w) is a second order operator with real coefficients, from Lemma
3.2, Lν is uniformly elliptic with coefficients in Cs∗,τ (Ω). Thus by [3, Theorems
6.14 and 8.13] we see that (3.15) has a real valued solution.

If (3.12)–(3.14) hold for the regularized problem (3.15) with an uniform constant
Cs independent of ν ∈]0, 1], then by letting ν tend to zero we get a solution u ∈
Hs∗(Ω) to the original problem which of course satisfies (3.12)–(3.14). �

Using Theorem 3.3, we prove Theorem 1.1 by constructing a sequence of approx-
imating solutions and a priori estimates for linearized operators. The hypothesis
(1.2) will play an important role in the proof of the convergence of our iteration
scheme of Nash-Moser type.

4. Proof of Theorem 1.1

Part 1: An iteration scheme of Nash-Moser type. In this section, we use
the Nash-Moser procedure [7, 10] and the results of Section 3 to prove Theorem
1.1. We construct a sequence which converges to a solution to our problem. We
define

M0 = 1 + max
H∈F

K3(2, τ, H, (1 + |ϕ|2))(1 + |ϕ|4,τ ), (4.1)

where F ={ ∂F
∂uij

, ∂g
∂u/1 ≤ i, j ≤ n} and K3 is the constant introduced in (2.9). (i.e:

|H(u)|j,µ ≤ K3(j, µ, H,M)|u|j,µ). We also define

D = max
(

max
0≤s≤s∗

Cs, 1
)
. (4.2)

Here Cs is the constant (depending only on s, ϕ, Ω,M0) given by Theorem 3.3. We
let

µ = max(β, 3Ds2
∗(1 + |ϕ|s∗+2,τ ), n, 2

1
τ ) and µ̃ = β2µs∗ , (4.3)

a1 = 9K0µ
5, a2 = 5a1µ

s∗+1, a3 = 7K0µ
5, (4.4)

were K0 is the constant given by Proposition 6.1. Also, we fix ε̃ satisfying

ε̃ ≤ min[1, (εi)1≤i≤4, (3D2a2 + 6µ̃D2)−2], (4.5)

were εi are given in Lemma 3.2, Theorem 3.3, the proof of Theorem 3.3 and the
proof of (3.13).

As a consequence of these inequalities, we have 6ε̃µs∗ ≤ 1/4. Let g ∈ Cs∗ satisfy

|det ϕij − g(ϕ)|s∗ ≤ ε̃2,

with ε0 in Theorem 1.1 equal to ε̃2. Let Sn = Sµn the family of operators given by
Lemma 2.1, with µn = µn (µ is given by (4.3)).
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Using Theorem 3.3, we construct wn, n = 0, 1, . . . , by induction on n as follows.
We let u0, w0 = 0, and assume w0, w1, . . . , wn have been chosen and define wn+1

by
wn+1 = wn + un+1, (4.6)

where un+1 is the solution to the Dirichlet problem

LG(w̃n)un+1 + θn4un+1 = gn, in Ω

un+1

∣∣
∂Ω

= 0,
(4.7)

given by Theorem 3.3. Here

w̃n = Snwn, (4.8)

θn = |G(w̃n)|0, (4.9)

g0 = −S0G(0), gn = Sn−1Rn−1 − SnRn + Sn−1G(0)− SnG(0), (4.10)

R0 = 0, Rn =
n∑

j=1

rj , (4.11)

r0 = 0, rj = [LG(wj−1)− LG(w̃j−1)]uj + Qj − θj−14uj , 1 ≤ j ≤ n, (4.12)

Qj = G(wj)−G(wj−1)− LG(wj−1)uj , 1 ≤ j ≤ n. (4.13)

To ensure that the wn’s are well defined, we prove the following proposition.

Propositon 4.1. Let s ∈ N. If s∗ ≥ 7 + 2n and 4 + 2n + 2τ ≤ σ < s∗− 2, we have

‖uj‖s ≤
√

ε̃[max(µ, µj−1)]s−σ, j ∈ N∗, 0 ≤ s ≤ s∗, (4.14)

‖wj‖s ≤

{
2
√

ε̃, for s ≤ σ − τ√
ε̃µs−σ

j , for σ − τ ≤ s ≤ s∗
j ∈ N∗, (4.15)

|w̃j |4,τ ≤ 1, j ∈ N∗, (4.16)

‖wj − w̃j‖s ≤ 2β
√

ε̃µs−σ
j , 0 ≤ s ≤ s∗, j ∈ N∗, (4.17)

‖rj‖s ≤ ε̃a1[max(µ, µj−1)]s−σ, 0 ≤ s ≤ s∗ − 2, j ∈ N∗, (4.18)

‖gj‖s ≤ ε̃a2µ
s−σ
j , 0 ≤ s ≤ s∗, j ∈ N, (4.19)

θj ≤ a3

√
ε̃µ−2

j ≤ 1, j ∈ N, (4.20)

Aj(2) ≤ M0, j ∈ N. (4.21)

Here, Aj(k) is defined by using the definition of A(k) in (3.10), where the coeffi-
cients correspond to w̃j.

Let us first show how that Proposition 4.1 implies Theorem 1.1. The proof of
this proposition will be given later in Appendix 1.

Part 2: Proof of Theorem 1.1. We prove the convergence of the sequence (wn)
using Proposition 4.1. Set σ = s∗ − 2 − τ and s = σ − τ . By (4.6) and (4.14), for
any i, k ∈ N∗, i > k,

‖wi − wk‖s ≤
i∑

j=k+1

‖uj‖s ≤ β
√

ε̃
i∑

j=k+1

µ−τ
j−1 = β

√
ε̃

i∑
j=k+1

(µ−τ )j−1.

Since µ ≥ 2 and τ > 0, then ‖wi−wk‖s → 0 as i, k →∞. Hence, there is a function
w ∈ Hs∗−2−2τ (Ω) satisfying wn → w in Hs∗−2−2τ (Ω).
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Since Hs∗−2−2τ (Ω) ⊂ Cs∗−2−n−3τ (Ω), it follows that w ∈ Cs∗−3−n(Ω). On the
other hand, combining (4.7), (4.12) and (4.13), we obtain

rj = G(wj)−G(wj−1)− gj−1

Taking the sum between j = 1 and j = n, using (4.10) and (4.11), we get

G(wn) = (I − Sn−1)Rn−1 + (I − Sn−1)G(0) + rn. (4.22)

For n ≥ 2, using (2.2) and (4.18), we have

‖rn‖s∗−2−2τ ≤ a1βε̃µs∗−2−2τ−σ
n−1 = a1βε̃µ−τ

n−1.

Combining (2.3) with (2.6) and (1.2), we get

‖(I − Sn−1)G(0)‖s∗−2−2τ ≤ βµ−2−2τ
n−1 ‖G(0)‖s∗ ≤ β2µ−2−2τ

n−1 ε̃.

Combining (2.6), (4.11) and (4.18), we can write

‖(I − Sn−1)Rn−1‖s∗−2−2τ ≤ βµ−2τ
n−1‖Rn−1‖s∗−2 ≤ βµ−2τ

n−1

n−1∑
j=1

‖rj‖s∗−2

≤ βµ−2τ
n−1ε̃a1Big(µs∗−2−σ +

n−1∑
j=2

µs∗−2−σ
j−1

)
≤ ε̃βa1µ

−2τ
n−1µ

s∗−2−σ
n−1 ≤ βa1ε̃µ

−τ
n−1.

These inequalities imply G(wn) → 0 in Hs∗−2−2τ (Ω) as n →∞.
Since Hs∗−2−2τ (Ω) ⊂ C2(Ω) and wn|∂Ω = 0, we conclude that G(w) = 0 and

w
∣∣
∂Ω

= 0. That is u = ϕ+ εw is a solution to the original Monge-Ampère equation
which is by Lemma 3.1 plurisubharmonic since g is nonnegative. If we suppose that
ρ = 0, in (A2), then the uniqueness of the solution follows immediately from [4].

5. Proof of Theorem 1.2

We shall use the result of Xu and Zuily [12, 13] that we recall briefly. Let us
consider a non linear partial differential equation

F (x, y, u,∇u, D2u) = 0 ,

where F is C∞. To any solution u we can associate the vector fields Xj =∑
k

∂F
∂ujk

∂k. Then

Theorem 5.1 ([12]). Suppose u ∈ Cρ
loc(Ω) with ρ > Max(4, r+2) for some constant

r ≥ 0 and that the brackets of the Xj, up to the order r, span the tangent space at
each point of Ω, then u belongs to C∞(Ω).

To prove this theorem, it is sufficient to prove that the solution of Theorem 1.1
satisfies Theorem 5.1 at any point in Σ. Suppose Σ = {0}. For i = 1 . . . n;

Xi = φii ∂

∂xi
+

n∑
j 6=i, j=1

φij + φij

2
∂

∂xj
+

n∑
j 6=i, j=1

iφij − iφij

2
∂

∂xj+n
, (5.1)

Xi+n = φii ∂

∂xi+n
+

n∑
j 6=i, j=1

φij + φij

2
∂

∂xj+n
−

n∑
j 6=i, j=1

iφij − iφij

2
∂

∂xj
. (5.2)

For computing the Lie algebra generated by the Xi, we need the following result.
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Lemma 5.2. For any integer 1 ≤ m ≤ k,

(adXn)m−1[Xn − iX2n, Xi − iXi+n]

=
2n∑
l=1

∑
|β|≤m, i 6=j

[
(Ciβp)∂β

xg + εdpij

]
∂xl

+ [An(ϕij)]
m−1Ai(ϕij)

[
(∂m

xn
g + i∂m−1

xn
∂x2n

g)(∂xi
+ i∂xi+n)

]
,

(5.3)

where Ciβp and dpij are Cs∗−m,τ (Ω) (depending on w and ϕ bounded for ε small
enough) satisfying for |β| = m, Ciβp(0) = 0, p = 1, . . . , n if n ≥ 3 and Ciβ1(0) = 0
if n = 2. An = ∂F

∂unn
and Ai = ∂2F

∂unn∂uii
.

Proof. We use induction on the size of the brackets. First we calculate Din =
[Xn + iX2n, Xi + iXi+n], for i ≤ n− 1.

Din =
[ n∑

j=1

Φnj∂xj + i

n∑
j=1

Φnj∂xj+n ,

n∑
l=1

Φil∂xl
+ i

n∑
l=1

Φil∂xl+n

]
=

n∑
l=1

n∑
j=1

{Φnj∂xj
(Φil)− Φij∂xj

(Φnl)}︸ ︷︷ ︸
(1)

∂xl

+ i

n∑
l=1

n∑
j=1

{Φnj∂xj+n(Φil)− Φij∂xj+n(Φnl)}︸ ︷︷ ︸
(2)

∂xl

−
n∑

l=1

n∑
j=1

{Φnj∂xj+n
(Φil)− Φij∂xj+n

(Φnl)}︸ ︷︷ ︸
(2)

∂xl+n

+ i
n∑

l=1

n∑
j=1

{Φnj∂xj
(Φil)− Φij∂xj

(Φnl)}︸ ︷︷ ︸
(1)

∂xl+n,

where

(1) =
n∑

j=1

n∑
p,q=1

{ ∂F

∂unj

∂2F

∂uil∂upq
− ∂F

∂uij

∂2F

∂unl∂upq
}∂xj

upq.

Using (2.10), we get

F.(1) =
n∑

j=1

n∑
p,q=1

∂F

∂unj

(
∂F

∂uil

∂F

∂upq
− ∂F

∂uiq

∂F

∂upl

)∂xj
upq

−
n∑

j=1

n∑
p,q=1

∂F

∂uij

(
∂F

∂unl

∂F

∂upq
− ∂F

∂unq

∂F

∂upl

)∂xj upq

=
n∑

j=1

n∑
p,q=1

∂F

∂upq
∂xj upq(

∂F

∂unj

∂F

∂uil

− ∂F

∂uij

∂F

∂unl

)︸ ︷︷ ︸
(5)
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+
n∑

j,p,q=1

∂F

∂upl

(
∂F

∂uij

∂F

∂unq
− ∂F

∂unj

∂F

∂uiq
)∂xj

upq︸ ︷︷ ︸
(6)

.

Using (2.10), we have

(5) = ∂xj (F )F
∂2F

∂unj∂uil

.

Similarly, we prove that

F.(2) =
n∑

j=1

∂xj+n(F )F
∂2F

∂unj∂uil

+
n∑

j,p,q=1

∂F

∂upl

(
∂F

∂uij

∂F

∂unq
− ∂F

∂unj

∂F

∂uiq
)∂xj+nupq︸ ︷︷ ︸

(7)

.

We can easily see that (6) + i(7) = 0, so,

(1) + i(2) =
n∑

j=1

(∂xj
(F ) + i∂xj+n

(F ))
∂2F

∂unj∂uil

and

Din =
n∑

l=1

n∑
j=1

(∂xj
(f) + i∂xj+n

(f))
∂2F

∂unj∂uil

[∂xl
+ i∂xl+n].

Since F is the determinant function, then, ∂F
∂uij

is independent of uil and ulj for

l = 1, . . . , n. Therefore ∂2F
∂uij∂upq

vanishes unless i 6= p, j 6= q. So,

Din =
∑

(l,j) 6=(i,n), l,j≤n

(∂xj
(f) + i∂xj+n

(f))
∂2F

∂unj∂uil

[∂xl
+ i∂xl+n].

We have ϕij(0) = (1− δn
i )σiδ

j
i ; Therefore, if n ≥ 3 and (l, s) 6= (i, n),

∂2F

∂uns∂uil

(ϕij)(0) = 0.

If n = 2 and l = 1, then s = 1 and we also have

∂2F

∂u21∂u11

(ϕij)(0) = 0.

So, (5.3) is proved for m = 1. By a recursion on m, we deduce this lemma. �

On the other hand, we have by (3.5)

Φij(ϕij)(0) = 0, for (i, j) 6= (n, n),

An(ϕij)(0) =
n−1∏
i=1

σi > 0,

Ai(ϕij)(0) =
n−1∏

j 6=i, i=1

σi > 0.

(5.4)
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Or by the hypothesis, ∂β
xg(0) = 0 for all |β| < k, and by (5.4), we can suppose

that ∂k
xn

g(0) 6= 0 (∂k
x2n

g(0) 6= 0 leads to the same result, just consider (adX2n)m−1

instead of (adXn)m−1).
So, by taking the real and the imaginary parts of (5.3) at the origin, we obtain

(adXn)k−1([Xn, Xi]− [X2n, Xi+n])

=
2n∑
l=1

∑
j 6=i

εd′pij(0)∂xl
+ [An(ϕij)(0)]k−1Ai(ϕij)(0)[∂k

xn
g∂xi

− ∂k−1
xn

∂x2n
g∂xi+n]

and

(adXn)k−1([X2n, Xi] + [Xn, Xi+n])

=
2n∑
l=1

∑
j 6=i

εd′′pij(0)∂xl
− [An(ϕij)(0)]k−1Ai(ϕij)(0)[∂k−1

xn
∂x2n

g∂xi
+ ∂k

xn
g∂xi+n].

Suppose now that |w|k+2 ≤ 1. We will get at the origin for ε ≤ ε̃ small enough
the determinant of the vectors

(adXn)k−1([Xn, Xi]− [X2n, Xi+n]),

(adXn)k−1([X2n, Xi] + [Xn, Xi+n])i=1,...,n−1,

Xn, X2n is different from zero.

(5.5)

Now, choose s∗ so big that s∗ ≥ max(7 + 2n, 6 + k + n) by means of Theorem
1.1 there exists ε0 < ε̃2 such that for any g satisfying (1.2) there exists a unique

solution u = ϕ+ε
1
2
0 w ∈ Ck+3(Ω) to the problem (1.1). Moreover; by (2.1), |w|k+2 ≤

β‖w‖k+2+n+τ . Since σ = s∗ − 2− τ , s∗ ≥ 6 + k + n and τ ≤ α
4 < 1

4 , then

k + 2 + n + τ ≤ s∗ − 4 + τ = σ − 2 + 2τ ≤ σ − τ.

We have then, using (4.3), (4.5) and (4.15),

|w|k+2 ≤ 2β
√

ε̃ ≤ 1.

So, by (5.5), we can conclude that for ε̃ sufficiently small, the vector fields at the
origin; [(adXn)k−1([Xδn, Xi])]δ=1,2;i=1,...,2n−1, Xn and X2n span all the tangent
space. Theorem 1.2 follows then from Theorem 5.1.

6. Appendix 1

To prove proposition 4.1, we need the following result.

Propositon 6.1. There exists a constant K0 ≥ 1 such that for any function wi ∈
Cs∗+2,τ (Ω), |wi|2 ≤ 1, i = 1, 2, 3 and for any ε ≤ 1 we have

|G(w1)−G(w2)|0 ≤ K0|w1 − w2|2
(
‖ϕ‖2+n∗ + ‖w1‖2+n∗ + ‖w2‖2+n∗ + 1

)
. (6.1)

Also for t ∈ [0, 1], s ∈ [0, s∗],

‖ d

dt
[LG(w1 + tw2)w3]‖s

≤ εK0[(‖ϕ‖2+s + ε‖w1‖2+s + ε‖w2‖2+s + 1)|w2|2|w3|2
+ (‖ϕ‖2+n∗ + ε‖w1‖2+n∗ + ε‖w2‖2+n∗ + 1)(|w2|2‖w3‖2+s + |w3|2‖w2‖2+s)].

(6.2)
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Proof. Just write

G(w1)−G(w2)

=
1
ε
[det(ϕij + εw1

ij
)− det(ϕij + εw2

ij
) + g(w1)− g(w2)]

=
∫ 1

0

n∑
i,j=1

∂F

∂uij

(ϕij + εw2
ij

+ tε(w1
ij
− w2

ij
))(w1

ij
− w2

ij
)dt

+
∫ 1

0

∂g

∂u
(ϕ + εw2 + tε(w1 − w2))(w1 − w2)

+
∫ 1

0

∂g

∂pi
(ϕ + εw2 + tε(w1 − w2))(w1

i − w2
i ),

and
d

dt
[LG(w1 + tw2)w3]

=
d

dt
[

n∑
i,j=1

∂F

∂uij

(ϕij + εw1
ij

+ tεw2
ij

)w3
ij

+
∂g

∂u
(ϕ + εw1 + tεw2)w3 + . . . ]

= ε
n∑

i,j,p,q=1

∂2F

∂uij∂upq
(ϕij + εw1

ij
+ tεw2

ij
)w2

pqw
3
ij

+ . . . .

Combining (2.1), (2.7), (2.8) and (2.9) with the inequalities

|ϕij + εw2
ij

+ tε(w1
ij
− w2

ij
)|0 ≤ |ϕ|2 + 2|w2|2 + |w1|2 ≤ 3 + |ϕ|2

and
|ϕij + εw1

ij
+ tεw2

ij
|0 ≤ |ϕ|2 + ε|w1|2 + tε|w2|2 ≤ 2 + |ϕ|2,

we deduce (6.1) and (6.2). �

Proof of the proposition 4.1. The proposition is proved by induction. We have u0 =
0. Let begin by proving (4.19)0 to (4.21)0. (i.e. (4.19) to (4.21) corresponding to
j = 0).
(a) (4.19)0: Using (3.2) and (4.10), we have

g0 = −S0G(0) and G(0) =
1
ε̃
(det(ϕij)− g(ϕ)).

But ϕ ∈ Cs∗+2,α(Ω), g ∈ Cs∗ and Sn are smoothing operators, so g0 ∈ Hs∗(Ω).
(2.3), (2.4), (3.2) and (1.2) show that

‖g0‖s ≤ β‖G(0)‖s ≤
β

ε̃
‖det(ϕij)− g(ϕ)‖s∗ ≤

β2

ε̃
|det(ϕij)− g(ϕ)|s∗ ≤ β2ε̃.

Using (4.4) and β ≤ µ, we get ‖g0‖s ≤ µ2ε̃ ≤ a2ε̃
(b) (4.20)0: (3.2), (4.4), (4.5) and (1.2) give

θ0 = |G(0)|0 ≤
1
ε̃
|det(ϕij)− g(ϕ)|s∗ ≤ ε̃ ≤

√
ε̃a3 ≤ 1.

(c) (4.21)0: We have

A0(2) = max(1, |∂g

∂u
(ϕ)|2,max

i,j
| ∂F

∂ϕij

(ϕlq)|2 + θ0).

Then, by (2.9), (4.1) and (4.20)0, A0(2) ≤ M0.
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Assume that u0, u1, . . . , un−1 ∈ Hs∗(Ω) satisfy (3.12)–(3.14) and (4.14)–(4.21)
for j ≤ n − 1. We shall construct un ∈ Hs∗(Ω) satisfying (3.12)–(3.14) and prove
that (4.14)–(4.21) are satisfied for j = n.

Combining (4.16)n−1–(4.21)n−1, we have |w̃n−1|4,κ ≤ 1, θn−1 ≤ 1, An−1(2) ≤
M0 and gn−1 ∈ Hs∗(Ω). We can then apply Theorem 3.3 to get a solution un ∈
Hs∗(Ω) to the problem (4.7)n satisfying (3.12)–(3.14). Then:
(a) (4.14)n: For n = 1, using (1.2), (2.3), (3.2), (3.12), and (4.2), we have

‖u1‖0 ≤ D‖g0‖0 ≤ Dβ‖G(0)‖0 ≤ D
β2

ε̃
|det(ϕij)− g(ϕ)|s∗ ≤ Dβ2ε̃.

(4.3), (4.5), and s∗ ≥ σ give

‖u1‖0 ≤
√

ε̃µ−σ. (6.3)

By (3.13), we have ‖u1‖1 ≤ D(‖g0‖1 + ‖u1‖0). Therefore, using (1.2), (2.3), (6.3),
and s∗ ≥ σ, we get

‖u1‖1 ≤ D(β2ε̃ +
√

ε̃µ−σ) ≤
√

ε̃µ1−σ.

Suppose that for 0 ≤ l ≤ s and s ≥ 2 we have

‖u1‖l ≤
√

ε̃µl−σ. (6.4)

Using (3.14), we have, for s ≥ 2,

‖u1‖s ≤ D
(
‖g0‖s +

∑
l≤s−1, (i,l)∈Λs

(1 + |ϕ|i+4,τ )‖u1‖l

)
.

(1.2), (2.3), (2.4), (4.3), (4.10), and s∗ ≥ σ imply

‖g0‖s ≤ β‖G(0)‖s ≤ β2|G(0)|s ≤ β2ε̃ ≤ µ̃ε̃µs−σ,

which by (6.3) and (6.4) gives

‖u1‖s ≤ D
(
µ̃ε̃µs−σ +

∑
l≤s−1, (i,l)∈Λs

(1 + |ϕ|i+4,τ )
√

ε̃µl−σ
)

≤ D
(
µ̃ε̃µs−σ + s2

∗(1 + |ϕ|i+4,τ )µ−1
√

ε̃µs−σ
)
,

which by (4.3) and (4.5) shows that ‖u1‖s ≤
√

ε̃µs−σ.
For n ≥ 2, (3.12), (4.2), (4.5), and (4.19)n−1 imply

‖un‖0 ≤ D‖gn−1‖0 ≤ Dε̃a2µ
−σ
n−1 ≤

√
ε̃µ−σ

n−1. (6.5)

In the same way; (3.13), (4.2), (4.5), (4.19)n−1 and (6.5) give

‖un‖1 ≤
√

ε̃µ1−σ
n−1.

Suppose that, for 0 ≤ l < s and s ≥ 2, ‖un‖l ≤
√

ε̃µl−σ
n−1. By (3.14), we have

‖un‖s ≤ D(‖gn−1‖s +
∑

l≤s−1, (i,l)∈Λs

(1 + |ϕ + ε̃w̃n−1|i+4,τ )‖un‖l).

But, (2.1), (2.5), (4.15)n−1, and 4 + n∗ ≤ σ − τ imply that, for 0 ≤ i ≤ s− 2,

|w̃n−1|i+4,τ ≤ β‖w̃n−1‖4+n∗+i ≤ β2µi
n−1‖w̃n−1‖4+n∗ ≤ 2β2

√
ε̃µi

n−1.

Therefore, using (4.19)n−1, we get

‖un‖s ≤ D
(
ε̃a2µ

s−σ
n−1 +

∑
(1 + |ϕ|s∗+2,τ + 2β2

√
ε̃µi

n−1)
√

ε̃µl−σ
n−1

)
≤ D

(
ε̃a2µ

s−σ
n−1 + 2β2s2

∗ε̃µ
s−σ
n−1 + (1 + |ϕ|s∗+2,τ )s2

∗
√

ε̃µs−1−σ
n−1

)
,
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which combined with (4.4) and (4.5) gives ‖un‖s ≤
√

ε̃µs−σ
n−1.

(b) (4.15)n: (4.6) shows that wn =
∑n

j=1 uj . By (4.14)j , 1 ≤ j ≤ n, we have

‖wn‖s ≤
n∑

j=1

‖uj‖s ≤
√

ε̃µs−σ +
n∑

j=2

√
ε̃µs−σ

j−1 ≤
√

ε̃µs−σ +
n−1∑
j=1

√
ε̃µs−σ

j .

For s ≤ σ − τ , since µ ≥ 21/τ ≥ 2, we have µs−σ
j ≤ µ−τ

j ≤ 1
2j and

‖wn‖s ≤
n−1∑
j=0

√
ε̃µs−σ

j ≤
√

ε̃
n−1∑
j=0

1
2j
≤ 2

√
ε̃.

For s ≥ σ − τ , we have

‖wn‖s ≤
√

ε̃µs−σ +
√

ε̃
µn(s−σ) − µs−σ

µs−σ − 1
.

Since µ ≥ 21/τ , it follows that µs−σ ≥ µτ ≥ 2. Therefore, ‖wn‖s ≤
√

ε̃µs−σ
n .

(c) (4.16)n: Combining (2.1), (2.4), (4.5), (4.15)n and 4 + n∗ ≤ σ − τ , we obtain

|w̃n|4,τ ≤ β‖w̃n‖4+n∗ ≤ β2‖wn‖4+n∗ ≤ 2β2
√

ε̃ ≤ 1.

(d) (4.17)n): In the case s ≤ σ − τ , using (2.6) and (4.15)n, we obtain

‖wn − w̃n‖s ≤ βµs−[σ+τ ]−1
n ‖wn‖[σ+τ ]+1 ≤ βµs−[σ+τ ]−1

n

√
ε̃µ[σ+τ ]+1−σ

n ≤ β
√

ε̃µs−σ
n .

In the case s > σ − τ , (2.6) (4.15)n) and β ≥ 1 give

‖wn − w̃n‖s ≤ β‖wn‖s ≤ β
√

ε̃µs−σ
n .

(e) (4.18)n: By (4.12), we have

rn = [LG(wn−1)− LG(w̃n−1)]un︸ ︷︷ ︸
(1)

− θn−14un︸ ︷︷ ︸
(2)

+ Qn︸︷︷︸
(3)

When n = 1, (1) = 0. In the case n ≥ 2, since

(1) =
∫ 1

0

d

dt
[LG(w̃n−1 + t(wn−1 − w̃n−1))un]dt,

by (2.1) and (4.17)n−1, we get

|wn−1 − w̃n−1|2 ≤ β‖wn−1 − w̃n−1‖2+n∗ ≤ 2β2
√

ε̃µ3+n∗−σ
n−1 .

But 2β2
√

ε̃ ≤ 1 and 3 + n∗ ≤ 4 + 2n∗ ≤ σ, so, |wn−1 − w̃n−1|2 ≤ 1. In the same
way, (2.1), (4.5) and (4.14)n give

|un|2 ≤ β‖un‖2+n∗ ≤ β
√

ε̃µ3+n∗−σ
n−1 ≤ 1.

By (4.16)n−1, we also have |w̃n−1|2 ≤ 1. Hence, we can apply Proposition 6.1 to
get

‖(1)‖s ≤ε̃K0{[‖ϕ‖s+2 + ‖w̃n−1‖s+2 + ‖wn−1‖s+2 + 1]|wn−1 − w̃n−1|2|un|2
+ (‖ϕ‖2+n∗ + ‖w̃n−1‖2+n∗ + ‖wn−1‖2+n∗ + 1)

× (|wn−1 − w̃n−1|2‖un‖s+2 + ‖wn−1 − w̃n−1‖s+2|un|2)}.

Using (2.3) and (4.3), we get for 0 ≤ s ≤ s∗,

‖ϕ‖s+2 ≤ β|ϕ|s∗+2 ≤ βµ ≤ µ2.

By (2.2), it suffices to prove (4.18)n for s = 0 and s = s∗ − 2.
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Case s = 0: combining (2.1), (4.14)n, (4.15)n−1 and (4.17)n−1, we have

‖(1)‖0 ≤ ε̃K0{(µ2 + 2β
√

ε̃ + 2
√

ε̃ + 1)2β3ε̃µ4+2n∗−2σ
n−1

+ (µ2 + 2β
√

ε̃ + 2
√

ε̃ + 1)4β3ε̃µ4+n∗−2σ
n−1 },

which using (4.5) and σ ≥ 4 + 2n∗ ≥ 4 + n∗ gives ‖(1)‖0 ≤ ε̃K0µ
−σ
n−1.

Case s = s∗ − 2: (4.5) and s∗ ≥ σ + τ , as in the previous case, imply

‖(1)‖s∗−2 ≤ ε̃K0µ
s∗−2−σ
n−1 .

By (2.2), we obtain for 0 ≤ s ≤ s∗ − 2,

‖(1)‖s ≤ βε̃K0µ
s−σ
n−1.

Next,
‖(2)‖s ≤ θn−1‖un‖s+2.

If n = 1 combining (4.5), (4.9) and (4.14)n, we obtain

‖(2)‖s ≤ |G(0)|0‖u1‖s+2 ≤ ε̃
√

ε̃µs+2−σ ≤ ε̃µs−σ.

In the case n ≥ 2: (4.14)n and (4.20)n−1 imply

‖(2)‖s ≤ a3ε̃µ
−2
n−1µ

s+2−σ
n−1 = a3ε̃µ

s−σ
n−1.

Finally, since by (4.13),

(3) = Qn = G(wn−1 + un)−G(wn−1)− LG(wn−1)un

=
∫ 1

0

(
∫ t

0

d

dh
[LG(wn−1 + hun)un]dh)dt .

Then, using (2.1), (4.5) and (4.15)n−1, we obtain

|wn−1|2 ≤ β‖wn−1‖2+n∗ ≤ 2β
√

ε̃ ≤ 1.

Since we proved that |un|2 ≤ 1, we can apply proposition 6.1 to have

‖(3)‖s ≤ ε̃K0[(‖ϕ‖s+2 + ‖un‖s+2 + ‖wn−1‖s+2 + 1)|un|22
+ 2|un|2‖un‖s+2(‖ϕ‖2+n∗ + ‖un‖2+n∗ + ‖wn−1‖2+n∗ + 1)].

Combining (2.1), (4.14)n and (4.15)n−1, we get
For s = 0:

‖(3)‖0
≤ ε̃K0{(µ2 +

√
ε̃[max(µ, µn−1)]2−σ + 2

√
ε̃ + 1)β2ε̃[max(µ, µn−1)]4+2n∗−2σ

+ 8(µ2 +
√

ε̃β[max(µ, µn−1)]2+n∗−σ + 2
√

ε̃ + 1)ε̃β[max(µ, µn−1)]4+n∗−2σ},

which combined with (4.5) and σ ≥ 4 + 2n∗ gives

‖(3)‖0 ≤ ε̃K0[max(µ, µn−1)]−σ.

For s = s∗ − 2; since σ ≥ 4 + 2n∗, we also get

‖(3)‖s∗−2 ≤ ε̃K0[max(µ, µn−1)]s∗−2−σ.

Then (2.2) shows that, for 0 ≤ s ≤ s∗ − 2,

‖(3)‖s ≤ βε̃K0[max(µ, µn−1)]s−σ,

and we conclude that

‖rn‖s ≤ (2βK0 + a3)ε̃[max(µ, µn−1)]s−σ
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≤ 9K0µ
5ε̃[max(µ, µn−1)]s−σ

= a1ε̃[max(µ, µn−1)]s−σ.

(f) (4.19)n): By (4.10) and (4.11),

gn = Sn−1Rn−1 − SnRn + (Sn−1 − Sn)G(0)

= (Sn−1Rn−1 − SnRn−1)︸ ︷︷ ︸
(4)

− Snrn︸ ︷︷ ︸
(5)

+ (Sn−1 − Sn)G(0)︸ ︷︷ ︸
(6)

.

Case s = 0: (2.6), (4.11) and (4.18)j , j ≤ n− 1, imply

‖(4)‖0 ≤ ‖(I − Sn−1)Rn−1‖0 + ‖(I − Sn)Rn−1‖0
≤ β‖Rn−1‖s∗−2µ

2−s∗
n−1 + βµ2−s∗

n ‖Rn−1‖s∗−2

≤ (βa1ε̃µ
2−s∗
n−1 + βa1ε̃µ

2−s∗
n )(µs∗−2−σ +

n−1∑
j=2

µs∗−2−σ
j−1 ).

Since s∗ − 2 > σ and β ≤ µ, then

‖(4)‖0 ≤ βa1ε̃(µ2−s∗
n−1 + µ2−s∗

n )µs∗−2−σ
n−1 ≤ 2a1µ

2ε̃µ−σ
n .

On the other hand, combining (2.4), (4.18)n, σ < s∗ − 2 and β ≤ µ, we obtain

‖(5)‖0 ≤ β‖rn‖0 ≤ βa1ε̃[max(µ, µn−1)]−σ ≤ a1µ
2ε̃µ−σ

n .

We also have by (1.2), (2.3), (2.6). and σ < s∗ − 2,

‖(6)‖0 ≤ ‖(I − Sn−1)G(0)‖0 + ‖(I − Sn)G(0)‖0
≤ βµ−σ

n−1‖G(0)‖σ + βµ−σ
n ‖G(0)‖σ

≤ β2µ−σ
n−1|G(0)|s∗ + β2µ−σ

n |G(0)|s∗
≤ β2ε̃µ−σ

n (µσ + 1) ≤ 2µs∗ ε̃µ−σ
n .

We finally get
‖gn‖0 ≤ (2 + 3a1)µs∗ ε̃µ−σ

n .

Case s = s∗: (2.5), (4.11), (4.18)j , 1 ≤ j ≤ n, and σ < s∗ − 2 show that

‖(4) + (5)‖s∗

≤ ‖Sn−1Rn−1‖s∗ + ‖SnRn‖s∗

≤ βµ2
n−1‖Rn−1‖s∗−2 + βµ2

n‖Rn‖s∗−2

≤ βµ2
n−1a1ε̃(µs∗−2−σ +

n−1∑
j=2

µs∗−2−σ
j−1 ) + βµ2

na1ε̃(µs∗−2−σ +
n∑

j=2

µs∗−2−σ
j−1 )

≤ βa1ε̃(µ2
n−1µ

s∗−2−σ
n−1 + µ2

nµs∗−2−σ
n )

≤ 2βa1ε̃µ
s∗−σ
n ≤ 2µa1ε̃µ

s∗−σ
n .

Next, by (1.2), (2.5), (2.3), and β ≤ µ, we have

‖(6)‖s∗ ≤ ‖SnG(0)‖s∗ + ‖Sn−1G(0)‖s∗

≤ βµs∗−σ
n ‖G(0)‖σ + βµs∗−σ

n−1 ‖G(0)‖σ

≤ 2β2ε̃µs∗−σ
n ≤ 2µ2ε̃µs∗−σ

n .

Therefore,
‖gn‖s∗ ≤ 2µ(a1 + µ)ε̃µs∗−σ

n .
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We can finally conclude using (4.4) and µ ≤ a1, that

‖gn‖s∗ ≤ 4a1µ
2ε̃µs∗−σ

n ≤ a2ε̃µ
s∗−σ
n .

(g) (4.20)n : By (4.9), we have

θn = |G(w̃n)|0 ≤ |G(wn)−G(w̃n)|0 + |G(wn)|0
Using (4.22):

G(wn) = (I − Sn−1)Rn−1 + (I − Sn−1)G(0) + rn.

Then

θn ≤ |G(wn)−G(w̃n)|0︸ ︷︷ ︸
(7)

+ |(I − Sn−1)Rn−1|0︸ ︷︷ ︸
(8)

+ |(I − Sn−1)G(0)|0︸ ︷︷ ︸
(9)

+ |rn|0︸︷︷︸
(10)

.

Since we proved that |wn|2 ≤ 1 and |w̃n|2 ≤ 1, we can apply Proposition 6.1 to get

(7) ≤ βK0‖wn − w̃n‖2+n∗(‖ϕ‖2+n∗ + ‖wn‖2+n∗ + ‖w̃n‖2+n∗ + 1).

Equations (2.4), (4.15)n, (4.17)n, and 3 + n∗ ≤ 4 + 2n∗ − τ ≤ σ − τ imply

(7) ≤ 2β2K0

√
ε̃µ2+n∗−σ

n (µ2 + 2
√

ε̃ + 2β
√

ε̃ + 1).

Since ε̃ ≤ 1
(6β2)2 , β ≤ µ and 4 + n∗ − σ ≤ 4 + 2n∗ − σ ≤ 0 then

(7) ≤ 4µ5K0

√
ε̃µ−2

n .

In the case n = 1, (8) = 0. For n ≥ 2, since β ≤ µ, n∗ − σ ≤ −2 and µ4a1

√
ε̃ ≤

a2

√
ε̃ ≤ 1, combining (2.1), (2.6), (4.11), and (4.18)j , j ≤ n− 1, we obtain

(8) ≤ β‖(I − Sn−1)Rn−1‖n∗

≤ β2µn∗−s∗+2
n−1 a1ε̃

(
µs∗−2−σ +

n−1∑
j=2

µs∗−2−σ
j−1

)
≤ β2a1ε̃µ

s∗−σ
n−1 ≤

√
ε̃µ−2

n .

Equations (1.2), (2.1), (2.3), (2.6), (4.5), and β ≤ µ imply

(9) ≤ β‖(I − Sn−1)G(0)‖n∗ ≤ β2µn∗−s∗
n−1 ‖G(0)‖s∗

≤ β3µ−2
n−1ε̃ ≤ β3µ2ε̃µ−2

n ≤
√

ε̃µ−2
n .

Finally, by (2.1) and (4.18)n,

(10) ≤ β‖rn‖n∗ ≤ βa1ε̃[max(µ, µn−1)]n∗−σ

≤ µa1ε̃[max(µ, µn−1)]−2 ≤
√

ε̃µ−2
n .

Thus, we conclude that

θn ≤ 7K0µ
5
√

ε̃µ−2
n = a3

√
ε̃µ−2

n ≤ 1.

(h) (4.21): We have

An(2) ≤ max
(
1, |∂g

∂u
(ϕ + ε̃w̃n)|2, max

1≤i,j≤n
| ∂F

∂uij

(ϕkl + ε̃(w̃n)kl)|2 + θn

)
.

Using (2.9), (4.1), (4.16)n and (4.20)n, we get An(2) ≤ M0. �
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7. Appendix 2

In the rest of this paper, we prove estimates (3.12)–(3.14) for Lν . We shall need
the following result.

Propositon 7.1. The operator

P =
n∑

i,j=1

∂F

∂uzizj

(uzizj )∂zi∂zj ,

where u ∈ C3(Ω), is formally self-adjoint.

Proof. Let Σ = {z ∈ Ω/F (uzizj
)(z) = 0}. Since

P =
n∑

i=1

∂zi

( n∑
j=1

∂F

∂uzizj

∂zj

)
−

n∑
i,j=1

∂zi

( ∂F

∂uzizj

(uij)
)
∂zj ,

it is sufficient to prove that for j = 1, . . . , n and z ∈ Ω,

Aj(z) =
n∑

i=1

∂zi

( ∂F

∂uzizj

(uzizj )(z)
)

=
n∑

i,p,q=1

∂2F

∂uzizj ∂uzpzq

(uzizj )uzizpzq (z) = 0.

Using the relation (2.10), we get Aj(z) = 0 for any z /∈ Σ. The continuity of the
determinant function allow as to have the conclusion when z ∈ Σ. �

7.1. Estimates in the elliptic Zone of L. Let Q =
2n∑

i,j=1

bijDxi
Dxj

+ b be a

degenerate elliptic operator with real coefficients b, bij = bji ∈ Cs∗,τ (Ω). Assume
that there is a continuous function λ(x) ≥ 0 defined in Ω such that

2n∑
i,j=1

bijξiξj ≥ λ(x)|ξ|2.

Let S be a subset of Ω satisfying {x ∈ Ω : λ(x) = 0} ⊂ S.

Lemma 7.2. Assume that Q is uniformly elliptic in Ω; that is λ(x) ≥ λ0, λ0 is
a positive constant Then for any integer 1 ≤ s ≤ s∗ there exists a constant C ′

s

depending only on s, λ0 and A(0) such that for any real function u ∈ Cs∗,τ (Ω) ∩
H1

0 (Ω),

‖u‖1 ≤ C ′
1(‖Qu‖0 + A(2)‖u‖0), (7.1)

‖u‖s ≤ C ′
s(‖Qu‖s−1 +

∑
i≤s−2, i+j≤s−1

A(i + 2)‖u‖j), s ≥ 2. (7.2)

It is not difficult to prove (7.1). In fact, we need only to apply well-known stan-
dard techniques to the linear elliptic operator Q and to calculate several constants
precisely. By induction with respect to s and patient calculation, (7.2) follows from
(7.1).

For δ > 0, we define the set Sδ by

Sδ = {x ∈ Ω, d(x, S) < δ}.
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Lemma 7.3. Assume that S is a compact C∞ submanifold of Ω and Ω\S is con-
nected. Then there exists a function µ ∈ L∞(Ω) and a constant C > 0 such that
µ = 0 on S, mδ = infΩ\Sδ

µ > 0 for any sufficiently small δ and∫
Ω

µu2dx ≤ C
{
‖Qu‖0‖u‖0 +

1
2

sup[bij
ij − 2b]‖u‖20

}
, (7.3)

for u ∈ Cs∗,τ (Ω) ∩H1
0 (Ω).

Proof. Standard techniques of elliptic operators give∫
λ|Du|2dx ≤ C

{
‖Qu‖0‖u‖0 +

1
2

sup[bij
ij − 2b]‖u‖20

}
.

Hence, it suffices to show that
∫

µu2dx ≤
∫

λ|Du|2dx. First, let us fix a point
p ∈ Ω\S arbitrarily.

By virtue of the fundamental theorem of ordinary differential equations, we can
construct a family of curves c(t, x) ∈ C∞([0, Tp]×Up) such that c(0, x) = x, c(t, x) /∈
S for 0 < t < Tp when x ∈ Ω\S, c(Tp, x) /∈ Ω, |ċ(t, x)| ≡ 1, supx∈Up

τx < ∞, and
c(t, .) is a local C∞ diffeomorphism defined in Up for any fixed t.

Here, Tp is a positive constant, Up is a sufficiently small open neighborhood of
p, and, τx = inf{t ≥ 0 : c(t, x) /∈ Ω } We define a function µp(x) by

µp(x) = inf{λ(c(t, x)) : 0 ≤ t ≤ τx}.

For u ∈ C1(Ω) satisfying u
∣∣
∂Ω

= 0, since

u(x) = u(c(0, x))− u(c(τx, x)) = −
∫ τx

0

Du(c(t, x)).ċ(t, x)dt,

we have

|u(x)|2 ≤ C

∫ τx

0

|Du(c(t, x))|2dt.

Multiplying this inequality by µp and using its definition, we obtain

µp(x)|u(x)|2 ≤ C

∫ τx

0

λ(c(t, x))|Du(c(t, x))|2dt,

which implies ∫
Up

µp|u|2 ≤ C

∫
Ω

λ|Du|2dt.

Secondly, we note that the above argument ensures the existence of a finite number
of points p1, . . . , pN such that Ω\S ⊂ ∪N

i=1Upi
and∫

Upi

µpi |u|2 ≤ C

∫
Ω

λ|Du|2dt.

Therefore, we have only to define µ by

µ(x) =

{
min{µpi

(x) : x ∈ Upi
, 1 ≤ i ≤ n}, if x ∈ Ω\S,

0, if x ∈ S.

�
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Lemma 7.4. For u ∈ C1
0 (Ω),∑

k

‖[∂k, Q]u‖20 ≤ C(A(2)‖Qu‖1‖u‖1 + A(2)2‖u‖21), (7.4)∑
k

‖[∂k, Q]u‖2s ≤ C(A(2)‖Qu‖s+1‖u‖s+1 +
∑

(i,j)∈Λs+1

A(i + 2)2‖u‖2j ) s ≥ 1. (7.5)

Proof. [11, Lemma 1.7.1] shows that

(bij
k uij)2 ≤ CA(2)bijuliulj ,

which implies∑
k

‖[∂k, Q]u‖20 ≤ C
∑

k

∫
{(bij

k uij)2 + (bku)2}

≤ CA(2)
∑

k

∫
bijuliulj + CA(1)2‖u‖21.

Integrating by parts∫
bijuliulj = −〈(Qu)l, ul〉+ 〈[∂l, Q]u, ul〉+

1
2
〈(bij

ij − 2b)ul, ul〉,

which implies∫
bijuliulj ≤ C

(
‖Qu‖1‖u‖1 +

∑
k

‖[∂k, Q]u‖0‖u‖1 + A(2)‖u‖21
)
.

From these inequalities, and using the inequality αβ ≤ εα2 + 1
εβ2 it follows that∑

k

‖[∂k, Q]u‖20 ≤ C(A(2)‖Qu‖s+1‖u‖s+1 + A(2)2‖u‖21).

For s ≥ 1, (6.5) is proved by recursion on s using (6.4). �

Lemma 7.5. Let χ ∈ C∞ satisfy supp∇χ ⊂ Ω. For any integer 0 ≤ s ≤ s∗, there
exists a constant Cs > 0 such that for all u ∈ Cs∗,τ (Ω),

‖[χ,Q]u‖2s ≤ Cs

(
A(2)‖Qu‖s‖u‖s +

∑
(i,j)∈Λs

A(i + 2)2‖u‖2j
)
. (7.6)

Proof. Let us consider a cut-off function χ̃ ∈ C∞
0 (Ω) satisfying 0 ≤ χ̃ ≤ 1 and

χ̃ = 1 on ∪i supp ∂iχ, and define an operator Q̃ = b̃ijDxi
Dxj

+ b̃ by Q̃ = χ̃Q. Since
[χ, Q̃]u = [χ,Q]u and ‖Q̃u‖s ≤ C‖Qu‖s, it will suffice to prove (7.6) for Q̃.

For s = 0: The corollary to Lemma 1.7.1 in [11] shows that( ∑
i,j

b̃ijuj

)2 ≤ 2A(0)̃bijuiuj .

which gives

‖[χ, Q̃]u‖20 ≤ CA(0)
∫

b̃ijuiuj + CA(0)2‖u‖20,

Integrating by parts we have∫
b̃ijuiuj = −〈Q̃u, u〉+

1
2
〈(̃bij

ij − 2b̃)u, u〉 ≤ ‖Q̃u‖0‖u‖0 + CA(2)‖u‖20,

which implies (7.6)0.
Note that (7.6)s≥1 follows from (7.6)0 by induction with respect to s �
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7.2. Estimates near the degenerate points of L. For t ≥ t0 ≥ 1, we define

Vt(0) = {x ∈ Ω, |xn| <
1
t
} ∩B(0, δ1).

Propositon 7.6. For any integer 0 ≤ s ≤ s∗ and any function u ∈ Cs∗,τ
0 (Vt(0)),

there exists a constant C ′′
s = C ′′

s (n, Ω, ϕ, δ1) > 0 such that

‖u‖0 ≤ C
′′

0 t−1‖Lνu‖0, (7.7)

‖u‖s ≤ C ′′
s t−1(‖Lνu‖s +

∑
(i,j)∈Λs

A(i + 2)‖u‖j), s ≥ 1, (7.8)

where δ1 is as in Lemma 3.1.

Proof. Let v = (T − etxn)−1u, and T > 5e a constant. A direct computation gives

Qu = (T − etxn)Qv − tetxn{2bnjvj + tbnnv},∫
(T − etxn)−1Qu.v = −I + II − III − IV,

where

I =
∫

bijvivj , II =
1
2

∫
{bij

ij − 2b}v2,

III = t2
∫

etxnbnn(T − etxn)−1v2, IV = 2t

∫
etxn(T − etxn)−1vbnjvj .

Using the Cauchy-Schwartz inequality, we get

|IV | ≤
∫

bijvivj + 4t2
∫

e2txn(T − etxn)−2bnnv2.

Since

etxn(T − etxn)−1 − 4e2txn(T − etxn)−2 = etxn(T − etxn)−2(T − 5etxn),

it follows that

t2
∫

e2txn(T − etxn)−4(T − 5etxn)bnnu2 ≤ −
∫

(T − etxn)−2Qu.u− II.

Also
e−1 ≤ etxn ≤ e, (T − e−1)−1 ≤ (T − etxn)−1 ≤ (T − e)−1;

therefore,

C0t
2 inf

Vt(0)
(bnn)‖u‖20 ≤ C

{
‖Qu‖0‖u‖0 +

1
2

sup
Vt(0)

[bij
ij − 2b]‖u‖20

}
. (7.9)

To prove (7.7), we apply (7.8). So, for u ∈ Cs∗,τ
0 (Vt(0)), we can write

t
{
tC0 inf

Vt(0)
(bnn)− C

2
sup
Vt(0)

|bij
ij − 2b|

}
‖u‖20 ≤ C‖Qu‖0‖u‖0,

with Q = Lν and bnn = (Φnn + 4(θ + ν)). If |w|3,τ ≤ 1, |x| ≤ δ0 and ε ≤ ε1, we
have

Φnn ≥
n−1∏
i=1

σi −Mδ1 −Mε1 = α > 0.

Taking t ≥ t0 = max( 4(C+1)A(2)
αC0

, 1), (7.7) is proved. To prove (7.8), we use (7.7)
and recursion on s. We now estimate ‖χu‖s. �
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Propositon 7.7. For any cut-off function χ ∈ C∞
0 (Vt(0)), u ∈ Cs∗,τ (Ω) ∩H1

0 (Ω)
and 1 ≤ s ≤ s∗,

‖χu‖s ≤ 2C ′′
s (‖Lνu‖s + ‖[χ,Lν ]u‖s +

∑
j<s, (i,j)∈Λs

(|ϕ + εw|i+4,τ + 1)‖u‖j). (7.10)

Proof. Let us consider a cut-off function χ ∈ C∞
0 (Vt(0)). For u ∈ Cs∗,τ ∩H1

0 (Ω),
since supp χ ⊂ Vt(0), we have by (7.9) for any 1 ≤ s ≤ s∗,

‖χu‖s ≤ C ′′
s t−1

(
‖χLνu‖s + ‖[χ,Lν ]u‖s +

∑
j<s, (i,j)∈Λs

A(i + 2)‖u‖j

)
+ C ′′

s t−1A(2)‖χu‖s.

We have A(2) ≤ M0. We fix t ≥ t0 such that for 1 ≤ s ≤ s∗, C ′′
s t−1A(2) ≤ 1

2 . On
the other hand,

A(i + 2) = max
(
1, |∂g

∂u
(ϕ + εw)|i+2, max

1≤p,q≤n
| ∂F

∂upq
(ϕkl + εwkl)|i+2 + θ

)
.

But, for k ∈ {0, 1, 2}, |∂kϕ + ε∂kw|0 ≤ |ϕ|2 + 1, then by (2.9), since θ ≤ 1, we get,
for 0 ≤ i ≤ s∗ − 2,

A(i + 2) ≤ C(ϕ)
(
|ϕ + εw|i+4,τ + 1

)
. (7.11)

and we deduce (7.10). �

7.3. Proof of the estimates (3.12)–(3.14) for Lν . . Since ‖u‖s ≤ ‖(1−χ)u‖s +
‖χu‖s, it will suffice to estimate ‖(1− χ)u‖s and ‖χu‖s.

Proof of (3.12). Since χ = 1 in a neighborhood of zero in V , then, there exists
δ > 0 such that Supp(1− χ) ⊂ Ω\B(0, δ).

Let us consider the cut-off functions: χ̃, ˜̃χ ∈ C∞
0 (Ω\S), 0 ≤ χ̃, ˜̃χ ≤ 1 and such

that χ̃ = 1 on supp ∂iχ and ˜̃χ = 1 on supp χ̃. Let µ be the function given by
Lemma 7.3 (mδ depends only on ϕ, Ω, n).

By (7.3), there exists C0 = C0(ϕ, Ω, n) > 0 such that

‖(1− χ)u‖20 =
∫

Ω\B(0,δ)

u2dx ≤ 1
mδ

∫
µu2dx ≤ C0(‖u‖0‖Lνu‖0 + B‖u‖20),

where B = 1
2 sup[bij

ij − 2b]. By proposition 7.1,
∑

ij bij
ij = 0, and the hypothesis

(A2) imply that −2b ≤ %. So, B ≤ % and we have

‖(1− χ)u‖20 ≤ C1(‖u‖0‖Lνu‖0 + %‖u‖20).

Since Supp ˜̃χ ⊂ Ω\{0}, we also have by the same way,

‖˜̃χu‖20 ≤ C1(‖u‖0‖Lνu‖0 + %‖u‖20).
On the other hand, by (7.8),

‖χu‖20 ≤ C2‖Lνχu‖20 ≤ C2(‖Lνu‖20 + ‖[χ,Lν ]u‖20),

but χ̃Lν
˜̃χu = χ̃Lνu and [χ,Lν ]u = [χ, χ̃Lν ]˜̃χu. Since A(2) ≤ M0 and ν ≤ 1, using

Lemma 7.5, we get

‖[χ,Lν ]u‖20 = ‖[χ, χ̃Lν ]˜̃χu‖20 ≤ C
[
‖χ̃Lν

˜̃χu‖0‖˜̃χu‖0 + (M0 + 1)2‖˜̃χu‖20
]

≤ C ′(‖Lνu‖0‖˜̃χu‖0 + ‖˜̃χu‖20
)
.
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Combining these inequalities with the fact that % << 1, and using the inequality
αβ ≤ εα2 + 1

εβ2, we get (3.12) �

Proof of (3.13). We have supp(1 − χ) ⊂ Ω\B(0, δ). Or ϕ is strictly plurisubhar-
monic on E = supp(1−χ), then for ε ≤ ε4 small enough, L is uniformly elliptic on
E. Using (7.1) and the estimation A(2) ≤ M0, we have

‖(1− χ)u‖1 ≤ C ′
1(‖Lνu‖0 + (M0 + 1)‖u‖0 + ‖[χ,Lν ]u‖0).

Applying Lemma 7.5, we get

‖[χ,Lν ]u‖0 ≤ C0(‖Lνu‖0 + (M0 + 1)‖u‖0),
therefore,

‖(1− χ)u‖1 ≤ C1(M0)(‖Lνu‖0 + ‖u‖0).
On the other hand, since A(2) ≤ M0, we get using (7.10),

‖χu‖1 ≤ C1(M0)(‖Lνu‖1 + ‖[χ,Lν ]u‖1 + ‖u‖0) .

But χ̃Lν
˜̃χu = χ̃Lνu and [χ,Lν ]u = [χ, χ̃Lν ]˜̃χu, so, since A(2) ≤ M0, Lemma 7.5

gives

‖[χ,Lν ]u‖1 ≤ C1(‖χ̃Lν
˜̃χu‖1 + (1 + M0)‖˜̃χu‖1)

≤ C1(‖Lνu‖1 + (1 + M0)‖˜̃χu‖1).

Since Lν is uniformly elliptic on supp ˜̃χ and A(2) ≤ M0, then we have by (7.1),

‖˜̃χu‖1 ≤ C ′
1(‖Lνu‖0 + (M0 + 1)‖u‖0 + ‖[˜̃χ,Lν ]u‖0),

which using (7.6) gives

‖˜̃χu‖1 ≤ C1(M0)(‖Lνu‖1 + ‖u‖0).
Combining these inequalities, we get (3.13). �

The proof of (3.14) is identical to that of (3.13) using the inequalities (7.1), (7.2),
(7.6), and (7.10).
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