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HOMOGENIZATION AND UNIFORM STABILIZATION FOR A
NONLINEAR HYPERBOLIC EQUATION IN DOMAINS WITH

HOLES OF SMALL CAPACITY

MARCELO M. CAVALCANTI, VALERIA N. DOMINGOS CAVALCANTI,

JUAN A. SORIANO, & JOEL S. SOUZA

Abstract. In this article we study the homogenization and uniform decay of
the nonlinear hyperbolic equation

∂ttuε −∆uε + F (x, t, ∂tuε,∇uε) = 0 in Ωε × (0, +∞)

where Ωε is a domain containing holes with small capacity (i. e. the holes
are smaller than a critical size). The homogenization’s proofs are based on
the abstract framework introduced by Cioranescu and Murat [8] for the study
of homogenization of elliptic problems. Moreover, uniform decay rates are
obtained by considering the perturbed energy method developed by Haraux
and Zuazua [10].

1. Introduction and statement main results

This paper is devoted to the study of the homogenization and uniform decay
rates of the nonlinear hyperbolic equation

u′′ε −∆uε + F (x, t, u′ε,∇uε) = 0 in Ωε × (0,+∞)

uε = 0 on Γε × (0,+∞)

uε(x, 0) = u0
ε(x); u′ε(x, 0) = u1

ε(x); x ∈ Ωε,

(1.1)

where, for every ε > 0, Ωε is an open domain, locally located on one side of its
smooth boundary Γε, obtained by removing, from a given bounded, connected open
set Ω, a set Sε of closed subsets (the ‘holes’) of Ω; i. e., Ωε = Ω\Sε. We assume
that the measure of Sε approaches zero as the parameter ε tends to zero.

Now, we state the general hypotheses.
(A1) Assumptions on the initial data: Assume that

{u0
ε, u

1
ε} ∈ D(Ωε)×D(Ωε) (1.2)

and as ε→ 0 we have{
ũ0

ε, ũ
1
ε

}
⇀
{
u0, u1

}
weakly in H1

0 (Ω) ∩H2(Ω)×H1
0 (Ω), (1.3)

where the tilde on ũ denotes the extension by zero to the whole domain Ω.
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(A2) Assumptions on F (x, t, u′,∇u): Suppose F : Ω× (0,∞)× Rn+1 → R is an
element of the space C1

(
Ω× (0,∞)× Rn+1

)
and satisfies

|F (x, t, ξ, ζ)| ≤ C0

(
1 + |ξ|ρ+1 + |ζ|

)
(1.4)

where C0 and ρ are positive constants such that ρ > 0 for n = 1, 2 and
0 < ρ ≤ 2/(n− 2) for n ≥ 3, and ζ = (ζ1, . . . , ζn).

Assume that there is a non-negative function ϕ(t) in W 1,∞(0,∞) ∩
L1(0,∞) such that for some β > 0,

F (x, t, ξ, ζ)η ≥ β|ξ|ρξη − ϕ(t) (1 + |η||ζ|) , for all η ∈ R . (1.5)

Suppose that there exist positive constants C1, . . . , Cn such that

|Ft(x, t, ξ, ζ)| ≤ C0(1 + |ξ|ρ+1 + |ζ|), (1.6)

Fξ(x, t, ξ, ζ) ≥ β|ξ|ρ, (1.7)

|Fζi(x, t, ξ, ζ)| ≤ Ci for i = 1, . . . , n. (1.8)

Also assume that there exists a positive constant D such that for all η, η̂ in
R, one has (

F (x, t, ξ, ζ)− F (x, t, ξ̂, ζ̂
)

(η − η̂) (1.9)

≥ β
(
|ξ|ρξ − |ξ̂|ρξ̂

)
(η − η̂)−D|η − η̂||ζ − ζ̂|.

We assume that
F (x, t, 0, 0) = 0. (1.10)

A simple variant of the nonlinear function above is given by the example

F (x, t, ξ, ζ) = β|ξ|ρξ + ϕ(t)
n∑

i=1

sin(ζi).

Next, we make some remarks about early works concerning homogenization of dis-
tributed systems.

In the framework of homogenization of elliptic problems, Cioranescu and Murat
[8] studied the problem

∆uε = f in Ωε

uε = 0 on Γε

with f ∈ H−1(Ω). They showed that for every ε > 0 there exists a unique uε ∈
H1

0 (Ωε) such that
ũε ⇀ u weakly in H1

0 (Ω), as ε→ 0

where ũε is the extension of uε, by considering zero, to whole domain Ω, and u is
the unique solution of the homogenized problem

−∆u+ µu = f in Ω
u = 0 on Γ = ∂Ω,

where µ is a non-negative Radon’s measure which belongs toH−1(Ω). This measure
appears in this study and is due to the capacity’s behaviour of the set Sε when
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ε→ 0. For this end it is necessary that we have small holes, i. e., the diameter of
the holes are smaller than (or equal to) the critical diameter aε given by:

aε =

{
δε exp(−C0/ε

2) if n = 2
C0ε

n/(n−2) if n > 2,

where C0 is a positive constant and δε is such that ε2logδε → 0 as ε → 0. From
the above condition it is possible to construct an abstract framework which plays
an essential role to demonstrate the results. More precisely we have:

There exists a sequence {wε, µε, γε} and M0 > 0 such that

wε ∈ H1(Ω) ∩ L∞(Ω), ‖wε‖L∞(Ω) ≤M0 for every ε > 0,
wε = 0 on Sε,

wε ⇀ 1 weakly in H1(Ω) as ε→ 0,

−∆wε = µε − γε with µε, γε ∈ H−1(Ω),

µε → µ strongly in H−1(Ω) and 〈γε, vε〉 = 0

for every {vε} ⊂ H1
0 (Ω) with vε = 0 on Sε .

(1.11)

In the case above, µ will be a nonnegative constant when the diameter of the holes is
the critical one. In this case, the additional term of order zero µu (so called ‘terme
étrange’) appears in the limit equation. In [8] the authors still showed correctors
results; i.e.,

ũε = wεu+Rε, with Rε → 0 strongly in H1
0 (Ω).

An example where (1.11) is satisfied occurs when Sε consists of periodically dis-
tributed holes of critical size. More precisely,

Sε =
Nε⋃
i=1

T ε
i

where T ε
i are spheres of size rε = aε, periodically distributed (period 2ε) in each

axis direction and aε is defined as in (1.10). In this case (1.11) holds with

µ =
π

2
1
C0

if n = 2,

µ =
Sn(n− 2)

2n
Cn−2

0 if n ≥ 3

where Sn is the surface of the unit sphere in Rn.
In what concerns evolution equations, Cioranescu, Donato, Murat and Zuazua

[6], studied the homogenization of the linear wave equation

u′′ε −∆uε = fε in Ωε × (0, T )

uε = 0 on Γε × (0, T )

uε(x, 0) = u0
ε(x); u′ε(x, 0) = u1

ε(x); x ∈ Ωε,

(1.12)

with {u0
ε, u

1
ε, fε} ∈ H1

0 (Ωε)× L2(Ωε)× L1(0, T ;L2(Ωε) and

ũ0
ε ⇀ u0 weakly in H1

0 (Ω),

ũ1
ε ⇀ u1 weakly in L2(Ω),

f̃ε ⇀ f weakly in L1(0, T ;L2(Ω)).
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They proved that ũε ⇀ u weak-star in L∞(0, T ;H1
0 (Ω))∩W 1,∞(0, T ;L2(Ω)), where

ũε is the unique solution of problem (1.12), for each ε > 0 fixed, extended by
considering zero on the holes, and u is the unique solution of the homogenized
problem

u′′ −∆u+ µu = f in Ω× (0, T )

uε = 0 on Γ× (0, T )

u(x, 0) = u0(x); u′(x, 0) = u1(x); x ∈ Ω,

and µ is a non-negative Radon’s measure, which is positive when one considers
holes of critical size.

Now, concerning the exact controllability of the wave equation in perforated
domains, it is important to mention the work of the authors Cioranescu, Donato
and Zuazua [7]. When the size of the holes is small enough, at the limit, they got
the wave equation with a boundary control and when the holes are of critical size
they obtained at the limit the wave equation with an additional term of order zero
and two controls: the first one on the boundary and the second one an internal
control.

On the other hand it is worth mentioning the papers in connection with homog-
enization of attractors for hyperbolic equations of the authors Fiedler and Vishik
[9] as well as Pankratov and Chueshov [16]. Also, we would like to cite some papers
where the damping term is, as in the present paper, in the form G(x, t, ut), as, for
instance, [4, 15, 17] and references therein.

It is important to observe that from the assumption (1.3) one has ũ0
ε → u0

strongly in H1
0 (Ω). Consequently we deduce that: µ = 0 or u0 = 0. As we are

interested in nontrivial initial data, we are forced to consider µ = 0, which implies
that the geometry of the domain Ω is such that the holes possess ‘small capacity’
(i. e. the holes are smaller than the critical size); see references [6, 7] for details.

Since controllability implies stabilization, then we can expect that we can also
stabilize the system (1.1) by introducing a suitable dissipative mechanism. Unfor-
tunately the controllability is showed basically for linear problems and only for a
few semi-linear problems in a very few class of nonlinearities. Even if we are deal-
ing with homogenization results for those domains with ‘small capacity’, very few
is known for the nonlinear wave equation. For this reason these homogenization
and stabilization results are interesting to be studied.

In what follows in this work, the geometry of the perforated domain Ωε, will
satisfy the conditions given by (1.11) of the abstract framework introduced by
Cioranescu and Murat in [8], having in mind those domains with ‘small capacity’.

Now, we are in a position to state our main result.

Theorem 1.1. Assume that (1.2)-(1.10) hold. Then, supposing that (1.11) is
assumed with µ = 0, the unique solution uε of (1.1) satisfies

ũε → u strongly in C0
loc([0,∞);L2(Ω)),

ũ′ε → u′ strongly in C0
loc([0,∞);L2(Ω)),

ũε ⇀ u weak-star in L∞loc(0,∞;H1
0 (Ω)),

ũ′ε ⇀ u′ weak-star inL∞loc(0,∞;H1
0 (Ω)),

ũ′′ε ⇀ u′′ weak-star in L∞loc(0,∞;L2(Ω)),
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where u is the unique solution of the homogenized problem

u′′ −∆u+ F (x, t, u′,∇u) = 0 in Ω× (0,+∞)

u = 0 on Γ× (0,+∞)

u(x, 0) = u0(x); u′(x, 0) = u1(x); x ∈ Ω.

(1.13)

Defining the energy related to the homogenized problem as

E(t) =
1
2
|u′(t)|2L2(Ω) +

1
2
|∇u(t)|2L2(Ω) (1.14)

and assuming that ρ = 0, and ϕ(t) ≤ C1e
−γt for all t ≥ 0, where C1 and γ are

positive constants, we have

E(t) ≤ Ce−γ0t, ∀t ≥ 0.

Furthermore, supposing that

ϕ(t) ≤ k1

(1 + t)(ρ+2)/ρ
, ∀t ≥ 0,

where k1 is a positive constant, one has

E(t) ≤ K

(1 + t)2/ρ
, ∀t ≥ 0

where K is a positive constant.

Our paper is organized as follows: In section 2 we study the existence and unique-
ness of problem (1.1) for each ε > 0 fixed. In section 3 we obtain the homogenized
problem related to (1.1) making use of the abstract framework presented in (1.11)
and finally in section 4 we give the proofs of the uniform decay.

2. Existence and uniqueness of solutions to problem (1.1)

In this section, we prove existence and uniqueness of solutions to problem (1.1)
for each ε > 0 fixed, assuming that the initial data belong to the class given by
(1.2) and the nonlinear function F (x, t, ξ, ζ) satisfies the hypotheses (1.4)-(1.9).

For this end, let (ων)ν∈N be a basis in H1
0 (Ωε)∩H2(Ωε) which is an orthornormal

system for L2(Ωε). Let Vm be the space generated by ω1, . . . , ωn and let

uεm(t) =
m∑

i=1

gjεm(t)ωj (2.1)

be the solution to the Cauchy problem

(u′′εm(t), w) + (∇uεm(t),∇w) + (F (x, t, u′εm(t),∇uεm(t)) , w) = 0
for all w ∈ Vm,

uεm(0) = u0
εm → u0

ε in H1
0 (Ωε) ∩H2(Ωε) as m→∞,

u′εm(0) = u1
εm → u1

ε in H1
0 (Ωε) as m→∞,

(2.2)

where (·, ·) is the inner product in L2(Ωε). For simplicity we denote

|u|2 =
∫

Ωε

|u(x)|2dx, ‖u‖p
p =

∫
Ωε

|u(x)|pdx.

We observe that the term (F (x, t, u′εm(t),∇uεm(t)) , w) is well defined in view of
the assumption (1.4).
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By standard methods in differential equations, we can prove the existence of a
solution to (2.2) on some interval [0, tεm). Then, this solution can be extended to
the whole interval [0, T ]; T > 0; by use of the first estimate below.

2.1. A Priori estimates. First Estimate: Taking w = 2u′εm(t) in (2.2) and con-
sidering the assumption (1.5) one has

d

dt

{
|u′εm(t)|2 + |∇uεm(t)|2

}
+ 2β‖u′εm(t)‖ρ+2

ρ+2

≤ 2ϕ(t)
∫

Ωε

(1 + |u′εm||∇uεm|) dx

≤ 2ϕ(t)meas(Ω) + |u′εm(t)|2 + |∇uεm(t)|2.

(2.3)

Integrating (2.3) over (0, t), t ∈ [0, tεm), we obtain

|u′εm(t)|2 + |∇uεm(t)|2 + 2β
∫ t

0

‖u′εm(s)‖ρ+2
ρ+2ds

≤ |u1
εm|2 + |u0

εm|2 + 2‖ϕ‖L1(0,∞) meas(Ω) +
∫ t

0

{
|u′εm(s)|2 + |∇uεm(s)|2

}
ds.

(2.4)
From (2.4), considering the convergence in (1.3) and (2.2) and employing Gronwall’s
lemma, we deduce

|u′εm(t)|2 + |∇uεm(t)|2 + 2β
∫ t

0

‖u′εm(s)}ρ+2
ρ+2ds ≤ L1 (2.5)

where L1 is a positive constant independent of m ∈ N, t ∈ [0, T ] and ε > 0.

Second Estimate: First, we prove that u′′εm(0) is bounded in L2(Ωε) norm. Indeed,
taking w = u′′εm(0) and t = 0 in (2.2), taking the assumption (1.4) into account;
making use of Green’s formula and Cauchy-Schwarz inequality and considering the
inequality ab ≤ 1

2a
2 + 1

2b
2, we infer

|u′′εm(0)|2 ≤
{
|∆u0

εm|+ C0[(meas(Ω)1/2 + ‖u1
εm|‖

ρ+1
2(ρ+1) + |∇u0

εm|2]
}
|u′′εm(0)|.

From the last inequality, noting that H1
0 (Ω) ↪→ L2(ρ+1)(Ω) and considering the

convergence in (1.3) and (2.2) it holds that

|u′′εm(0)|2 ≤ L2 (2.6)

where L2 is a positive constant independent of t ∈ [0, T ]; m ∈ N and ε > 0.
Now, taking the derivative of (2.2) with respect to t and substituting w =

2u′′εm(t), it follows that

d

dt

{
|u′′εm(t)|2 + |∇u′εm(t)|2

}
= −2

∫
Ωε

Ft (x, t, u′εm,∇uεm)u′′εm dx− 2
∫

Ωε

Fu′εm
(x, t, u′εm,∇uεm) (u′′εm)2 dx

− 2
n∑

i=1

∫
Ωε

Fuεmxi
(x, t, u′εm,∇uεm)u′εmxi

u′′εm dx.
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From assumptions (1.6)-(1.8), taking into account the above equality and the
Cauchy-Schwarz inequality, we obtain

d

dt

{
|u′′εm(t)‖2 + |∇u′εm(t)|2

}
+ 2β

∫
Ωε

|u′εm|ρ (u′′εm)2 dx

≤ 2C0

{
(meas(Ω))1/2 |u′′εm(t)|+

∫
Ωε

|u′εm|ρ/2|u′′εm‖u′εm|(ρ+2)/2dx

+ |∇uεm(t)||u′′εm(t)|
}

+ 2n(M + 1)
{
|u′′εm(t)|2 + |∇u′εm(t)‖2

}
,

(2.7)

where M = max{Ci, n}; i = 1, . . . , n.
Integrating (2.7) over (0, t) and making use of the inequality ab ≤ 1

4ηa
2 + ηb2,

for an arbitrary η > 0, we deduce

|u′′εm(t)|2 + |∇u′εm(t)|2 + 2C0(β − η)
∫ t

0

∫
Ωε

|u′εm|ρ (u′′εm)2 dx ds

≤ |u′′εm(0)|2 + |∇u1
εm|2 + C0 meas(Ω)T

+
C0

2η

∫ t

0

‖u′εm(s)‖ρ+2
ρ+2ds+ C1

∫ t

0

{
|u′′εm(s)|2 + |∇u′εm(s)|2

}
ds,

(2.8)

where C1 = C0+2n(M+1). From (2.8), (2.5), (2.6), considering the convergence in
(1.3) and (2.2), choosing η > 0 sufficiently small and employing Gronwall’s lemma,
we obtain the second estimate

|u′′εm(t)|2 + |∇u′εm(t)|2 +
∫ t

0

∫
Ωε

|u′εm|ρ (u′′εm)2 dx ds ≤ L3 (2.9)

where L3 is a positive constant independent of t ∈ [0, T ]; m ∈ N and ε > 0.

2.2. Analysis of the nonlinear term F . From the assumption (1.4), there is a
positive constant N such that∫

Ωε

|F (x, t, u′εm,∇uεm) |2dx ≤ N
(
1 + ‖u′εm(t)‖2(ρ+1)

2(ρ+1) + |∇uεm(t)|2
)
.

Therefore, from estimates (2.5) and (2.9) and observing that H1
0 (Ω) ↪→ L2(ρ+1)(Ω),

it follows that

{F (x, t, u′εm,∇uεm)}m∈N,ε>0 is bounded in L2
loc(0,∞;L2(Ωε)). (2.10)

Consequently, there exists a subsequence {uεµ} of {uεm} (which we still denote by
the same symbol) and a function χ in L2

loc(0,∞;L2(Ωε)) such that

F
(
x, t, u′εµ,∇uεµ

)
⇀ χε weakly in L2

loc(0,∞;L2(Ωε)) as µ→∞. (2.11)

From the above estimates we also deduce that there is a function uε : Ωε×(0,∞) →
R such that

u′εµ ⇀ u′ε weak-star in L∞loc(0,∞;L2(Ωε)), (2.12)

uεµ ⇀ uε weak-star in L∞loc(0,∞;H1
0 (Ωε)), (2.13)

u′′εµ ⇀ u′′ε weak-star in L∞loc(0,∞;L2(Ωε)), (2.14)

u′εµ ⇀ u′ε weak-star in L∞loc(0,∞;H1
0 (Ωε)). (2.15)
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Moreover, making use of Aubin-Lions theorem; Lions [13, p. 57], we have

uεµ → uε strongly in L2
loc(0,∞;L2(Ωε)), (2.16)

u′εµ → u′ε strongly in L2
loc(0,∞;L2(Ωε)). (2.17)

From the above estimates after passing to the limit, we conclude that

u′′ε −∆uε + χε = 0 in D′(Ωε × (0, T )). (2.18)

Since u′′ε , χε ∈ L2
loc(0,∞;L2(Ωε)) from (2.18) we deduce that

∆uε ∈ L2
loc(0,∞;L2(Ωε))

and
u′′ε −∆uε + χε = 0 in L2

loc(0,∞;L2(Ωε)). (2.19)

Our goal is to show that
χε = F (x, t, u′ε,∇uε) . (2.20)

Indeed, integrating (2.2) over (0,T) and considering w = uεµ(t), we obtain∫ T

0

(
u′′εµ(t), uεµ(t)

)
dt+

∫ T

0

|∇uεµ(t)|2dt

+
∫ T

0

(
F
(
x, t, u′εµ(t),∇uεµ(t)

)
, uεµ(t)

)
dt = 0

(2.21)

Then, considering the strong convergence (2.16) and the weak ones (2.11) and
(2.14), from (2.21) we obtain

lim
µ→∞

∫ T

0

|∇uεµ(t)|2dt = −
∫ T

0

(u′′ε (t), uε(t)) dt−
∫ T

0

(χ(t), uε(t)) dt. (2.22)

Substituting (2.19) in (2.22) and applying the generalized Green formula we deduce

lim
µ→∞

∫ T

0

|∇uεµ(t)|2dt =
∫ T

0

|∇uε(t)|2dt. (2.23)

Taking into account that∫ T

0

|∇uεµ(t)−∇uε(t)|2dt

=
∫ T

0

|∇uεµ(t)|2dt− 2
∫ T

0

(∇uεµ(t),∇uε) dt+
∫ T

0

|∇uε(t)|2dt,

from (2.23) and (2.13) we deduce that limµ→∞
∫ T

0
|∇uεµ(t)−∇uε(t)|2dt = 0, which

implies that

∇uεµ → ∇uε in L2
loc(0,∞;L2(Ωε)) as µ→∞. (2.24)

Then, from the strong convergence (2.16), (2.17) and (2.24) we have

F
(
x, t, u′εµ,∇uεµ

)
→ F (x, t, u′ε,∇uε) a.e. in Ωε × (0, T ).

From the last convergence and considering (2.10) we can apply [11, Lemma 1.3] to
obtain

F
(
x, t, u′εµ,∇uεµ

)
⇀ F (x, t, u′ε,∇uε) weakly as µ→∞.

Therefore, (2.20) is proved.
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2.3. Uniqueness. Let u and û be two solutions of (1.1) and put zε = uε − ûε.
From assumption (1.9), noting that the map s 7→ |s|ρs is increasing and taking
(2.19) and (2.20) into account, we deduce

d

dt

{
|z′ε(t)|2 + |∇zε(t)|2

}
≤ D

{
|z′ε(t)|2 + |∇zε(t)|2

}
. (2.25)

Integrating (2.25) over (0,t) and employing Gronwall’s lemma we conclude that
|z′ε(t)|2 = |∇zε(t)|2 = 0. Therefore, uε = ûε. This completes the proofs of section
2.

3. The homogenized problem

We begin this section presenting a technical result that will play an essential role
to obtain the homogenized problem.

3.1. Technical Lemma.

Lemma 3.1. Assume that (1.11) is satisfied with µ = 0; then

lim
ε→0

∫
Ω

ϕ|∇wε|2dx = 0; ∀ϕ ∈ D(Ω).

Proof. Let ϕ ∈ D(Ω). Then, from (1.11), third and fourth equations, we have
〈−∆wε, ϕwε〉 = 〈µε − γε, ϕwε〉 = 〈µε, ϕwε〉 and consequently

lim
ε→0

〈−∆wε, ϕwε〉 = 0. (3.1)

On the other hand, we deduce that

〈−∆wε, ϕwε〉 =
∫

Ω

ϕ|∇wε|2dx+
∫

Ω

wε(∇wε · ∇ϕ )dx. (3.2)

Now, from the third equation in (1.11), we have

∇wε ⇀ 0 weakly inL2(Ω) (3.3)

and since the imbedding H1
0 (Ω) ↪→ L2(Ω) is compact, we also obtain

wε → 1 strongly in L2(Ω). (3.4)

Combining (3.1)-(3.4) we conclude that

lim
ε→0

∫
Ω

ϕ|∇wε|2dx = 0,

which concludes the proof. �

Next, we obtain the homogenized problem when ε → 0, making use of the
abstract framework given in (1.11) and taking into consideration the estimates
obtained in section 2.
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3.2. A priori estimates. From the estimates obtained in section 2, there exists a
function u : Ω× (0,∞) → R such that

ũ′ε ⇀ u′ weak-star in L∞loc(0,∞;L2(Ω), (3.5)

ũε ⇀ u weak-star in L∞loc(0,∞;H1
0 (Ω), (3.6)

ũ′′ε ⇀ u′′ weak-star in L∞loc(0,∞;L2(Ω), (3.7)

ũ′ε ⇀ u′ weak-star in L∞loc(0,∞;H1
0 (Ω). (3.8)

From Aubin-Lions theorem, we also deduce

ũε → u strongly in L2
loc(0,∞;L2(Ω)), (3.9)

ũ′ε → u′ strongly in L2
loc(0,∞;L2(Ω)). (3.10)

On the other hand, let uε1 and uε2 be two solutions of (Pε) with initial data
{u0

ε1
, u1

ε1
} and {u0

ε2
, u1

ε2
}, respectively.

Then, considering zε = uε1 − uε2 and repeating analogous arguments like those
used to prove the uniqueness of solutions in section 2, we obtain

d

dt

{
|z′ε(t)|2 + |∇zε(t)|2

}
≤ D

{
|z′ε(t)|2 + |∇zε(t)|2

}
.

Integrating the above inequality over (0,t), we infer

|z′ε(t)|2 + |∇zε(t)|2

≤ |u1
ε1
− u1

ε2
|2 + |∇u0

ε1
−∇u0

ε2
|2 +D

∫ t

0

{
|z′ε(s)|2 + |∇zε(s)|2

}
ds.

(3.11)

From (3.11) employing Gronwall’s inequality, noting that the imbeddings H2(Ω) ↪→
H1(Ω) and H1(Ω) ↪→ L2(Ω) are compact and taking the convergence in (1.3) into
account we deduce that

ũε → u strongly in C0([0, T ];H1
0 (Ω)); ∀T > 0, (3.12)

ũ′ε → u′ strongly in C0([0, T ];L2(Ω)); ∀T > 0. (3.13)

Remark. Note that in view of the strong convergence given in (3.12), it is not
necessary to use the equation of the abstract framework given in (1.11). However,
we decided to present the passage to the limit making use of the whole abstract
framework in order to facilitate the reader’s comprehension when one has, for in-
stance, a nonlinearity given by F (x, t, u, u′) where the strong convergence in (3.12)
is not required (see convergence in (3.9) and (3.10)).

3.3. Passage to the limit. Multiplying (2.19) (taking (2.20) into consideration)
by wεθϕ, and integrating over Qε = Ωε × (0, T ); where wε belongs to the abstract
framework (1.11), θ ∈ D(0, T ) and ϕ ∈ D(Ω), we obtain∫

Qε

u′′εwεϕθ dx dt−
∫

Qε

∆uεwεϕθ dx dt+
∫

Qε

F (x, t, uε,∇uε)wεϕθ dx dt = 0.

(3.14)
Employing Green’s formula in the second term of (3.14), we deduce

−
∫

Qε

∆uεwεϕθ dx dt =
∫

Qε

∇uε · θ∇wεϕdx dt+
∫

Qε

∇uε · θwε∇ϕdx dt. (3.15)
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On the other hand, we also have∫
Qε

∇uε · θ∇wεϕdx dt = −〈∆wε, θuεϕ〉 −
∫

Qε

∇wε · θuε∇ϕdx dt, (3.16)

where 〈·, ·〉 means the duality L1(0, T ;H−1(Ωε)) and L∞(0, T ;H1
0 (Ωε)).

Combining (3.14)-(3.16) we arrive at∫ T

0

∫
Ωε

u′′εwεϕθ dx dt− 〈∆wε, θuεϕ〉 −
∫ T

0

∫
Ωε

∇wε · θuε∇ϕdx dt

+
∫ T

0

∫
Ωε

∇uε · θwε∇ϕdx dt+
∫ T

0

∫
Ωε

F (x, t, uε,∇uε)wεϕθ dx dt = 0

(3.17)

Next, we analyze the terms in (3.17).

Estimate for I1 :=
∫ T

0

∫
Ωε
u′′εwεϕθ dx dt. Employing Fubini’s theorem we deduce

I1 =
∫ T

0

∫
Ω

ũ′′εwεϕθ dx dt =
∫

Ω

wεϕ
(∫ T

0

θũ′′ε dt
)
dx. (3.18)

From (3.4) and (3.7) we obtain

lim
ε→0

I1 =
∫

Ω

ϕ
(∫ T

0

θu′′dt
)
dx . (3.19)

Estimate for I2 := −〈∆wε, θuεϕ〉. Consider the Uε ∈ H1
0 (Ω) defined by Uε =∫ T

0
θũε dt. From the convergence (3.6) and since H1

0 (Ω) ↪→ L2(Ω) is compact we
have

Uε ⇀

∫ T

0

θu dt weakly in H1
0 (Ω) and strongly in L2(Ω),

Uε = 0 on Sε.

(3.20)

In view of (1.11), fourth equation, −∆wε = µε − γε. Then, applying Fubini’s
theorem one has

I2 = 〈µε − γε, θuεϕ〉

=
〈
µε − γε,

( ∫ T

0

θũε dt
)
ϕ
〉

H−1(Ω),H1
0 (Ω)

= 〈µε,Uεϕ〉H−1(Ω),H1
0 (Ω),

since 〈γε, ϕUε〉H−1(Ω),H1
0 (Ω) = 0. Consequently from (3.20) and (1.11), fourth equa-

tion, we infer

lim
ε→0

I2 =
〈
µ,
( ∫ T

0

θu dt
)
ϕ
〉

H−1(Ω),H1
0 (Ω)

= 0. (3.21)

Estimate for I3 :=
∫ T

0

∫
Ωε
∇wε · θuε∇ϕdx dt. ¿From Fubini’s theorem we deduce

I3 =
∫

Ω

∇wε ·
( ∫ T

0

θũεdt
)
∇ϕdx. (3.22)

Taking (3.3) and (3.20) into account,from (3.22) it holds that

lim
ε→0

I3 = 0. (3.23)
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Estimate for I4 :=
∫ T

0

∫
Ωε
∇uε · θwε∇ϕdx dt. Analogously, employing Fubini’s

theorem it follows that

I4 =
∫

Ω

wε∇ϕ · ∇

(∫ T

0

θũεdt

)
dx. (3.24)

Considering (3.4) and (3.20) from (3.24) we conclude

lim
ε→0

I4 =
∫

Ω

∇ϕ · ∇
( ∫ T

0

θu dt
)
dx. (3.25)

Estimate for I5 :=
∫ T

0

∫
Ωε
F (x, t, uε,∇uε)wεϕθ dx dt. Analogously considering Fu-

bini’s theorem and in view of assumption (1.10) we can write

I5 =
∫

Ω

wεϕ
( ∫ T

0

θF (x, t, ũ′ε,∇ũε)dt
)
dx. (3.26)

On the other hand, from the convergence (3.12), (3.13) and making use of Lion’s
lemma, we deduce that

F (x, t, ũ′ε,∇ũε) ⇀ F (x, t, u′,∇u) weakly in L2(0, T ;L2(Ω)). (3.27)

Then, from (3.4), (3.26) and (3.27) we conclude

lim
ε→0

I5 =
∫

Ω

ϕ
(
θ

∫ T

0

F (x, t, u′,∇u)dt
)
dx. (3.28)

Combining (3.17), (3.19), (3.21), (3.23), (3.25) and (3.28) we deduce

〈
∫

Ω

u′′ϕdx, θ〉+ 〈
∫

Ω

∇u · ∇ϕdx, θ〉+ 〈
∫

Ω

F (x, t, u′,∇u)ϕdx, θ〉 = 0, (3.29)

where 〈·, ·〉 means the duality D′(0, T ), D(0, T ), for all ϕ ∈ D(Ω) and for all θ ∈
D(0, T ). Then, since D(Ω) is dense in H1

0 (Ω) we obtain

(u′′(t), v) + (∇u(t), v) + (F (x, t, u′(t),∇u(t)) , v) = 0 in D′(0, T ) (3.30)

for all v ∈ H1
0 (Ω), where (·, ·) is the inner product in L2(Ω).

The uniqueness of solutions follows considering analogous arguments like those
ones used to prove (2.25).

4. Uniform Decay Rates

In this section we establish uniform rates of decay (exponential and algebraic)
for the homogenized problem

u′′ −∆u+ F (x, t, u′,∇u) = 0 in Ω× (0, T )

u = 0 on Γ× (0,+∞)

u(x, 0) = u0(x); u′(x, 0) = u1(x); x ∈ Ω.

(4.1)

Since E(t) = limε→0Eε(t), it is sufficient to prove that problem (1.1) decays expo-
nentially or polynomially independently of ε. In other words, it is enough to prove
that there exist positive constants C, γ0, k1, k2 and k3 independent of ε > 0 and
such that

Eε(t) ≤ Ce−γ0t or Eε(t) ≤ k2
k3 + 2k1

(1 + t)2/ρ
(4.2)

for all t ≥ 0 and for all ε > 0.



EJDE-2004/55 HOMOGENIZATION AND UNIFORM STABILIZATION 13

Remark 2. It is important to observe that when µ > 0 and supposing that one
could be able to homogenize the problem under consideration, an useful alternative
to derive uniform decay rates for the energy

Eµ(t) = 1
2

(
|u′(t)|L2(Ω)2+|∇u(t)|2

L2(Ω)
+ |u(t)|2L2(Ω,µ)

)
would be making use of the lower semi-continuity of the energy, or, more precisely,
to consider the following estimate:

Eµ ≤ lim inf
ε→0

Eε(t), for all t ≥ 0.

In order to obtain (4.2), we consider the following auxiliary lemmas.

Lemma 4.1. Let E be a real C1 positive function satisfying

E′(t) ≤ −C0E(t) + C1e
−γt (4.3)

where C0, C1 and γ are positive constants. Then, there exists γ0 such that

E(t) ≤ (E(0) + (2C1)/γ) e−γ0t. (4.4)

Proof. Let F (t) = E(t) + 2C1
γ e−γt. Then

F ′(t) = E′(t)− 2C1e
−γt ≤ −C0E(t)− C1e

−γt ≤ −γ0F (t),

where γ0 = min{C0,
γ
2 }. Integrating the last inequality over (0, t), we have

F (t) ≤ F (0)e−γ0t implies E(t) ≤ C2e
−γ0t,

where C2 = E(0) + 2C1
γ . This completes the proof. �

Lemma 4.2. Let E be a real C1 positive function satisfying

E′(t) ≤ −k0[E(t)]
ρ+2
2 +

k1

(1 + t)
ρ+2

ρ

(4.5)

where 0 < ρ < 2, and k0 and k1 are positive constants. Then, there exists k2 > 0
such that

E(t) ≤ k2

ρ
2E(0) + 2k1

(1 + t)2/ρ
. (4.6)

Proof. Consider h(t) = 2k1
ρ
2 (1+t)ρ/2 and set g(t) = E(t) + h(t). We have

g′(t) = E′(t)− 2k1

(1 + t)
ρ+2

ρ

≤ −k0

{
[E(t)]

ρ+2
2 +

k1

k0(1 + t)
ρ+2

ρ

}
≤ −k0

{
[E(t)]

ρ+2
2 + (

1
ρ
)

ρ+2
2

1

k0k
ρ/2
1

[h(t)]
ρ+2
2
}
.

Let a0 = min{1, ( 1
ρ )

ρ+2
2 1

k0k
ρ/2
1

}. Then,

g′(t) ≤ −k0a0

{
[E(t)]

ρ+2
2 + [h(t)]

ρ+2
2
}
.

Since there exists a positive constant a1 such that

[E(t) + h(t)]
ρ+2
2 ≤ a1

{
[E(t)]

ρ+2
2 + [h(t)]

ρ+2
2
}

we conclude that
g′(t) ≤ −k0a0

a1
[g(t)]

ρ+2
2 .
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Integrating the last inequality over (0,t), we deduce

g(t) ≤
( 2

ρ )2/ρg(0)

{ 2
ρ + k0a0

a1
[g(0)]ρ/2t}

≤
( 2

ρ )
2−ρ

ρ [ 2ρE(0) + 2k1]

a
2/ρ
2 (1 + t)2/ρ

,

where a2 = min{ 2
ρ ,

k0a0
a1

[g(0)]ρ/2}. Considering k2 = 1
a2

( 2
ρa2

)
2−ρ

ρ , it follows the
desired result. �

For short notation, we will omit the parameter ε on the energy

Eε(t) =
1
2
(
|u′ε(t)|2L2(Ωε) + |∇uε(t)|2L2(Ωε)

)
(4.7)

having in mind that the constants obtained can not depend on ε. Inspired in the
work of Haraux and Zuazua [10] let us define the Liapunov functional

ψ(t) = [E(t)]ρ/2 (u′(t), u(t)) (4.8)

where (·, ·) is the inner product in L2(Ωε).

Proposition 4.3. There exists L > 0, independent of ε, such that E(t) ≤ L for
all t ≥ 0.

Proof. From (2.19), (2.20) and (1.5) we deduce

E′(t) ≤ −β‖u′(t)‖ρ+2
ρ+2+ϕ(t)

∫
Ωε

(1 + |u′||∇u|) dx ≤ ϕ(t) meas(Ω)+ϕ(t)E(t). (4.9)

Multiplying both sides of the above inequality by e−
∫ t
0 ϕ(s)ds, it follows that(

E(t)e−
∫ t
0 ϕ(s)ds

)′
≤ ϕ(t)meas(Ω). (4.10)

Integrating (4.10) over (0, t), we obtain

E(t) ≤ E(0)e
∫∞
0 ϕ(s)ds + e

∫ t
0 ϕ(s)ds

(∫ ∞

0

ϕ(s)ds
)

meas(Ω). (4.11)

Considering the convergence in (1.3) we deduce that

Eε(0) ≤ K; ∀ε > 0 (4.12)

where K = K(|∇u0|L2(Ω), |u1|L2(Ω)). Combining (4.11) and (4.12), we obtain
E(t) ≤ L for all t ≥ 0, where

L = e
∫∞
0 ϕ(s)ds

(
K +

∫ ∞

0

ϕ(s)ds meas(Ω)
)
, (4.13)

which concludes the proof �

Proposition 4.4. There exists λ > 0, independent of ε, such that

|ψ(t)| ≤ λLρ/2E(t); ∀t ≥ 0.

Proof. From (4.8) we deduce

|ψ(t)| ≤ [E(t)]ρ/2|u′(t)|λ|∇u(t)|
where λ > 0 comes from the Poincaré inequality in Ω; i.e.,

|uε(t)|L2(Ωε) = |ũε(t)|L2(Ω) ≤ λ|∇ũε(t)|L2(Ω) = λ|∇uε(t)|L2(Ωε). (4.14)

The above inequalities and Proposition 4.3 yield

|ψ(t)| ≤ λLρ/2E(t),
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which completes the proof. �

Proposition 4.5. Assume that ρ = 0 and that there exist C1 and γ positive con-
stants such that

ϕ(t) ≤ C1e
−γt ∀t ≥ 0. (4.15)

Then, (4.3) holds where C0 is a positive constant independent of ε. Now, considering
that there exists k1 > 0 such that

ϕ(t) ≤ k1

(1 + t)
ρ+2

ρ

∀t ≥ 0, (4.16)

then (4.5) holds where k0 is a positive constant independent of ε.

Proof. From (4.9), we have that

E′(t)− ϕ(t)
∫

Ωε

(1 + |u′||∇u|) dx ≤ 0. (4.17)

Computing the derivative of (4.8) with respect to t and substituting u′′ = ∆u −
F (x, t, u′,∇u), from (1.5) and making use of Green formula we deduce

ψ′(t) ≤ ρ

2
[E(t)]

ρ−2
2 E′(t) (u′(t), u(t))

+ [E(t)]ρ/2
{
− |∇u(t)|2 − β (|u′(t)|ρu′(t), u(t))

+ ϕ(t)
∫

Ωε

(1 + |u′||∇u|) dx+ |u′(t)|2
}
.

(4.18)

Adding and subtracting the term
ρ

2
[E(t)]

ρ−2
2 ϕ(t)

∫
Ωε

(1 + |u′||∇u|) dx (u′(t), u(t))

in (4.8), we infer

ψ′(t) ≤ −ρ
2
[E(t)]

ρ−2
2 (u′(t), u(t))

[
ϕ(t)

∫
Ωε

(1 + |u′||∇u|) dx− E′(t)
]

+
ρ

2
[E(t)]

ρ−2
2 ϕ(t)

∫
Ωε

(1 + |u′||∇u|) dx (u′(t), u(t))

+ [E(t)]ρ/2
{
− |∇u(t)|2 − β (|u′(t)|ρu′(t), u(t))

+ ϕ(t)
∫

Ωε

(1 + |u′||∇u|) dx+ |u′(t)|2
}
.

(4.19)

Observe that from (4.14) and taking Proposition 4.3 into account, we can write

| (u′(t), u(t)) | ≤ λE(t) ≤ λL. (4.20)

Then, combining (4.17), (4.19) and (4.20) we deduce

ψ′(t) ≤ ρλLρ/2

2
[
ϕ(t)

∫
Ωε

(1 + |u′||∇u|) dx− E′(t)
]

+
ρλLρ/2

2
ϕ(t)

∫
Ωε

(1 + |u′||∇u|) dx

+ [E(t)]ρ/2
{
− |∇u(t)|2 − β (|u′(t)|ρu′(t), u(t))

+ ϕ(t)
∫

Ωε

(1 + |u′||∇u|) dx+ |u′(t)|2
}
.

(4.21)
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Therefore,

ψ′(t) ≤ −ρλLρ/2E′(t) + ρλLρ/2 (meas(Ω) + L)ϕ(t)

+ [E(t)]ρ/2
{
− |∇u(t)|2 − β (|u′(t)|ρu′(t), u(t))

+ (meas(Ω) + L)ϕ(t) + |u′(t)|2
}
.

(4.22)

Estimate for I1 := β (|u′(t)|ρu′(t), u(t)). Making use of Hölder inequality having in
mind that ρ+1

ρ+2 + 1
ρ+2 = 1, we deduce

|I1| ≤ β‖u′(t)‖ρ+1
ρ+2‖u(t)‖ρ+2. (4.23)

Now, since H1
0 (Ω) ↪→ Lρ+2(Ω), we have

‖uε(t)‖Lρ+2(Ωε) = ‖ũε‖Lρ+2(Ω) ≤ ξ‖ũε(t)‖H1
0 (Ω) = ξ‖uε(t)‖H1

0 (Ωε). (4.24)

Then, from (4.23), (4.24) and making use of Young’s inequality, we conclude

|I1| ≤ βξ‖u′(t)‖ρ+1
ρ+2|∇u(t)| ≤

(ρ+ 1) (βξ)
ρ+2
ρ+1

η 1
ρ+1

‖u′(t)‖ρ+2
ρ+2 +

η

ρ+ 2
|∇u(t)|ρ+2,

where η > 0 is an arbitrary positive constant. On the other hand, from Proposition
4.3 one has

|∇u(t)|ρ+2 ≤ 2ρ/2Lρ/2|∇u(t)|2.
Then,

|I1| ≤
(ρ+ 1) (βξ)

ρ+2
ρ+1

η 1
ρ+1

‖u′(t)‖ρ+2
ρ+2 + η

2ρ/2Lρ/2

ρ+ 2
|∇u(t)|2. (4.25)

Combining (4.22) and (4.25) choosing η = ρ+2

2
ρ+2
2 Lρ/2

, we infer

ψ′(t) ≤ −ρλLρ/2E′(t) + ρλLρ/2 (meas(Ω) + L)ϕ(t)

+ [E(t)]ρ/2
{
− 1

2
|∇u(t)|2 +M‖u′(t)‖ρ+2

ρ+2 (meas(Ω) + L)ϕ(t) + |u′(t)|2
}
,

(4.26)
where

M =
(ρ+ 1) (βξ)(ρ+2)/(ρ+1)

(ρ+ 2)
(

ρ+2

2
ρ+2
2 Lρ/2

)1/(ρ+1)
. (4.27)

Now, from (4.26), Proposition 4.3 and (4.9), we obtain

ψ′(t) ≤ −
(
ρλ+Mβ−1Lρ/2

)
E′(t) +Mβ−1Lρ/2ϕ(t)

∫
Ωε

(1 + |u′||∇u|) dx

− 1
2
[E(t)]ρ/2|∇u(t)|2 + [E(t)]ρ/2|u′(t)|2 + Lρ/2 (meas(Ω) + L)ϕ(t).

(4.28)
Consequently

ψ′(t) ≤ −
(
ρλ+Mβ−1Lρ/2

)
E′(t)− 1

2
[E(t)]ρ/2|∇u(t)|2

+ [E(t)]ρ/2|u′(t)|2 +Nϕ(t),
(4.29)

where N = Lρ/2 (meas(Ω) + L)
(
1 +Mβ−1

)
Defining the perturbed energy by

Eτ (t) = (1 + τR)E(t) + τψ(t); τ > 0, (4.30)
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where R = ρλ+Mβ−1Lρ/2, from Proposition 4.4 we deduce

|Eτ (t)− E(t)| ≤ τ
(
R+ λLρ/2

)
E(t). (4.31)

Setting C1 = R+ λLρ/2, considering τ ∈ (0, 1/2C1], we deduce

1
2
E(t) ≤ Eτ (t) ≤ 2E(t); ∀t ≥ 0, (4.32)

which implies

2−
ρ+2
2 [E(t)]

ρ+2
2 ≤ [Eτ (t)]

ρ+2
2 ≤ 2

ρ+2
2 [E(t)]

ρ+2
2 . (4.33)

On the other hand, taking the derivative of (4.30) with respect to t taking (4.29)
into account, it holds that

E′τ (t) ≤ E′(t)− τ

2
[E(t)]ρ/2

∣∣∣∇u(t)|2 + τ [E(t)]ρ/2|u′(t)
∣∣∣2 + τNϕ(t).

The last inequality and (4.9) yield

E′τ (t) ≤ −β‖u′(t)‖ρ+2
ρ+2 −

τ

2
[E(t)]ρ/2|∇u(t)|2 + τ [E(t)]ρ/2|u′(t)|2 + τN∗ϕ(t), (4.34)

where N∗ = N + meas(Ω) + L. Having in mind that

−1
2
|∇u(t)|2 =

1
2
|u′(t)|2 − 1

2
E(t) (4.35)

and noting that Lρ+2(Ω) ↪→ L2(Ω), from (4.34) we deduce

E′τ (t) ≤ −βθ−(ρ+2)|u′(t)|ρ+2− τ

2
[E(t)]

ρ+2
2 +

3
2
τ [E(t)]ρ/2|u′(t)|2 + τN∗ϕ(t), (4.36)

where θ comes from the inequality

|u′ε(t)|L2(Ωε) = |ũ′ε(t)|L2(Ω) ≤ θ‖ũ′ε(t)‖Lρ+2(Ω) = θ‖u′ε(t)‖Lρ+2(Ωε). (4.37)

However, since ρ
ρ+2 + 2

ρ+2 = 1, the Hölder inequality yields

ρ/2|u′(t)|2 ≤ ρ

ρ+ 2

(
η[E(t)]ρ/2

) ρ+2
ρ

+
2

ρ+ 2

(
1
η
|u′(t)|2

) ρ+2
2

≤ η
ρ+2

ρ [E(t)]
ρ+2
2 +

1

η
ρ+2
2

|u′(t)|ρ+2,

(4.38)

where η is an arbitrary positive constant. Then, from (4.36) and (4.38) we obtain

E′τ (t) ≤ −
(
βθ−(ρ+2) − 3τ

2
1

η
ρ+2
2

)
|u′(t)|ρ+2 − τ

2

(
1− 3η

ρ+2
ρ

)
[E(t)]

ρ+2
2 + τN∗ϕ(t).

(4.39)
Choosing η sufficiently small in order to have ζ = 1−3η

ρ+2
ρ > 0 and τ small enough

to have

βθ−(ρ+2) − 3τ
2

1

η
ρ+2
2

≥ 0,

from (4.39) we conclude that

E′τ (t) ≤ −τζ
2

[E(t)]
ρ+2
2 + τN∗ϕ(t). (4.40)

At this point, we have to divide our proof into two parts, namely,
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(A) If ρ > 0 and ϕ(t) verifies (4.16). Then, combining (4.33) and (4.40), we obtain

E′τ (t) ≤ −k∗0 [Eτ (t)]
ρ+2
2 +

k∗1

(1 + t)
ρ+2

ρ

,

where k∗0 , k∗1 are positive constants independent of ε. So, from Lemma 4.2 and
considering (4.33), the decay in (4.6) holds.
(B) If ρ = 0 and ϕ(t) verifies (4.15). Again, combining (4.33) and (4.40) we obtain

E′τ (t) ≤ −C∗0Eτ (t) + C∗1e
−γt

where C∗0 and C∗1 are positive constants independent of ε.
Now, from Lemma 4.1 and taking (4.33) into account, (4.4) holds. This completes

the proof of Theorem 1.1. �
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