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ASYMPTOTICALLY ALMOST PERIODIC AND ALMOST
PERIODIC SOLUTIONS FOR A CLASS OF EVOLUTION

EQUATIONS

EDUARDO HERNÁNDEZ M., MAURICIO L. PELICER, & JOSÉ P. C. DOS SANTOS

Abstract. In this paper we study the existence of asymptotically almost
periodic and almost periodic solutions for the partial evolution equation

d

dt
(x(t) + g(t, x(t)) = Ax(t) + f(t, Bx(t)),

where A is the infinitesimal generator of an analytic semigroup on a Banach
space X, B is a closed linear operator, and f , g are given functions.

1. Introduction

The existence of almost periodic solutions for abstract evolution equation defined
on abstract Banach spaces has been studied in various works, see for instance
[2, 9, 10, 11, 12]. By using the semigroup theory and the contraction mapping
principle, Zaidman studied in [10] the existence of almost periodic solutions for the
integral equation associated to the abstract partial differential equation

x′(t) = Ax(t) + f(t, x(t)), (1.1)

where A is the infinitesimal generator of a C0-semigroup of bounded linear operators
on a Banach space. Recently, Bahaj and Sidki studied in [2] the existence of almost
periodic solution for (1.1).

The purpose of this paper is to discuss the existence of asymptotically almost
periodic and almost periodic solutions for partial evolution equations of the form

d

dt
(x(t) + g(t, x(t)) = Ax(t) + f(t, Bx(t)), (1.2)

x(t0) = y0, (1.3)

where A is the infinitesimal generator of an analytic semigroup of linear operators
defined on a Banach space X, B : D(B) ⊂ X → X is a special type of closed
operator and f, g : I ×X → X are give functions.
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We remark that the technical framework used in this work allow us, for instance,
to study the partial differential equation

d

dt
(u(t, ξ) + g(t, u(t, ξ))) =

∂2u(t, ξ)
∂2ξ

+ f(t,
∂u(t, ξ)

∂ξ
)).

In fact, it’s well known, see [7], that for a class of operators A, there is a bounded
linear operator L : X → X such that ∂

∂ξ = (−A)1/2 ◦ L. Additionally, we mention
that by using the techniques used in this paper, it’s possible to establish the ex-
istence of asymptotically almost periodic solutions for (1.2)-(1.3) without making
additional regularity assumptions on the initial data. We refer to Bridges [1] and
Rankin [7] for complementary remarks about this matter.

The results in this work are generalizations of the results in [2, 10] and our
ideas and techniques can be used in the study of the existence of asymptotically
almost periodic and almost periodic solutions of partial neutral functional differ-
ential equations and partial differential equations of Sobolev type, see Hernandez
[5] for details. In general, our results are proved by using the semigroup theory of
bounded linear operators, the theory of fractional power of closed operators and
the contraction mapping principle.

This paper has four sections. In section 3 we study the existence of asymptoti-
cally almost periodic and almost periodic solutions for the integral equation asso-
ciated to (2.2) and in section 4 we establish conditions under which these “mild”
solutions are classical solutions. In section 5 an example is considered.

2. Preliminaries

In this section we mention a few results and establish notation needed for stating
our results. In this paper, (X, ‖ · ‖) is a Banach space and A : D(A) ⊂ X → X is
the infinitesimal generator of a uniformly exponentially stable analytic semigroup
of linear operators (T (t))t≥0 on X such that 0 ∈ ρ(A). Throughout this work, M, δ
are positive constants such that ‖T (t)‖ ≤ Me−δt for every t ≥ 0. Under these
conditions it is possible to define the fractional power (−A)α, 0 < α ≤ 1, as a
closed linear operator on its domain D((−A)α). Furthermore, D((−A)α) is dense
in X and the expression ‖x‖α = ‖(−A)αx‖ defines a norm in D((−A)α). If Xα is
the space D((−A)α) endowed with the norm ‖ · ‖α, then the following properties
hold, see [6].

Lemma 2.1. Let 0 < γ ≤ ϑ ≤ 1. Then Xϑ is a Banach space and Xϑ ↪→
Xγ . Moreover, the function t → (−A)ϑT (t) is continuous in the uniform operator
topology on (0,∞) and there exist constants Cϑ, C ′ϑ such that

‖(−A)ϑT (t)‖ ≤ Cϑe−δt

tϑ
and ‖(T (t)− I)(−A)−ϑ‖ ≤ C ′ϑtϑ

for every t > 0.

Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be abstract Banach spaces. In this work, we
indicate by L (Z : W ) the Banach space of bounded linear operator of Z into W
and we abbreviate to L(Z) whenever Z = W . The notation C(I : Z) represents the
space of continuous function from I into Z endowed with the uniform convergence
topology. As usual, Cb([0,∞) : Z) is the space of bounded continuous function from
[0,∞) into Z endowed with the uniform convergence topology and C0([0,∞) : Z)
is the subspace of Cb([0,∞) : Z) formed by the functions which vanish at infinity.
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Along this work, Br(x : Z), x ∈ Z, will denote the closed ball with center at x
and radius r > 0 in Z. For a bounded and continuous function ξ : (a, b) → Z and
t ∈ (a, b), we will employ the notation ‖ξ‖a,t,Z for

‖ξ‖a,t,Z = sup{‖ξ(s)‖Z : s ∈ (a, t]}, (2.1)

and we will write simply ‖ξ‖t,Z when non confusion arise.
We remark that a function f : [a, b] → Z is σ-Hölder continuous, 0 < σ ≤ 1, if

there is a constant κ > 0 such that

‖f(s)− f(t)‖ ≤ κ|t− s|σ, s, t ∈ [a, b].

We represent by Cσ([a, b];Z) the space of σ-Hölder continuous function from [a, b]
into Z endowed with the uniform convergence topology. The notation Cσ((a, b];Z)
stands for the space of continuous function f : [a, b] → Z such that f ∈ Cσ([δ, b];Z)
for every δ > a.

Next we make some remarks concerning almost periodic and asymptotically al-
most periodic functions.

Definition 2.2. A continuous function f : R → Z is called almost periodic if for
every ε > 0 there exists a relatively dense subset of R, denoted by H(ε, f, Z), such
that

‖f(t + ξ)− f(t)‖Z < ε,

for every t ∈ R and every ξ ∈ H(ε, f, Z).

Definition 2.3. A continuous function f : [0,∞) → Z is the called asymptotically
almost periodic if there exists an almost periodic function g(·) : R → Z and a
function w(·) ∈ C0([0,∞) : Z) such that f(t) = g(t) + w(t) for every t ≥ 0.

In this paper, AP (Z) and AAP (Z) are the spaces

AP (Z) = {u ∈ Cb(R : Z) : u is almost periodic },
AAP (Z) = {u ∈ Cb([0,∞) : Z) : u is asymptotically almost periodic },

provided with the norm of the uniform convergence. It’ s well known that AP (Z)
and AAP (Z) are Banach spaces, see [13].

Lemma 2.4 (Characterization of asymptotically almost periodic function [13, The-
orem 5]). Let F ([0,∞) : Z) be the subspace of Cb([0,∞) : Z) formed by the functions
f(·) which satisfy the following property: for every ε > 0 there exists L(ε, f, Z) > 0
and a relatively dense subset of [0,∞), denoted by T (ε, f, Z), such that

‖f(t + ξ)− f(t)‖Z < ε,

for every t ≥ L(ε, f, Z) and every ξ ∈ T (ε, f, Z). Then, F ([0,∞) : Z) = AAP (Z).

The next definitions and properties are essential for establishing our results.

Definition 2.5. Let Ω ⊂ W be a open set and F : R × Ω → Z be a continuous
function.

(1) F is called pointwise almost periodic ( pointwise a.p.), if F (·, x) ∈ AP (Z)
for every x ∈ Ω.

(2) F is called uniformly almost periodic (u.a.p.), if for every ε > 0 and every
compact K ⊂ Ω there exists a relatively dense subset of R, denoted by
H(ε, F, K,Z), such that

‖F (t + ξ, y)− F (t, y)‖Z ≤ ε,
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for every (t, ξ, y) ∈ R×H(ε, F, K,Z)×K.

Definition 2.6. Let Ω ⊂ W be a open set and F : [0,∞)×Ω → Z be a continuous
function.

(1) F is called pointwise asymptotically almost periodic (pointwise a.a.p.), if
F (·, x) ∈ AAP (Z) for every x ∈ Ω.

(2) F is called uniformly asymptotically almost periodic (u.a.a.p.), if for every
ε > 0 and every compact K ⊂ Ω there exists a relatively dense subset of
[0,∞), denoted by T (ε, F, K,Z), and L(ε, F, K,Z) > 0 such that

‖F (t + ξ, y)− F (t, y)‖Z ≤ ε,

for every t ≥ L(ε, F, K,Z) and every (ξ, y) ∈ T (F, ε, K,Z)×K.

For details concerning the next two lemmas, see [8, Theorem 1.2.7] and [10].

Lemma 2.7. Let Ω ⊂ W be a open set and F : R × Ω → Z be a continuous
function. Then the following properties hold.

(1) If F is pointwise a.p. and satisfies a local Lipschitz condition at x ∈ Ω,
uniformly at t, then F is u.a.p.

(2) If F is u.a.p. and y ∈ AP (W ) is such that {y(t) : t ∈ R}
W

⊂ Ω, then
F (t, y(t)) ∈ AP (Z).

Lemma 2.8. Let Ω ⊂ W be a open set and F : [0,∞) × Ω → Z be a continuous
function. Then the following properties hold.

(1) If F is pointwise a.a.p. and satisfies a local Lipschitz condition at x ∈ Ω,
uniformly at t, then F is u.a.a.p.

(2) If F is u.a.a.p. and y ∈ AAP (W ) is such that {y(t) : t ∈ [0,∞)}
W
⊂ Ω,

then F (t, y(t)) ∈ AAP (Z).

Throughout this paper, 0 < α, β ≤ 1 are fixed numbers and (Y, ‖·‖Y ) is a Banach
space such that Xη ↪→ Y ↪→ X for every η ∈ (0, 1). To obtain our results we will
use the following technical conditions.

(H1) The function s → T (s)y ∈ C([0,∞);Y ) for every y ∈ Y and there are
M̃ > 0, δ̃ > 0 such that ‖T (s)‖L(Y ) ≤ M̃e−δ̃s for every s ≥ 0. Moreover,
the functions s → (−A)1−βT (s), s → (−A)αT (s) defined from (0,∞) into
L(X, Y ) are strongly measurable and there are non-decreasing functions
Hβ ,Hα and numbers ωi < 0, i = 1, 2, such that eω1sHβ(s) ∈ L1([0,∞)),
eω2sHα(s) ∈ L1([0,∞)) and

‖(−A)1−βT (s)‖L(X:Y ) ≤ eω1sHβ(s), s > 0,

‖(−A)αT (s)‖L(X:Y ) ≤ eω2sHα(s), s > 0.

(H2) The function g(·) is Xβ-valued, (−A)βg : R × Y → X is continuous,
(−A)βg(s, 0) = 0 for every s ≥ 0 and there is a continuous function
Lg : [0,∞) → (0,∞) such that Lg(0) = 0 and

‖(−A)βg(t1, y1)− (−A)βg(t2, y2)‖ ≤ Lg(r)(|t1 − t2|+ ‖y1 − y2‖Y ),

for every (ti, yi) ∈ R×Br(0, Y ).
(H3) The map B : D(B) ⊂ X → X is a closed linear operator such that

D((−A)α) ⊂ D(B) and there are continuous functions f̃ : R × Y → X,
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Lf̃ : [0,∞) → [0,∞) such that Lf̃ (0) = 0, f̃(s, 0) = 0 for every s ≥ 0,
f̃(R×Xα) ⊂ Xα, (−A)αf̃(t, x) = f(t, Bx) for every (t, x) ∈ R×Xα and

‖f̃(t1, y1)− f̃(t2, y2)‖ ≤ Lf̃ (r)(|t1 − t2|+ ‖y1 − y2‖Y ),

when (ti, yi) ∈ R×Br(0, Y ).

Remark 2.9. For examples of semigroups of linear operators and functions veri-
fying the previous assumption, see Bridges [1], Hagen & Turi [4] and Rankin [7].

Following Hernandez [5] and Rankin [7] we introduce the next concepts.

Definition 2.10. A function u ∈ C([t0, r) : Y ) is a Y -mild solution of the abstract
Cauchy problem (1.2)-(1.3) if u(t0) = y0; the functions s → AT (t − s)g(s, u(s)),
s → (−A)αT (t− s)f̃(s, u(s)) belong to L1([t0, t] : Y ) for every t0 ≤ t < r and

u(t) = T (t− t0)(y0 + g(t0, y0))− g(t, u(t))−
∫ t

t0

AT (t− s)g(s, u(s))ds

+
∫ t

t0

(−A)αT (t− s)f̃(s, u(s))ds, t ∈ [t0, r].
(2.2)

Definition 2.11. A function u ∈ C([t0, r) : X) is a mild solution of (1.2)-(1.3) if
u(t0) = y0; u ∈ C((t0, r) : Xα); the function s → AT (t − s)g(s, u(s)) belongs to
L1([t0, t] : X) for every t ∈ [t0, r) and

u(t) = T (t− t0)(y0 + g(t0, y0))− g(t, u(t))−
∫ t

t0

AT (t− s)g(s, u(s))ds

+
∫ t

t0

T (t− s)f(s,Bu(s))ds, t ∈ [t0, r).

The next definition has been introduced in Hernandez [5].

Definition 2.12. A function u ∈ C([t0, r] : X) is an S-classical (Semi-classical)
solution of (1.2)-(1.3) if u(t0) = y0, d

dt (u(t) + g(t, u(t))) is continuous on (t0, r),
u(t) ∈ D(A) for all t ∈ (t0, r] and u(·) satisfies (1.2)-(1.3) on (t0, r).

In relation to asymptotically almost periodic and almost periodic solutions we
introduce the following definitions.

Definition 2.13. A function u ∈ AP (Y ) is an almost periodic Y -mild solution of
(1.2)-(1.3) if the functions s → AT (t − s)g(s, u(s)), s → (−A)αT (t − s)f̃(s, u(s))
belong to L1((−∞, t] : Y ) for every t ∈ R and

u(t) = −g(t, u(t))−
∫ t

−∞
AT (t− s)g(s, u(s))ds +

∫ t

−∞
(−A)αT (t− s)f̃(s, u(s))ds,

for every t ∈ R.

Definition 2.14. A function u ∈ AP (X) is an almost periodic mild solution of
(1.2)-(1.3) if u ∈ C(R : Xα), the function s → AT (t − s)g(s, u(s)) belongs to
L1((−∞, t] : X) for every t ∈ R and

u(t) = −g(t, u(t))−
∫ t

−∞
AT (t−s)g(s, u(s))ds+

∫ t

−∞
T (t−s)f(s,Bu(s))ds, t ∈ R.
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Definition 2.15. A function u ∈ AP (X) is a S-classical solution of (1.2)-(1.3) on
R, if u is a S-classical solution of (1.2)-(1.3) on every interval [t0, t0 + σ] ⊂ R, with
t0 ∈ R and σ > 0.

Definition 2.16. A function u ∈ AAP (Y ) is an asymptotically almost periodic
Y -mild solution of (1.2)-(1.3) if u(0) = y0, the functions s → AT (t − s)g(s, u(s)),
s → (−A)αT (t− s)f̃(s, u(s)) belong to L1((0, t] : Y ) for every t ∈ [0,∞) and

u(t) = T (t)(y0 + g(t0, y0))− g(t, u(t))−
∫ t

0

AT (t− s)g(s, u(s))ds

+
∫ t

0

(−A)αT (t− s)f̃(s, u(s))ds, t ∈ [0,∞).

Definition 2.17. A function u ∈ AAP (X) is a mild solution of (1.2)-(1.3) if
u(0) = y0, u ∈ C((0,∞) : Xα), the function s → AT (t − s)g(s, u(s)) belongs to
L1([0, t] : X) for every t ∈ [0,∞) and

u(t) = T (t)(y0 + g(t0, y0))− g(t, u(t))−
∫ t

0

AT (t− s)g(s, u(s))ds

+
∫ t

0

T (t− s)f(s,Bu(s))ds, t ∈ [0,∞).

Definition 2.18. A function u ∈ AAP (X) is a S-classical solution of (1.2)-(1.3) if
u is a S-classical solution of (1.2)-(1.3) on [0, r] for every r > 0.

3. Existence results of Y -mild solutions

In this section we establish the existence of asymptotically almost periodic and
almost periodic Y -mild solutions for (1.2)-(1.3). First, we need the next result.

Proposition 3.1. Let µ ∈ (0, 1), v(·) ∈ AAP (Xµ) and assume that there is
ω < 0 and a non-increasing function Hµ(·) so that eωsHµ(s) ∈ L1([0,∞)) and
‖(−A)1−µT (t)‖L(X:Y ) ≤ eωtHµ(t) for every t > 0. If u(·) is the function defined by

u(t) =
∫ t

0

AT (t− s)v(s)ds, t ≥ 0, (3.1)

then u(·) ∈ AAP (Y ).

Proof. From Lemma 2.4, it’s sufficient to prove that u ∈ F (R+ : Y ). Let ε > 0
given and T (ε, v,Xµ), L = L(ε, v,Xµ) be as in Lemma 2.4. If t ≥ L(ε, v,Xµ) + 1
and ξ ∈ T (ε, v,Xµ), then

‖u(t + ξ)− u(t)‖Y

≤
∫ ξ

0

‖(−A)1−µT (t + ξ − s)(−A)µv(s)‖Y ds

+
∫ t

0

‖(−A)1−µT (t− s) ((−A)µv(s + ξ)− (−A)µv(s)) ‖Y ds

= I1(t, ξ) + I2(t, ξ).

Now, we estimate each term Ii(t, ξ) separately. For the first term we get

I1(t, ξ) ≤ ‖(−A)µv‖AAP (X)

∫ ξ

0

eω(t+ξ−s)Hµ(t + ξ − s)ds
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≤ eωt‖(−A)µv‖AAP (X)

∫ ξ

0

eω(ξ−s)Hµ(ξ − s)ds,

and hence, there exits d1 > 0 independent of ξ such that

I1(t, ξ) ≤ c1e
ωt, (3.2)

for every t ≥ L(ε, v,Xµ) + 1. On the other hand, for the second term we see that

I2(t, ξ) ≤
∫ L+1

0

‖(−A)1−µT (t− s) ((−A)µv(s + ξ)− (−A)µv(s)) ‖Y ds

+
∫ t

L+1

‖(−A)1−µT (t− s)(−A)µ(v(s + ξ)− v(s))‖Y ds

≤ 2‖(−A)µv‖AAP (X)e
ω(t−L−1)

∫ L+1

0

eω(L+1−s)Hµ(L + 1− s)ds

+ ε

∫ t

L+1

‖(−A)1−µT (t− s)‖L(X;Y )ds

≤ 2‖(−A)µv‖AAP (X)e
ω(t−L−1)

∫ ∞

0

eωsHµ(s)ds + ε

∫ ∞

0

eωsHµ(s)ds.

Thus, there exist positive constants d2, d3 independents of t ≥ L(ε, v,Xµ) + 1 and
ξ ∈ T (ε, v,Xµ) such that

I2(t, ξ) ≤ d2e
ωt + εd3. (3.3)

From (3.2)-(3.3) we have

‖u(t + ξ)− u(t)‖Y ≤ d4e
ωt + εd5,

where d4, d5 are positive constants independent of t ≥ L(ε, v,Xµ) + 1 and ξ ∈
T (ε, v,Xµ). Thus, for an appropriate L(ε, u) > L( ε

2d5
, v,Xµ) + 1, it follows

‖u(t + ξ)− u(t)‖Y ≤ ε

for every t ≥ L(ε, u) and all ξ ∈ T ( ε
2d5

, v,Xµ), which shows that u ∈ F (R+ : Y )
and completes the proof of this result. �

Proceeding as in the previous proof we can prove the next result.

Corollary 3.2. Let µ ∈ (0, 1) and v ∈ AAP (Xµ). If u(·) is the function defined
by 3.1, then u(·) ∈ AAP (X).

In the next result we establish the existence of asymptotically almost periodic
Y -mild solution of (1.2)-(1.3).

Theorem 3.3. Let H1,H2,H3 be verified. Then, there exists ε > 0 such that
for every y0 ∈ Bε(0, Y ) there exits an Y -mild solution u(·, y0) ∈ C([0,∞) : Y ) of
(1.2)-(1.3). Moreover, if the functions f̃ , (−A)βg : [0,∞) × Y → X are pointwise
asymptotically almost periodic, then u(·, y0) ∈ AAP (Y ).

Proof. Let J : [0,∞) → R be the function defined by

J(r) = Lg(r)
(
‖(−A)−β‖L(X:Y ) +

∫ ∞

0

eω1sHβ(s)ds
)

+ Lf̃ (r)
∫ ∞

0

eω2sHα(s)ds

and let r > 0, γ ∈ (0, 1) be such that

M̃
(
1 + r‖(−A)−β‖L(X:Y )Lg(r)

)
γr + J(r)r < r. (3.4)
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Note that the assertion holds for ε = γr. To prove this statement we fix y0 ∈
Bε(0, Y ) and define the operator Γ : Br(0, Cb([0,∞) : Y )) → C([0,∞) : Y ) by

Γx(t) = T (t)(y0 + g(0, y0))− g(t, x(t)) +
∫ t

0

(−A)1−βT (t− s)(−A)βg(s, x(s))ds

+
∫ t

0

(−A)αT (t− s)f̃(s, x(s))ds.

From the assumptions on the functions s → (−A)αT (s) and s → (−A)1−βT (s), the
estimates

‖(−A)1−βT (s)(−A)βg(s, x(s))‖Y ≤ ‖(−A)1−βT (s)‖L(X;Y )Lg(r)r

≤ eω1sHβ(s)Lg(r)r,

‖(−A)αT (s)f̃(s, x(s))‖Y ≤ ‖(−A)αT (s)‖L(X;Y )Lf̃ (r)r ≤ eω2sHα(s)Lf̃ (r)r,

and the Bochner Theorem, we infer that Γx(t) is well defined and that Γx ∈
C([0,∞);Y ). Moreover, for t ≥ 0 we get

‖Γx(t)‖Y

≤ M̃(‖y0‖Y + Lg(r)‖(−A)−β‖L(X:Y )‖y0‖Y ) + Lg(r)‖(−A)−β‖L(X:Y )‖x(t)‖Y

+
∫ t

0

‖(−A)1−βT (s)‖L(X;Y )Lg(r)rds +
∫ t

0

‖(−A)αT (s)‖L(X;Y )Lf̃ (r)rds

≤ M̃(γr + Lg(r)‖(−A)−β‖L(X:Y )γr) + J(r)r,

which from (3.4) implies that Γ(Br(0, Cb([0,∞) : Y ))) ⊂ Br(0, Cb([0,∞) : Y )).
Next, we prove that Γ is a contraction on Br(0, Cb([0,∞) : Y )). For functions

u, v ∈ Br(0, Cb([0,∞) : Y )) we get

‖Γu(t)− Γv(t)‖Y ≤ Lg(r)‖(−A)−β‖L(X:Y )‖u(t)− v(t)‖Y

+ Lg(r)
∫ t

0

‖(−A)1−βT (t− s)‖L(X;Y )‖u(s)− v(s)‖Y ds

+ Lf̃ (r)
∫ t

0

‖(−A)αT (t− s)‖L(X;Y )‖u(s)− v(s)‖Y ds

≤ Lg(r)
(
‖(−A)−β‖L(X:Y ) +

∫ ∞

0

eω1sHβ(s)ds
)
‖u− v‖0,t,Y

+
(
Lf̃ (r)

∫ ∞

0

eω2sHα(s)ds
)
‖u− v‖0,t,Y

≤ J(r)‖u− v‖0,t,Y ,

which proves that Γ is a contraction on Br(0, Cb([0,∞) : Y )) and that Γ has a
unique fixed point u(·, y0) ∈ Br(0, Cb([0,∞) : Y )). Clearly, u(·, y0) is a Y -mild
solution of (1.2)-(1.3).

Since (−A)βg and f̃ are pointwise asymptotically almost periodic, it follows
from Lemma 2.8 and Proposition 3.1 that each solution u(·, y0), y0 ∈ Bε(0, Y ), is
an asymptotically almost periodic Y -mild solution of (1.2)-(1.3). The proof is now
complete. �

In the next result, we discuss the existence of almost periodic Y -mild solutions.
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Theorem 3.4. If the assumptions H1,H2,H3 are satisfied and the functions
(−A)βg, f̃ are pointwise almost periodic, then there exits an almost periodic Y -mild
solution of (1.2)-(1.3).

Proof. Let Γ : AP (Y ) → AP (Y ) be the map defined by

Γu(t) = −g(t, u(t))−
∫ t

−∞
AT (t− s)g(s, u(s))ds +

∫ t

−∞
(−A)αT (t− s)f̃(s, u(s))ds.

The same arguments used in the proof of Theorem 3.3 proves that Γu(t) is well
defined and that Γu ∈ Cb(R;Y ). In order to prove that Γ is AP (Y )-valued, we fix
u ∈ AP (Y ) and ε > 0. We know from Zaidman [13, pp. 30 ] and Lemma 2.7, that
z(t) = (f̃(t, u(t)), (−A)βg(t, u(t))) ∈ AP (X ×X). If ξ ∈ H(ε, z(·), X ×X) we get

‖Γu(t + ξ)− Γu(t)‖Y

≤ ‖(−A)−β‖L(X;Y )‖(−A)βg(t + ξ, u(t + ξ))− (−A)βg(t, u(t))‖

+
∫ t

−∞
‖(−A)1−βT (t− s)

(
(−A)βg(s + ξ, u(s + ξ))− (−A)βg(s, u(s))

)
‖Y ds

+
∫ t

−∞
‖(−A)αT (t− s)

(
f̃(s + ξ, u(s + ξ))− f̃(s, u(s))

)
‖Y ds

≤ ε[‖(−A)−β‖L(X;Y ) +
∫ ∞

0

(‖(−A)1−βT (s)‖L(X;Y ) + ‖(−A)αT (s)‖L(X;Y ))ds]

≤ ε[‖(−A)−β‖L(X;Y ) +
∫ ∞

0

(eω1sHα(s) + eω2sHβ(s)) ds],

which shows that Γu ∈ AP (Y ). Thus, Γ is well defined and with values in AP (Y ).
Note that there exists r0 > 0 small enough such that Γ is a contraction from

Br0(0, AP (Y )) into Br0(0, AP (Y )). Let r > 0 and u ∈ Br(0, AP (Y )). If t ∈ R we
see that

‖Γu(t)‖Y ≤ ‖(−A)−β‖L(X;Y )‖g(t, u(t))‖

+ Lg(r)
∫ t

−∞
‖(−A)1−βT (t− s)‖L(X;Y )‖u(s)‖Y ds

+ Lf̃ (r)
∫ t

−∞
‖(−A)αT (t− s)‖L(X;Y )‖u(s)‖Y ds

≤ ‖(−A)−β‖L(X;Y )Lg(r)r + Lg(r)r
∫ ∞

0

eω1sHβ(s)ds

+ Lf̃ (r)r
∫ ∞

0

eω2sHα(s)ds,

and so that ‖Γu‖AP (Y ) ≤ rJ(r), where

J(r) = Lg(r)
(
‖(−A)−β‖L(X;Y ) +

∫ ∞

0

eω1sHβ(s)ds
)

+ Lf̃ (r)
∫ ∞

0

eω2sHα(s) ds.

Since J(·) is continuous and J(0) = 0, we can fix r0 > 0 such that J(r0) < 1. Ob-
viously, Γ(Br0(0, AP (Y ))) ⊆ Br0(0, AP (Y )). Moreover, for u, v ∈ Br0(0, AP (Y ))
we get

‖Γu(t)− Γv(t)‖Y

≤ ‖(−A)−β‖L(X;Y )‖(−A)βg(t, u(t))− (−A)βg(t, v(t))‖
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+
∫ t

−∞
‖(−A)1−βT (t− s)‖L(X;Y )‖(−A)βg(s, u(s))− (−A)βg(s, v(s))‖ds

+
∫ t

−∞
‖(−A)αT (t− s)‖L(X;Y )‖f̃(s, u(s))− f̃(s, v(s))‖ds

≤ Lg(r0)‖(−A)−β‖L(X;Y )‖u− v‖AP (Y )

+ ‖u− v‖AP (Y )

(
Lg(r0)

∫ ∞

0

eω1sHβ(s)ds + Lf̃ (r0)
∫ ∞

0

eω2sHα(s)ds
)
,

≤ J(r0)‖u− v‖AP (Y ),

which proves that Γ is a contraction on Br0(0, AP (Y )) and that there exists an
almost periodic Y -mild solution of (1.2)-(1.3). The proof is finished. �

4. Existence and regularity of mild solutions

In this section we establish conditions under which an Y -mild solution of (1.2)-
(1.3) is a mild solution. Then, we apply theses results to prove the existence of
asymptotically almost periodic and almost periodic solutions for (1.2)-(1.3).

In the next results, u(·) ∈ C([0, b] : Y ) is a Y -mild solution of (1.2)- (1.3) on
[0, b] and the next condition is always assumed.
Assumption (Afg). There are constants 0 < σ1, σ2 < 1 such that

‖(−A)βg(t, x)− (−A)βg(s, y)‖ ≤ Lg(r) (|t− s|σ1 + ‖x− y‖Y ) ,

‖f̃(t, x)− f̃(s, y)‖ ≤ Lf̃ (r) (|t− s|σ2 + ‖x− y‖Y ) ,

for each (t, s) ∈ R2 and every x, y ∈ Br(0, Y ). Moreover, 0 < α < β ≤ 1 and
‖(−A)−β‖L(X:Y )L(‖u‖0,b,Y ) < 1.

Remark 4.1. Observe that the solutions given by the Theorems 3.3 and 3.4 are
such that ‖(−A)−β‖L(X:Y )L(‖u‖σ,σ+µ,Y ) < 1 for all σ ∈ R and all µ > 0.

Proposition 4.2. Let condition (Afg) be satisfied and assume that there are positive
constants d, d1, d2; 0 < ξ1, ξ2 < 1 such that ‖(−A)1−β+µT (s)‖L(X;Y ) ≤ d1

sξ1
and

‖(−A)α+µT (s)‖L(X;Y ) ≤ d2
sξ2

for every s ∈ (0, b] and every µ ∈ [0, d]. Then u ∈
Cσ((0, b];Y ) for σ = min{d, 1− α, σ1, 1− ξ1, 1− ξ2}.

Proof. We follow the ideas in Rankin [7]. Let t ∈ (0, b) and 0 < h < 1 such that
t + h ∈ (0, b]. Then

‖u(t + h)− u(t)‖Y

≤ ‖(−A)αT (
t

2
)‖L(X;Y )‖(T (h)− I)T (

t

2
)(−A)−α(y0 + g(0, y0))‖

+ ‖(−A)−β‖L(X;Y )‖(−A)βg(t + h, u(t + h))− (−A)βg(t, u(t))‖

+
∫ t

0

‖(−A)1−β+µT (t− s) (T (h)− I) (−A)β−µg(s, u(s))‖Y ds

+
∫ t+h

t

‖(−A)1−βT (t + h− s)‖L(X;Y )‖(−A)βg(s, u(s))‖ds

+
∫ t

0

‖(−A)α+µT (t− s) (T (h)− I) (−A)−µf̃(s, u(s))‖Y ds
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+
∫ t+h

t

‖(−A)αT (t + h− s)‖L(X;Y )‖f̃(s, u(s))‖ds

≤ 2ξ2d2

tξ2
MC ′αh1−α‖y0 + g(0, y0)‖

+ ‖(−A)−β‖L(X;Y )Lg(‖u‖b,Y ) (hσ1 + ‖u(t + h)− u(t)‖Y )

+
∫ t

0

d1

(t− s)ξ1
‖(T (h)− I)(−A)β−µg(s, u(s))‖ds + Lg(‖u‖b,Y )‖u‖b,Y

d1h
1−ξ1

1− ξ1

+
∫ t

0

d2

(t− s)ξ2
‖(T (h)− I)(−A)−µf̃(s, u(s))‖ds + Lf̃ (‖u‖b,Y )‖u‖b,Y

d2h
1−ξ2

1− ξ2

≤ 2ξ2d2

tξ2
MC ′αh1−α‖y0 + g(0, y0)‖

+ ‖(−A)−β‖L(X;Y )Lg(‖u‖b,Y ) (hσ1 + ‖u(t + h)− u(t)‖Y )

+ d̃1h
µ

∫ t

0

ds

(t− s)ξ1
+ d̃2h

1−ξ1 + d̃3h
µ

∫ t

0

ds

(t− s)ξ2
+ d̃4h

1−ξ2 ,

and then

‖u(t + h)− u(t)‖Y ≤ Lg(‖u‖b,Y )‖(−A)−β‖L(X;Y )‖u(t + h)− u(t)‖Y + d̃5h
1−α

+ d̃6h
σ1 + d̃7h

µ + d̃2h
1−ξ1 + d̃4h

1−ξ2 ,

where the constants d̃i, i = 1, 2, . . . 7, are independent of t, h and µ ∈ [0, d]. Since
‖(−A)−β‖L(X;Y )L(‖u‖b,Y ) < 1 and t, h, µ are arbitrary, the last inequality proves
that u(·) ∈ Cσ((0, b];Y ) for σ = min{d, 1 − α, σ1, 1 − ξ1, 1 − ξ2}. The proof is
complete �

Proposition 4.3. Under the assumptions of Proposition 4.2, u(·) ∈ C((0, b];Xγ)
for γ = min{1− α, β}.

Proof. First we introduce the decomposition u =
∑3

i=1 ui where

u1(t) = T (t)(u(0) + g(0, u(0)))− g(t, u(t)),

u2(t) =
∫ t

0

(−A)1−βT (t− s)(−A)βg(s, u(s))ds,

u3(t) =
∫ t

0

(−A)αT (t− s)f̃(s, u(s))ds.

It is obvious that u1 ∈ C((0, b];Xβ). On the other hand, from Proposition 4.2 we
know that u(·) ∈ Cσ((0, b];Y ) for σ = min{d, 1 − α, σ1, 1 − ξ1, 1 − ξ2} which from
the estimate

‖(−A)γ+1T (t− s) (g(s, u(s))− g(t, u(t)) ‖

≤ ‖(−A)γ+1−βT (t− s)‖L(X)‖(−A)βg(s, u(s))− (−A)βg(t, u(t)‖

≤ Cγ+1−β

(t− s)γ+1−β
Lg(‖u‖b,Y ) (|t− s|σ1 + ‖u(s)− u(t)‖Y )

≤ d̃1

(t− s)γ+1−β−σ1
+

d̃2

(t− s)γ+1−β−σ
,

implies that the function

v(s) = (−A)γ+1T (t− s) (g(s, u(s))− g(t, u(t))) ,
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is integrable on [0, t), t ∈ [a, b], when γ < min{β + σ1, β + σ}. In particular, for
γ = β we find that∫ t

0

v(s)ds + (−A)βg(t, u(t))

=
∫ t

0

v(s)ds + (−A)
∫ t

0

(−A)βT (t− s)g(t, u(t))ds + T (t)(−A)βg(t, u(t))

=
∫ t

0

(−A)β+1T (t− s) (g(s, u(s))− g(t, u(t))) ds

+
∫ t

0

(−A)β+1T (t− s)g(t, u(t))ds + T (t)(−A)βg(t, u(t)),

which shows that u2(·) ∈ C([0, b];Xβ) since (−A)β is a closed operator.
Proceeding as in the previous case, we can prove that u3(·) ∈ C([0, b];X1−α).

From theses remarks we conclude that u(·) ∈ C((0, b];Xγ) for γ = min{1 − α, β}.
The proof is complete �

Theorem 4.4. Under the hypotheses of Proposition 4.3, if α ≤ 1− α, then u(·) is
a mild solution of (1.2)-(1.3).

The assertion of this theorem is a consequence of Assumption (H3) and Lemma
2.1. Next we establish conditions under which u(·) is a S-classical solution.

Proposition 4.5. Let assumption in Theorem 4.4 be satisfied and assume that
Lg(‖u‖b,Y )‖(−A)α−β‖L(X:Y )‖(−A)−α‖L(X) < 1. Then u ∈ Cσ((0, b] : Xα) for
σ = min{β − α, σ1}.

Proof. Using the fact that u ∈ C((0, b] : Xα) and Lemma 2.1, for 0 < δ < t < b
and h > 0 such that t + h < b we find that

‖u(t + h)− u(t)‖α

≤ ‖(−A)α(T (h)− I)T (t)(y0 + g(0, y0))‖

+ ‖(−A)α−β‖L(X)‖(−A)βg(t + h, u(t + h))− (−A)βg(t, u(t))‖

+
∫ t

0

‖(−A)1−β+α (T (h)− I) T (t− s)(−A)βg(s, u(s))‖ds

+
∫ t+h

t

‖(−A)1−β+αT (t + h− s)‖‖(−A)βg(s, u(s))‖ds

+
∫ t

0

‖(−A)α (T (h)− I) T (t− s)f(s, u(s))‖ds

+
∫ t+h

t

‖(−A)αT (t + h− s)‖‖f(s, u(s))‖ds

≤
C ′1−αh1−α

δα
‖y0 + g(0, y0)‖

+ ‖(−A)α−β‖L(X)Lg(‖u‖b,Y ) [hσ1 + ‖u(t + h)− u(t)‖Y ]

+
∫ t

0

C ′β−αhβ−α‖(−A)1−β+αT (t− s)(−A)βg(s, u(s))‖ds

+
∫ t+h

t

C1−β+α

(t + h− s)1−β+α
‖(−A)βg(s, u(s))‖ds
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+
∫ t

0

C ′1−αh1−α‖(−A)αT (t− s)f(s, u(s))‖ds

+
∫ t+h

t

Cα

(t + h− s)α
‖f(s, u(s))‖ ds

and hence

‖u(t + h)− u(t)‖α

≤ ‖(−A)α−β‖L(X)Lg(‖u‖b,Y )‖(−A)−α‖L(X,Y )‖u(t + h)− u(t)‖α

+ d̃1h
σ1 + d̃2h

β−α + d̃3h
1−α,

where the constants d̃i are independent of t ≥ δ and h. This inequality completes
the proof of this Proposition since β > α. �

The next result is consequence of Proposition 4.5, [6, Theorem 4.3.2] and [5,
Lemma 2].

Theorem 4.6. Assume that the hypotheses of Proposition 4.5 are satisfied. If
g ∈ C(R×X : X1) and β + min{β − α, σ1} > 1, then u(·) is a S-classical solution
of (1.2)-(1.3).

Remark 4.7. It is clear that the previous results of regularity of Y -mild solutions
are valid for every Y -mild solution u ∈ C([σ, σ + µ];Y ), σ ∈ R, µ > 0.

As consequence of the Theorems 4.4, 4.6 and Remarks 4.1 and 4.7, we obtain
the following existence result of asymptotically almost periodic and almost periodic
solutions of (1.2)-(1.3). The proof of the next result will be omitted.

Theorem 4.8. Let assumptions (H1)–(H3) and condition (Afg1) be satisfied; also
assume that α ≤ 1− α and β + min{β − α, σ1} > 1. Then the following properties
are satisfied.

(1) If the functions f, (−A)βg : [0,∞) × Y → X are pointwise asymptotically
almost periodic, then there exists ε > 0 such that for every y0 ∈ Bε(0, Y )
there exits an asymptotically almost periodic S-classical solution, u(·, y0),
of the system (1.2)-(1.3) such that u(0, y0) = y0.

(2) If the functions f, (−A)βg : [0,∞)× Y → X are pointwise almost periodic,
then there exits an almost periodic S-classical solution of the equation (1.2)-
(1.3).

5. Example

In this section we illustrate some of our results. Consider the first order evolution
equation

d

dt

[
u(t, ξ) +

∫ π

0

a(t)b(η, ξ)u(t, η)dη
]

=
∂2u(t, ξ)

∂ξ2
+ F (t, u(t, ξ)), ξ ∈ I = [0, π]

(5.1)

u(t, 0) = u(t, π) = 0, t ∈ R, (5.2)

where a(·) ∈ Cb(R, R), a(0) = 0 and
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(a) The functions b(η, ξ), ∂ib(η,ξ)
∂ξi , i = 1, 2, are measurable, b(η, π) = b(η, 0) = 0

for every η ∈ R and

Lg = |a(·)|Cb(R:R) max
{
(
∫ π

0

∫ π

0

(
∂ib(η, ξ)

∂ξi
)2dηdξ)1/2 : i = 0, 1, 2

}
< 1; (5.3)

(b) F : R2 → R is continuous and there is µ ∈ Cb(R, R+) such that µ(0) = 0
and

|F (t, x)− F (t, y)| ≤ µ(t)|x− y|,
for every t ∈ R and every (x, y) ∈ R2.

Let X = L2([0, π]) and A : D(A) ⊂ X → X be the operator Ax = x′′ where

D(A) := {x(·) ∈ L2([0, π]) : x′′(·) ∈ L2([0, π]), x(0) = x(π) = 0}.

It is well known that A is the infinitesimal generator C0-semigroup (T (t))t≥0 on X.
Moreover, the next Theorem is valid.

Theorem 5.1. Under the above conditions, the following properties hold
(1) A has discrete spectrum, the eigenvalues are −n2, n ∈ N, with correspond-

ing eigenvectors zn(ξ) :=
(

2
π

)1/2 sin(nξ) and the set {zn : n ∈ N} is an
orthonormal basis of X.

(2) For every x ∈ X, T (t)x =
∑∞

n=1 e−n2t〈x, zn〉zn. Moreover, the semigroup
(T (t))t≥0 is compact, analytic, self-adjoint and ‖T (t)‖ ≤ e−t for every
t ≥ 0.

(3) For f ∈ X, (−A)−θf =
∑∞

n=1 n−2θ〈f, zn〉zn and the operator (−A)θ is
given by (−A)θf =

∑∞
n=1 n2θ〈f, zn〉zn on

D((−A)θ) = {f ∈ X :
∞∑

n=1

n2θ < f, zn > zn ∈ X}.

Moreover, ‖(−A)−1/2‖ = 1 and ‖(−A)1/2T (t)‖ ≤ e
−t
2 t−θ
√

2
for every t > 0.

This theorem follow from [3, Theorem 2.3.5] and [7, Theorem 4].

By defining the functions f(·), g(·) : R×X → X

g(t, x)(ξ) = a(t)
∫ π

0

b(η, ξ)x(η)dη,

f(t, x)(ξ) = F (t, x(ξ)),

the system (5.1)-(5.2) can be written as the abstract differential equation (1.2)-
(1.3). Moreover, f, g are continuous function, g is D(A)-valued, Ag : R ×X → X
is continuous and

‖(−A)θg(t, ·)‖L(X) ≤ |a(t)|Lg, θ = 0,
1
2
, 1,

‖f(t, x)− f(t, y)‖ ≤ µ(t)‖x− y‖,

for every t ∈ R and every x, y ∈ X. Obviously, our results can be applied in the
case Y = X. In this particular case, the next results is consequence of Theorem
4.8.

Theorem 5.2. Under the above conditions, the following properties are satisfied.
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(1) Assume that f : [0,∞) × X → X is pointwise a.a.p. and that a(·) is
asymptotically almost periodic. Then there exists ε > 0 such that for every
y0 ∈ Bε(0, X) there exists an asymptotically almost periodic S-classical
solution, u(·, y0), of (1.2)-(1.3) such that u(0, y0)) = y0.

(2) If f : [0,∞) × Y → X is pointwise almost periodic and a(·) is almost
periodic, then there exists an almost periodic S-classical solution of (1.2)-
(1.3).

Remark 5.3. By using the results in this paper, in a forthcoming paper we will
study the existence of almost periodic solutions for the Navier-Stokes equation

u′(t, x) = Au(t) + (u(t) · ∇)u(t) + g′(t) (5.4)

where g ∈ C(R : V ) and V = {u ∈ H1
0 : div u = 0}. See [1] for details about this

matter.
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