Electronic Journal of Differential Equations, Vol. 2004(2004), No. 63, pp. 1–6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF Ψ -BOUNDED SOLUTIONS FOR A SYSTEM OF DIFFERENTIAL EQUATIONS

AUREL DIAMANDESCU

ABSTRACT. In this article, we present a necessary and sufficient condition for the existence of solutions to the linear nonhomogeneous system x' = A(t)x + f(t). Under the condition stated, for every Lebesgue Ψ -integrable function fthere is at least one Ψ -bounded solution on the interval $(0, +\infty)$.

1. INTRODUCTION

We give a necessary and sufficient condition for the nonhomogeneous system

$$x' = A(t)x + f(t) \tag{1.1}$$

to have at least one Ψ -bounded solution for every Lebesgue Ψ -integrable function f, on the interval $\mathbb{R}_+ = [0, +\infty)$. Here Ψ is a continuous matrix function, instead of a scalar function, which allows a mixed asymptotic behavior of the components of the solution.

The problem of Ψ -boundedness of the solutions for systems of ordinary differential equations has been studied by many authors; see for example Akinyele [1], Constantin [3], Avramescu [2], Hallam [5], and Morchalo [6]. In these papers, the function Ψ is a scalar continuous function: Increasing, differentiable, and bounded in [1]; nondecreasing with $\Psi(t) \geq 1$ on \mathbb{R}_+ in [3]).

Let \mathbb{R}^d be the Euclidean *d*-space. Elements in this space are denoted by $x = (x_1, x_2, \dots, x_d)^T$ and their norm by $||x|| = \max\{|x_1|, |x_2|, \dots, |x_d|\}$. For $d \times d$ real matrices, we define the norm $|A| = \sup_{||x|| \le 1} ||Ax||$.

Let $\Psi_i : \mathbb{R}_+ \to (0, \infty), i = 1, 2, \dots d$, be continuous functions, and let

$$\Psi = \operatorname{diag}[\Psi_1, \Psi_2, \dots \Psi_d].$$

Then the matrix $\Psi(t)$ is invertible for each $t \ge 0$.

Definition. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}^d$ is said to be Ψ -bounded on \mathbb{R}_+ if $\Psi(t)\varphi(t)$ is bounded on \mathbb{R}_+ .

Definition. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}^d$ is said to be Lebesgue Ψ -integrable on \mathbb{R}_+ if $\varphi(t)$ is measurable and $\Psi(t)\varphi(t)$ is Lebesgue integrable on \mathbb{R}_+ .

By a solution of (1.1), we mean an absolutely continuous function satisfying the system for almost all $t \ge 0$.

Key words and phrases. Ψ -bounded, Lebesgue Ψ -integrable function.

²⁰⁰⁰ Mathematics Subject Classification. 34D05, 34C11.

^{©2004} Texas State University - San Marcos.

Submitted March 5, 2004. Published April 23, 2004.

Let A be a continuous $d \times d$ real matrix and the associated linear differential system be

$$y' = A(t)y. \tag{1.2}$$

Also let Y be the fundamental matrix of (1.2) with $Y(0) = I_d$, the identity $d \times d$ matrix.

Let X_1 denote the subspace of \mathbb{R}^d consisting of all vectors which are values of Ψ -bounded solutions of (1.2) at t = 0. Let X_2 be an arbitrary closed subspace of \mathbb{R}^d , supplementary to X_1 . Let P_1 , P_2 denote the corresponding projections of \mathbb{R}^d onto X_1 , X_2 .

2. The Main Results

In this section, we give the main results of this Note.

Theorem 2.1. If A is a continuous $d \times d$ real matrix, then (1.1) has at least one Ψ -bounded solution on \mathbb{R}_+ for every Lebesgue Ψ -integrable function f on \mathbb{R}_+ if and only if there is a positive constant K such that

$$\begin{aligned} |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| &\leq K, \quad for \ 0 \leq s \leq t, \\ |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| &\leq K, \quad for \ 0 \leq t \leq s. \end{aligned}$$
(2.1)

Proof. First, we prove the "only if" part. We define the sets: $C_{\Psi} = \{x : \mathbb{R}_+ \to \mathbb{R}^d : x \text{ is } \Psi \text{-bounded and continuous on } \mathbb{R}_+\},\$ $B = \{x : \mathbb{R}_+ \to \mathbb{R}^d : x \text{ is Lebesgue } \Psi \text{-integrable on } \mathbb{R}_+\},\$ $D = \{x : \mathbb{R}_+ \to \mathbb{R}^d : x \text{ is absolutely continuous on all intervals } J \subset \mathbb{R}_+, \Psi \text{-bounded on } \mathbb{R}_+, x(0) \text{ in } X_2, x'(t) - A(t)x(t) \text{ in } B\}.$

It is well-known that C_{Ψ} is a real Banach space with the norm

$$\|x\|_{C_{\Psi}} = \sup_{t \ge 0} \|\Psi(t)x(t)\|.$$

Also, it is well-known that B is a real Banach space with the norm

$$||x||_B = \int_0^\infty ||\Psi(t)x(t)|| dt.$$

The set D is obviously a real linear space and

$$\|x\|_D = \sup_{t \ge 0} \|\Psi(t)x(t)\| + \|x' - A(t)x\|_B$$

is a norm on D.

Now, we show that $(D, \|\cdot\|_D)$ is a Banach space. Let $(x_n)_n$ be a fundamental sequence in D. Then, $(x_n)_n$ is a fundamental sequence in C_{Ψ} . Therefore, there exists a continuous and bounded function $x : \mathbb{R}_+ \to \mathbb{R}^d$ such that

$$\lim_{n \to \infty} \Psi(t) x_n(t) = x(t), \quad \text{uniformly on } \mathbb{R}_+.$$

Denote $\bar{x}(t) = \Psi^{-1}(t)x(t) \in C_{\Psi}$. From

$$||x_n(t) - \bar{x}(t)|| \le |\Psi^{-1}(t)| ||\Psi(t)x_n(t) - x(t)||,$$

it follows that $\lim_{n\to\infty} x_n(t) = \bar{x}(t)$, uniformly on every compact of \mathbb{R}_+ . Thus, $\bar{x}(0) \in X_2$.

EJDE-2004/63

On the other hand, $(f_n(t))$, where $f_n(t) = \Psi(t)(x'_n(t) - A(t)x_n(t))$, is a fundamental sequence in L, the Banach space of all vector functions which are Lebesgue integrable on \mathbb{R}_+ with the norm

$$||f|| = \int_0^\infty ||\Psi(t)f(t)|| dt.$$

Thus, there is a function f in L such that

$$\lim_{n \to \infty} \int_0^\infty \|f_n(t) - f(t)\| dt = 0.$$

Putting $\bar{f}(t) = \Psi^{-1}(t)f(t)$, it follows that $\bar{f}(t) \in B$

For a fixed, but arbitrary, $t\geq 0,$ we have

$$\begin{split} \bar{x}(t) - \bar{x}(0) &= \lim_{n \to \infty} (x_n(t) - x_n(0)) \\ &= \lim_{n \to \infty} \int_0^t x'_n(s) ds \\ &= \lim_{n \to \infty} \int_0^t [(x'_n(s) - A(s)x_n(s)) + A(s)x_n(s)] ds \\ &= \lim_{n \to \infty} \int_0^t \{\Psi^{-1}(s)[f_n(s) - f(s)] + \bar{f}(s) + A(s)x_n(s)\} ds \\ &= \int_0^t [\bar{f}(s) + A(s)\bar{x}(s)] ds. \end{split}$$

It follows that $\bar{x}'(t) - A(t)\bar{x}(t) = \bar{f}(t) \in B$ and $\bar{x}(t)$ is absolutely continuous on all intervals $J \subset \mathbb{R}_+$. Thus, $\bar{x}(t) \in D$. From $\lim_{n\to\infty} \Psi(t)x_n(t) = \Psi(t)\bar{x}(t)$, uniformly on \mathbb{R}_+ and

$$\lim_{n \to \infty} \int_0^\infty \|\Psi(t)[(x'_n(t) - A(t)x_n(t)) - (\bar{x}'(t) - A(t)\bar{x}(t))]\|dt = 0,$$

it follows that $\lim_{n\to\infty} ||x_n - \bar{x}||_D = 0$. Thus, $(D, ||\cdot||_D)$ is a Banach space. Now, we define

$$T: D \to B, \quad Tx = x' - A(t)x$$

Clearly, T is linear and bounded, with $||T|| \leq 1$. Let Tx = 0. Then, $x' = A(t)x, x \in D$. This shows that x is a Ψ -bounded solution of (1.2). Then, $x(0) \in X_1 \cap X_2 = \{0\}$. Thus, x = 0, such that the operator T is one-to-one.

Now, let $f \in B$ and let x(t) be the Ψ -bounded solution of the system (1.1). Let z(t) be the solution of the Cauchy problem

$$z' = A(t)z + f(t), \quad z(0) = P_2 x(0).$$

Then, x(t)-z(t) is a solution of (1.2) with $P_2(x(0)-z(0)) = 0$, i.e. $x(0)-z(0) \in X_1$. It follows that x(t) - z(t) is Ψ -bounded on R_+ . Thus, z(t) is Ψ -bounded on \mathbb{R}_+ . It follows that $z(t) \in D$ and Tz = f. Consequently, the operator T is onto.

From a fundamental result of Banach: "If T is a bounded one-to-one linear operator from Banach space onto another, then the inverse operator T^{-1} is also bounded, we have that there is a positive constant $K = ||T^{-1}|| - 1$ such that, for $f \in B$ and for the solution $x \in D$ of (1.1),

$$\sup_{t \ge 0} \|\Psi(t)x(t)\| \le K \int_0^\infty \|\Psi(t)f(t)\|.$$

For $s \ge 0, \, \delta > 0, \, \xi \in \mathbb{R}^d$, we consider the function $f : \mathbb{R}_+ \to \mathbb{R}^d$,

$$f(t) = \begin{cases} \Psi^{-1}(t)\xi, & \text{for } s \le t \le s + \delta \\ 0, & \text{elsewhere.} \end{cases}$$

Then, $f \in B$ and $||f||_B = \delta ||\xi||$. The corresponding solution $x \in D$ is

$$x(t) = \int_{s}^{s+\delta} G(t, u) du,$$

where

$$G(t,u) = \begin{cases} Y(t)P_1Y^{-1}(u), & \text{for } 0 \le u \le t \\ -Y(t)P_2Y^{-1}(u), & \text{for } 0 \le t \le u. \end{cases}$$

Clearly, G is continuous except on the line t = u, where it has a jump discontinuity. Therefore,

$$\|\Psi(t)x(t)\| = \|\int_{s}^{s+\delta} \Psi(t)G(t,u)\Psi^{-1}(u)\xi du\| \le K\delta\|\xi\|.$$

It follows that

$$\|\Psi(t)G(t,s)\Psi^{-1}(s)\xi\| \le K\|\xi\|.$$

Hence,

$$|\Psi(t)G(t,s)\Psi^{-1}(s)| \le K,$$

which is equivalent with (2.1). By continuity, (2.1) remains true also in the case t = s.

Now, we prove the "if" part. We consider the function

$$x(t) = \int_0^t Y(t) P_1 Y^{-1}(s) f(s) ds - \int_t^\infty Y(t) P_2 Y^{-1}(s) f(s) ds, t \ge 0,$$

where f is a Lebesgue Ψ -integrable function on \mathbb{R}_+ It is easy to see that x(t) is a Ψ -bounded solution on \mathbb{R}_+ of (1.1). The proof is now complete. \Box

Remark. By taking $\Psi(t) = I_d$ in Theorem 2.1, the conclusion in [4, Theorem 2, Chapter V] follows.

Theorem 2.2. Suppose that:

- (1) The fundamental matrix Y(t) of (1.2) satisfies the conditions:
 - (a) $\lim_{t\to\infty} \Psi(t)Y(t)P_1 = 0;$
 - (b) $|\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s) \le K$, for $0 \le s \le t$, $|\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \le K$, for $0 \le t \le s$,

where K is a positive constant and P_1 and P_2 are as in the Introduction

(2) The function $f: \mathbb{R}_+ \to \mathbb{R}^d$ is Lebesgue Ψ -integrable on \mathbb{R}_+ .

Then, every Ψ -bounded solution x(t) of (1.1) is such that

$$\lim_{t \to \infty} \|\Psi(t)x(t)\| = 0.$$

Proof. Let x(t) be a Ψ -bounded solution of (1.1). There is a positive constant M such that $\|\Psi(t)x(t)\| \leq M$, for all $t \geq 0$. We consider the function

$$y(t) = x(t) - Y(t)P_1x(0) - \int_0^t Y(t)P_1Y^{-1}(s)f(s)ds + \int_t^\infty Y(t)P_2Y^{-1}(s)f(s)ds$$

for all $t \ge 0$.

EJDE-2004/63

From the hypotheses, it follows that the function y(t) is a Ψ -bounded solution of (1.2). Then, $y(0) \in X_1$. On the other hand, $P_1y(0) = 0$. Therefore, $y(0) = P_2y(0) \in X_2$. Thus, y(0) = 0 and then y(t) = 0 for $t \ge 0$.

Thus, for $t \ge 0$ we have

$$x(t) = Y(t)P_1x(0) + \int_0^t Y(t)P_1Y^{-1}(s)f(s)ds - \int_t^\infty Y(t)P_2Y^{-1}(s)f(s)ds.$$

Now, for a given $\varepsilon > 0$, there exists $t_1 \ge 0$ such that

$$\int_{t}^{\infty} \|\Psi(s)f(s)\| ds < \frac{\varepsilon}{2K}, \quad \text{for } t \ge t_{1}.$$

Moreover, there exists $t_2 > t_1$ such that, for $t \ge t_2$,

$$|\Psi(t)Y(t)P_1| \le \frac{\varepsilon}{2} \Big[\|x(0)\| + \int_0^{t_1} \|Y^{-1}(s)f(s)\|ds \Big]^{-1}$$

Then, for $t \ge t_2$ we have

$$\begin{split} \|\Psi(t)x(t)\| &\leq |\Psi(t)Y(t)P_1| \|x(0)\| + \int_0^{t_1} |\Psi(t)Y(t)P_1| \|Y^{-1}(s)f(s)\| ds \\ &+ \int_{t_1}^t |\Psi(t)Y(t)P_1Y^{-1}(s)\Psi^{-1}(s)| \|\Psi(s)f(s)\| ds \\ &+ \int_t^\infty |\Psi(t)Y(t)P_2Y^{-1}(s)\Psi^{-1}(s)| \|\Psi(s)f(s)\| ds \\ &\leq |\Psi(t)Y(t)P_1| \Big[\|x(0)\| + \int_0^{t_1} \|Y^{-1}(s)f(s)\| ds \Big] \\ &+ K \int_{t_1}^\infty \|\Psi(s)f(s)\| ds < \varepsilon. \end{split}$$

This shows that $\lim t \to \infty \|\Psi(t)x(t)\| = 0$. The proof is now complete.

Remark. Theorem 2.2 generalizes a result in Constantin [3].

Note that Theorem 2.2 is no longer true if we require that the function f be Ψ -bounded on \mathbb{R}_+ , instead of condition (2) of the Theorem. Even if the function f is such that

$$\lim t \to \infty \|\Psi(t)f(t)\| = 0,$$

Theorem 2.2 does not apply. This is shown by the next example. Example. Consider the linear system (1.2) with $A(t) = O_2$. Then $Y(t) = I_2$ is a fundamental matrix for (1.2). Consider

$$\Psi(t) = \begin{pmatrix} \frac{1}{t+1} & 0\\ 0 & t+1 \end{pmatrix}$$

We have $\Psi(t)Y(t) = \Psi(t)$, such that

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad p_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

It follows that the first hypothesis of the Theorem is satisfied with K = 1. When we take $f(t) = (\sqrt{t+1}, (t+1)^{-2})^T$, then $\lim_{t\to\infty} ||\Psi(t)f(t)|| = 0$. On the other hand, the solutions of the system (1.1) are

$$x(t) = \begin{pmatrix} \frac{2}{3}(t+1)^{3/2} + c_1 \\ -\frac{1}{t+1} + c_2 \end{pmatrix}$$

It follows that the solutions of the system (1.1) are Ψ -unbounded on \mathbb{R}_+ . **Remark.** When in the above example we consider

$$f(t) = \left((t+1)^{-1}, (t+1)^{-3} \right)^T,$$

then we have

$$\int_0^\infty \|\Psi(t)f(t)\|dt = 1.$$

On the other hand, the solutions of the system (1.1) are

$$x(t) = \begin{pmatrix} \ln(t+1) + c_1 \\ -\frac{1}{2}(t+1)^{-2} + c_2 \end{pmatrix}$$

It is easy to see that these solutions are Ψ -bounded on \mathbb{R}_+ if and only if $c_2 = 0$. In this case, $\lim_{t\to\infty} ||\Psi(t)x(t)|| = 0$.

Note that the asymptotic properties of the components of the solutions are not the same. This is obtained by using a matrix Ψ rather than a scalar.

Acknowledgment. The author would like to thank the anonymous referee for his/her valuable comments and suggestions.

References

- O. Akinyele, On partial stability and boundedness of degree k; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65(1978), 259-264.
- [2] C. Avramescu, Asupra comportării asimptotice a soluțiilor unor ecuații funcționale; Analele Universității din Timiş oara, Seria Științe Matematice-Fizice, vol. VI, 1968, 41-55.
- [3] A. Constantin, Asymptotic properties of solutions of differential equations; Analele Universității din Timişoara, Seria Știin țe Matematice, vol. XXX, fasc. 2-3, 1992, 183-225.
- [4] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Health, Boston, 1965.
- [5] T. G. Hallam On asymptotic equivalence of the bounded solutions of two systems of differential equations; Mich. Math. Journal, vol. 16(1969), 353-363.
- [6] J. Morchalo On ΨL_p -stability of nonlinear systems of differential equations; Analele Ştiințifice ale Universității "Al. I. Cuza" Iași, Tomul XXXVI, s. I a, Matematică, 1990, f. 4, 353-360.

DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY OF CRAIOVA, 13 "AL. I. CUZA" ST., 200.585 CRAIOVA, ROMÂNIA

E-mail address: adiamandescu@central.ucv.ro