Electronic Journal of Differential Equations, Vol. 2004(2004), No. 63, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF Ψ-BOUNDED SOLUTIONS FOR A SYSTEM OF DIFFERENTIAL EQUATIONS

AUREL DIAMANDESCU

Abstract

In this article, we present a necessary and sufficient condition for the existence of solutions to the linear nonhomogeneous system $x^{\prime}=A(t) x+$ $f(t)$. Under the condition stated, for every Lebesgue Ψ-integrable function f there is at least one Ψ-bounded solution on the interval $(0,+\infty)$.

1. Introduction

We give a necessary and sufficient condition for the nonhomogeneous system

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t) \tag{1.1}
\end{equation*}
$$

to have at least one Ψ-bounded solution for every Lebesgue Ψ-integrable function f, on the interval $\mathbb{R}_{+}=[0,+\infty)$. Here Ψ is a continuous matrix function, instead of a scalar function, which allows a mixed asymptotic behavior of the components of the solution.

The problem of Ψ-boundedness of the solutions for systems of ordinary differential equations has been studied by many authors; see for example Akinyele [1], Constantin [3], Avramescu [2], Hallam [5], and Morchalo [6]. In these papers, the function Ψ is a scalar continuous function: Increasing, differentiable, and bounded in [1]; nondecreasing with $\Psi(t) \geq 1$ on \mathbb{R}_{+}in (3).

Let \mathbb{R}^{d} be the Euclidean d-space. Elements in this space are denoted by $x=$ $\left(x_{1}, x_{2}, \ldots x_{d}\right)^{T}$ and their norm by $\|x\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\left|x_{d}\right|\right\}$. For $d \times d$ real matrices, we define the norm $|A|=\sup _{\|x\| \leq 1}\|A x\|$.

Let $\Psi_{i}: \mathbb{R}_{+} \rightarrow(0, \infty), i=1,2, \ldots d$, be continuous functions, and let

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots \Psi_{d}\right]
$$

Then the matrix $\Psi(t)$ is invertible for each $t \geq 0$.
Definition. A function $\varphi: \mathbb{R}_{+} \rightarrow R^{d}$ is said to be Ψ-bounded on \mathbb{R}_{+}if $\Psi(t) \varphi(t)$ is bounded on \mathbb{R}_{+}.
Definition. A function $\varphi: \mathbb{R}_{+} \rightarrow R^{d}$ is said to be Lebesgue Ψ-integrable on \mathbb{R}_{+}if $\varphi(t)$ is measurable and $\Psi(t) \varphi(t)$ is Lebesgue integrable on \mathbb{R}_{+}.

By a solution of (1.1), we mean an absolutely continuous function satisfying the system for almost all $t \geq 0$.

2000 Mathematics Subject Classification. 34D05, 34C11.
Key words and phrases. Ψ-bounded, Lebesgue Ψ-integrable function.
(C) 2004 Texas State University - San Marcos.

Submitted March 5, 2004. Published April 23, 2004.

Let A be a continuous $d \times d$ real matrix and the associated linear differential system be

$$
\begin{equation*}
y^{\prime}=A(t) y . \tag{1.2}
\end{equation*}
$$

Also let Y be the fundamental matrix of 1.2 with $Y(0)=I_{d}$, the identity $d \times d$ matrix.

Let X_{1} denote the subspace of \mathbb{R}^{d} consisting of all vectors which are values of Ψ-bounded solutions of 1.2 at $t=0$. Let X_{2} be an arbitrary closed subspace of \mathbb{R}^{d}, supplementary to X_{1}. Let P_{1}, P_{2} denote the corresponding projections of \mathbb{R}^{d} onto X_{1}, X_{2}.

2. The Main Results

In this section, we give the main results of this Note.
Theorem 2.1. If A is a continuous $d \times d$ real matrix, then (1.1) has at least one Ψ-bounded solution on \mathbb{R}_{+}for every Lebesgue Ψ-integrable function f on \mathbb{R}_{+}if and only if there is a positive constant K such that

$$
\begin{align*}
& \left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K, \quad \text { for } 0 \leq s \leq t \\
& \left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K, \quad \text { for } 0 \leq t \leq s \tag{2.1}
\end{align*}
$$

Proof. First, we prove the "only if" part. We define the sets:
$C_{\Psi}=\left\{x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}: x\right.$ is Ψ-bounded and continuous on $\left.\mathbb{R}_{+}\right\}$,
$B=\left\{x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}: x\right.$ is Lebesgue Ψ-integrable on $\left.\mathbb{R}_{+}\right\}$,
$D=\left\{x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}: x\right.$ is absolutely continuous on all intervals $J \subset \mathbb{R}_{+}, \Psi$-bounded on $\mathbb{R}_{+}, x(0)$ in $X_{2}, x^{\prime}(t)-A(t) x(t)$ in $\left.B\right\}$.

It is well-known that C_{Ψ} is a real Banach space with the norm

$$
\|x\|_{C_{\Psi}}=\sup _{t \geq 0}\|\Psi(t) x(t)\|
$$

Also, it is well-known that B is a real Banach space with the norm

$$
\|x\|_{B}=\int_{0}^{\infty}\|\Psi(t) x(t)\| d t
$$

The set D is obviously a real linear space and

$$
\|x\|_{D}=\sup _{t \geq 0}\|\Psi(t) x(t)\|+\left\|x^{\prime}-A(t) x\right\|_{B}
$$

is a norm on D.
Now, we show that $\left(D,\|\cdot\|_{D}\right)$ is a Banach space. Let $\left(x_{n}\right)_{n}$ be a fundamental sequence in D. Then, $\left(x_{n}\right)_{n}$ is a fundamental sequence in C_{Ψ}. Therefore, there exists a continuous and bounded function $x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ such that

$$
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=x(t), \quad \text { uniformly on } \mathbb{R}_{+}
$$

Denote $\bar{x}(t)=\Psi^{-1}(t) x(t) \in C_{\Psi}$. From

$$
\left\|x_{n}(t)-\bar{x}(t)\right\| \leq\left|\Psi^{-1}(t)\right|\left\|\Psi(t) x_{n}(t)-x(t)\right\|
$$

it follows that $\lim _{n \rightarrow \infty} x_{n}(t)=\bar{x}(t)$, uniformly on every compact of \mathbb{R}_{+}. Thus, $\bar{x}(0) \in X_{2}$.

On the other hand, $\left(f_{n}(t)\right)$, where $f_{n}(t)=\Psi(t)\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)$, is a fundamental sequence in L, the Banach space of all vector functions which are Lebesgue integrable on \mathbb{R}_{+}with the norm

$$
\|f\|=\int_{0}^{\infty}\|\Psi(t) f(t)\| d t
$$

Thus, there is a function f in L such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left\|f_{n}(t)-f(t)\right\| d t=0
$$

Putting $\bar{f}(t)=\Psi^{-1}(t) f(t)$, it follows that $\bar{f}(t) \in B$
For a fixed, but arbitrary, $t \geq 0$, we have

$$
\begin{aligned}
\bar{x}(t)-\bar{x}(0) & =\lim _{n \rightarrow \infty}\left(x_{n}(t)-x_{n}(0)\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t} x_{n}^{\prime}(s) d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t}\left[\left(x_{n}^{\prime}(s)-A(s) x_{n}(s)\right)+A(s) x_{n}(s)\right] d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t}\left\{\Psi^{-1}(s)\left[f_{n}(s)-f(s)\right]+\bar{f}(s)+A(s) x_{n}(s)\right\} d s \\
& =\int_{0}^{t}[\bar{f}(s)+A(s) \bar{x}(s)] d s
\end{aligned}
$$

It follows that $\bar{x}^{\prime}(t)-A(t) \bar{x}(t)=\bar{f}(t) \in B$ and $\bar{x}(t)$ is absolutely continuous on all intervals $J \subset \mathbb{R}_{+}$. Thus, $\bar{x}(t) \in D$. From $\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) \bar{x}(t)$, uniformly on \mathbb{R}_{+}and

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left\|\Psi(t)\left[\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)-\left(\bar{x}^{\prime}(t)-A(t) \bar{x}(t)\right)\right]\right\| d t=0
$$

it follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|_{D}=0$. Thus, $\left(D,\|\cdot\|_{D}\right)$ is a Banach space.
Now, we define

$$
T: D \rightarrow B, \quad T x=x^{\prime}-A(t) x
$$

Clearly, T is linear and bounded, with $\|T\| \leq 1$. Let $T x=0$. Then, $x^{\prime}=A(t) x, x \in$ D. This shows that x is a Ψ-bounded solution of 1.2 . Then, $x(0) \in X_{1} \cap X_{2}=\{0\}$. Thus, $x=0$, such that the operator T is one-to-one.

Now, let $f \in B$ and let $x(t)$ be the Ψ-bounded solution of the system 1.1). Let $z(t)$ be the solution of the Cauchy problem

$$
z^{\prime}=A(t) z+f(t), \quad z(0)=P_{2} x(0)
$$

Then, $x(t)-z(t)$ is a solution of 1.2 with $P_{2}(x(0)-z(0))=0$, i.e. $x(0)-z(0) \in X_{1}$. It follows that $x(t)-z(t)$ is Ψ-bounded on R_{+}. Thus, $z(t)$ is Ψ-bounded on \mathbb{R}_{+}. It follows that $z(t) \in D$ and $T z=f$. Consequently, the operator T is onto.

From a fundamental result of Banach: "If T is a bounded one-to-one linear operator from Banach space onto another, then the inverse operator T^{-1} is also bounded, we have that there is a positive constant $K=\left\|T^{-1}\right\|-1$ such that, for $f \in B$ and for the solution $x \in D$ of (1.1),

$$
\sup _{t \geq 0}\|\Psi(t) x(t)\| \leq K \int_{0}^{\infty}\|\Psi(t) f(t)\|
$$

For $s \geq 0, \delta>0, \xi \in \mathbb{R}^{d}$, we consider the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$,

$$
f(t)= \begin{cases}\Psi^{-1}(t) \xi, & \text { for } s \leq t \leq s+\delta \\ 0, & \text { elsewhere }\end{cases}
$$

Then, $f \in B$ and $\|f\|_{B}=\delta\|\xi\|$. The corresponding solution $x \in D$ is

$$
x(t)=\int_{s}^{s+\delta} G(t, u) d u
$$

where

$$
G(t, u)= \begin{cases}Y(t) P_{1} Y^{-1}(u), & \text { for } 0 \leq u \leq t \\ -Y(t) P_{2} Y^{-1}(u), & \text { for } 0 \leq t \leq u\end{cases}
$$

Clearly, G is continuous except on the line $t=u$, where it has a jump discontinuity. Therefore,

$$
\|\Psi(t) x(t)\|=\left\|\int_{s}^{s+\delta} \Psi(t) G(t, u) \Psi^{-1}(u) \xi d u\right\| \leq K \delta\|\xi\|
$$

It follows that

$$
\left\|\Psi(t) G(t, s) \Psi^{-1}(s) \xi\right\| \leq K\|\xi\|
$$

Hence,

$$
\left|\Psi(t) G(t, s) \Psi^{-1}(s)\right| \leq K
$$

which is equivalent with 2.1. By continuity, 2.1 remains true also in the case $t=s$.

Now, we prove the "if" part. We consider the function

$$
x(t)=\int_{0}^{t} Y(t) P_{1} Y^{-1}(s) f(s) d s-\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) f(s) d s, t \geq 0
$$

where f is a Lebesgue Ψ-integrable function on \mathbb{R}_{+}It is easy to see that $x(t)$ is a Ψ-bounded solution on \mathbb{R}_{+}of 1.1 . The proof is now complete.
Remark. By taking $\Psi(t)=I_{d}$ in Theorem 2.1, the conclusion in 4, Theorem 2, Chapter V] follows.

Theorem 2.2. Suppose that:
(1) The fundamental matrix $Y(t)$ of (1.2) satisfies the conditions:
(a) $\lim _{t \rightarrow \infty} \Psi(t) Y(t) P_{1}=0$;
(b) $\mid \Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s) \leq K$, for $0 \leq s \leq t$,

$$
\left|\Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K, \text { for } 0 \leq t \leq s
$$

where K is a positive constant and P_{1} and P_{2} are as in the Introduction
(2) The function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ is Lebesgue Ψ-integrable on \mathbb{R}_{+}.

Then, every Ψ-bounded solution $x(t)$ of (1.1) is such that

$$
\lim _{t \rightarrow \infty}\|\Psi(t) x(t)\|=0
$$

Proof. Let $x(t)$ be a Ψ-bounded solution of 1.1 . There is a positive constant M such that $\|\Psi(t) x(t)\| \leq M$, for all $t \geq 0$. We consider the function

$$
y(t)=x(t)-Y(t) P_{1} x(0)-\int_{0}^{t} Y(t) P_{1} Y^{-1}(s) f(s) d s+\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) f(s) d s
$$

for all $\mathrm{t} \geq 0$.

From the hypotheses, it follows that the function $y(t)$ is a Ψ-bounded solution of (1.2). Then, $y(0) \in X_{1}$. On the other hand, $P_{1} y(0)=0$. Therefore, $y(0)=$ $P_{2} y(0) \in X_{2}$. Thus, $y(0)=0$ and then $y(t)=0$ for $t \geq 0$.

Thus, for $t \geq 0$ we have

$$
x(t)=Y(t) P_{1} x(0)+\int_{0}^{t} Y(t) P_{1} Y^{-1}(s) f(s) d s-\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) f(s) d s
$$

Now, for a given $\varepsilon>0$, there exists $t_{1} \geq 0$ such that

$$
\int_{t}^{\infty}\|\Psi(s) f(s)\| d s<\frac{\varepsilon}{2 K}, \quad \text { for } t \geq t_{1}
$$

Moreover, there exists $t_{2}>t_{1}$ such that, for $t \geq t_{2}$,

$$
\left|\Psi(t) Y(t) P_{1}\right| \leq \frac{\varepsilon}{2}\left[\|x(0)\|+\int_{0}^{t_{1}}\left\|Y^{-1}(s) f(s)\right\| d s\right]^{-1}
$$

Then, for $t \geq t_{2}$ we have

$$
\begin{aligned}
\|\Psi(t) x(t)\| \leq & \left|\Psi(t) Y(t) P_{1}\right|\|x(0)\|+\int_{0}^{t_{1}}\left|\Psi(t) Y(t) P_{1}\right|\left\|Y^{-1}(s) f(s)\right\| d s \\
& +\int_{t_{1}}^{t}\left|\Psi(t) Y(t) P_{1} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
& +\int_{t}^{\infty} \mid \Psi(t) Y(t) P_{2} Y^{-1}(s) \Psi^{-1}(s)\| \|(s) f(s) \| d s \\
\leq & \left|\Psi(t) Y(t) P_{1}\right|\left[\|x(0)\|+\int_{0}^{t_{1}}\left\|Y^{-1}(s) f(s)\right\| d s\right] \\
& +K \int_{t_{1}}^{\infty}\|\Psi(s) f(s)\| d s<\varepsilon
\end{aligned}
$$

This shows that $\lim t \rightarrow \infty\|\Psi(t) x(t)\|=0$. The proof is now complete.
Remark.Theorem 2.2 generalizes a result in Constantin [3].
Note that Theorem 2.2 is no longer true if we require that the function f be Ψ-bounded on \mathbb{R}_{+}, instead of condition (2) of the Theorem. Even if the function f is such that

$$
\lim t \rightarrow \infty\|\Psi(t) f(t)\|=0
$$

Theorem 2.2 does not apply. This is shown by the next example.
Example. Consider the linear system (1.2) with $A(t)=O_{2}$. Then $Y(t)=I_{2}$ is a fundamental matrix for 1.2 . Consider

$$
\Psi(t)=\left(\begin{array}{cc}
\frac{1}{t+1} & 0 \\
0 & t+1
\end{array}\right)
$$

We have $\Psi(t) Y(t)=\Psi(t)$, such that

$$
P_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad p_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

It follows that the first hypothesis of the Theorem is satisfied with $K=1$. When we take $f(t)=\left(\sqrt{t+1},(t+1)^{-2}\right)^{T}$, then $\lim _{t \rightarrow \infty}\|\Psi(t) f(t)\|=0$. On the other hand, the solutions of the system (1.1) are

$$
x(t)=\binom{\frac{2}{3}(t+1)^{3 / 2}+c_{1}}{-\frac{1}{t+1}+c_{2}}
$$

It follows that the solutions of the system (1.1) are Ψ-unbounded on \mathbb{R}_{+}.
Remark. When in the above example we consider

$$
f(t)=\left((t+1)^{-1},(t+1)^{-3}\right)^{T}
$$

then we have

$$
\int_{0}^{\infty}\|\Psi(t) f(t)\| d t=1
$$

On the other hand, the solutions of the system (1.1) are

$$
x(t)=\binom{\ln (t+1)+c_{1}}{-\frac{1}{2}(t+1)^{-2}+c_{2}}
$$

It is easy to see that these solutions are Ψ-bounded on \mathbb{R}_{+}if and only if $c_{2}=0$. In this case, $\lim _{t \rightarrow \infty}\|\Psi(t) x(t)\|=0$.

Note that the asymptotic properties of the components of the solutions are not the same. This is obtained by using a matrix Ψ rather than a scalar.

Acknowledgment. The author would like to thank the anonymous referee for his/her valuable comments and suggestions.

References

[1] O. Akinyele, On partial stability and boundedness of degree k; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65(1978), 259-264.
[2] C. Avramescu, Asupra comportării asimptotice a soluţiilor unor ecuaţii funcţionale; Analele Universităţii din Timiş oara, Seria Ştiinţe Matematice-Fizice, vol. VI, 1968, 41-55.
[3] A. Constantin, Asymptotic properties of solutions of differential equations; Analele Universităţii din Timişoara, Seria Ştiin ţe Matematice, vol. XXX, fasc. 2-3, 1992, 183-225.
[4] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Health, Boston, 1965.
[5] T. G. Hallam On asymptotic equivalence of the bounded solutions of two systems of differential equations; Mich. Math. Journal, vol. 16(1969), 353-363.
[6] J. Morchalo On $\Psi-L_{p}$-stability of nonlinear systems of differential equations; Analele Ştiinţifice ale Universităţii "Al. I. Cuza" Iaşi, Tomul XXXVI, s. I - a, Matematică, 1990, f. 4, 353-360.

Department of Applied Mathematics, University of Craiova, 13 "Al. I. Cuza" st., 200.585 Craiova, România

E-mail address: adiamandescu@central.ucv.ro

